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УДК 004.056.5

РАСШИРЕНИЕ ФУНКЦИОНАЛЬНОСТИ 
СЛЕПЫХ АККУМУЛЯТОРОВ: КОНТЕКСТЫ

С. В. АГИЕВИЧ 1), М. А. КАЗЛОВСКИЙ 2)

1)Научно-исследовательский институт прикладных проблем математики и информатики БГУ, 
пр. Независимости, 4, 220030, г. Минск, Беларусь 

2)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Слепой аккумулятор предназначен для децентрализованной загрузки авторизованными сторо-
нами своих личных ключей с последующей выгрузкой открытых ключей. Выгружаемый открытый ключ связан 
с одной из сторон, хотя и неизвестно с какой. Схема слепого аккумулятора расширяется так, чтобы открытый 
ключ стороны был привязан к определенному контексту и этот ключ было вычислительно трудно связать с от-
крытыми ключами той же стороны, полученными в других контекстах. Слепые аккумуляторы с контекстами ока-
зываются полезными в различных сценариях электронного голосования, например при переголосовании. Пред-
лагается реализация схемы слепого аккумулятора с контекстами, и обосновывается ее безопасность.

Ключевые слова: электронное голосование; переголосование; криптографический аккумулятор; слепой акку-
мулятор; распознавательная задача Диффи – Хеллмана.
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Abstract. Blind accumulators collect private keys of eligible entities in a decentralised manner not getting information 
about the keys. Once the accumulation is complete, an entity processes the resulting accumulator and derives a public key 
which refers to a private key previously added by this entity. We extend the blind accumulator scheme with the context 
functionality so that the derived key is bound to a specific context and this key is computationally hard to associate with 
public keys of other contexts. Blind accumulators with contexts are useful in various e-voting scenarios, for example in 
revoting. We provide an instantiation of the extended blind accumulator scheme and justify its security.

Keywords: e-voting; revoting; cryptographic accumulator; blind accumulator; decisional Diffie – Hellman problem.
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Introduction
A blind accumulator is a cryptographic container that collects private keys and outputs (derives) the corre-

sponding public keys. A private key is added to the accumulator in a provably correct manner while remaining 
secret, that is, known only to its owner. The derived public key is accompanied by a proof that it refers to some 
of the collected private keys while it is computationally hard to determine which one. In addition, blind accu-
mulators are managed in the decentralised manner.

Blind accumulators are introduced in [1] as a tool for organising decentralised electronic voting (e-voting). 
Voters use the accumulated private keys to sign ballots, the derived public keys are used to verify signatures. 
The voter’s public key acts as an immutable pseudonym, which can be used to prevent double voting or, con-
versely, allow multiple ballots to be cast with only the last one to be counted.

The last possibility, the so-called revoting, is an important feature of modern e-voting systems. The direct 
revoting based on blind accumulators have the following drawback: an adversary can track the change in the 
opinions of voters (while not violating their anonymity) by observing ballots. It is desirable to organise revo-
ting in such a way that it is difficult to relate the original and subsequent ballots of the same voter.

This motivates us to extend the functionality of blind accumulators. In section «Contexts», we enrich inter-
faces of the blind accumulator algorithms by adding to some of them a parameter that describes a target con-
text: regular voting, revoting, second round voting, etc. To ensure that voter’s object in different contexts are 
hard to associate with each other, we introduce an additional security requirement called severance. In section 
«Instantiation», we propose an instantiation of the extended blind accumulator scheme. In section «Security», 
we justify the security of the proposed instantiation.

Contexts
Cryptographic accumulators are special encodings of tuples of objects. We write a � � �S  to denote that an 

accumulator a encodes a tuple S. We interpret tuples as ordered multisets bringing standard set notations such as 
the curly braces, the membership (∈) and union (∪) symbols.

A blind accumulator scheme introduced in [1] is a tuple of polynomial-time algorithms BAcc =(Init, 
Add, PrvAdd, VfyAdd, Der, PrvDer, VfyDer)that are defined as follows.

1. The probabilistic algorithm Init: 1l  a0 takes a security level l ∈  (in the unary form) and outputs an 
initial accumulator a

0
� �� �.

We assume that a0 implicitly refers to l and public parameters (such as a description of an elliptic curve) and 
that these parameters implicitly define a set of private keys SKeys and a set of public keys PKeys.

2. The deterministic algorithm Add: a a, sk� � �
  takes an accumulator a � � �S  and a private key sk, and 

outputs an updated accumulator � � � � ��� ��a S sk .
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We assume that a is an output of either Init or some previous call to Add. This ensures the consistency 
of a, i. e. that it is constructed as

a a a� � � � �� �� �� �� � � �Add Add Add Add Init SK
0 1 2 0

1, , , , , ,sk sk sk skn
l

i eeys,

and, therefore, is an incrementally built encoding [S ] of the multiset S sk sk skn� �� �1 2
, , , .

We also assume that the public parameters referenced in the initial accumulator a0 are passed to all accu-
mulators incrementally built from it.

3. The probabilistic algorithm PrvAdd: a a, ,�� �sk  � takes accumulators a, a′ and a private key sk, and 
generates a proof α that �� � �a aAdd , .sk

4. The deterministic algorithm VfyAdd: a a, ,�� ��  b  takes accumulators a, a′ and a proof α that 
�� � �a aAdd , sk  for some private key sk. The algorithm verifies the proof and outputs either b = 1 for accep-

tance or b = 0 for rejection.
5. The deterministic algorithm Der: a, sk pk� � �  takes an accumulator a and a private key sk, and either 

derives a public key pk or outputs the error symbol ⊥.
We require that for a consistent a � � �S , Der a, sk� � � � if and only if sk ∉ S.
6. The probabilistic algorithm PrvDer: a, ,pk sk� � � takes an accumulator a, a private key sk and a public 

key pk, and generates a proof δ that pk sk� � �Der a, .

7. The deterministic algorithm VfyDer: a, ,pk b�� �  takes an accumulator a, a public key pk and a proof δ 
that pk sk� � �Der a,  for some private key sk. The algorithm verifies the proof and outputs either b = 1 for ac-
ceptance or b = 0 for rejection.

Further details on the algorithms and additional requirements are presented in [1].
To support contexts, we extend the interfaces of the last three algorithms. We describe a context with 

a non-empty binary word (string) c and use it as an additional input parameter of Der, PrvDer and VfyDer. 
Denote the resulting extension of BAcc by BAcc1.

The algorithm Der of BAcc1 takes a triple a, ,sk c� � and outputs a public key pk bound to the context c. 
We require that if sk ←$

,SKeys  sk ∈ S and a � � �S , then   pk sk� � �Der a,  has a fixed distribution D over 
PKeys regardless of S and c. 

Hereinafter we write r r RL
1 2
, , ��  to denote that r1, r2, … are chosen independently at random from a set R 

according to a probability distribution L and denote by $ the uniform distribution.
The paper [1] defines four security requirements for blind accumulators, namely, consistency, soundness, 

blindness, and unlinkability. To extend these notions to BAcc1, we modify the last three requirements as fol-
lows:

  • in the definition of soundness, the algorithms  and ℰ take the additional input c that is transferred to 
VfyDer and Der, respectively;

  • in the definition of blindness, the algorithms 𝒮2 takes the additional input c that is transferred to Der and 
PrvDer;

  • in the definition of unlinkability, the game G takes the additional input c that is repeated when calling 
Der.

The consistency, soundness, blindness, and unlinkability do not guarantee that the public keys derived in 
different contexts are hard to associate with each other. To ensure such guarantees, we introduce an additional 
requirement called severance.

Consider an algorithm  that takes a consistent accumulator a � � �S  of security level l, different context 
strings c, c′ and public keys pk, pk ′. The first public key is derived from a using sk ∈ S in the context c. The al-
gorithm  guesses if the second public key is also derived from a using sk but in the context c′. The algorithm 
returns 1 (true) or 0 (false). We allow all elements of S except sk to be predefined and thus known to . There-
fore, it is enough to consider only the simplest case S sk�� �.

Definition 1. A scheme BAcc1 provides severance if for any different context strings c, c′ and for any pro-
babilistic polynomial-time algorithm  described above it holds that

Adv P a
a 1 a a

 � � � � �� � �
� � � � �

, , , , :

, , ,
$

c c pk pk
sk sl

1
0 0

Init AddSKeys kk

pk sk c pk sk c
� �

� � � �� �� �

�
�
�

��

�
�
�

��
�

 

Der Dera a, , , , ,
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� � �� � �
� � � � � � �
�

P a
a 1 a a

 , , , , :

, , ,
$

c c pk pk
sk sk

pk

l

1
0 0

Init AddSKeys

DDer PKeysa, , ,sk c pk� � ��

�
�
�

��

�
�
�

��

is negligible in l.

Instantiation
In [1], an instantiation of the BAcc scheme, called BAcc-DH, is proposed. We modify BAcc-DH to sup-

port the BAcc1 functionality. The resulting instantiation is called BAcc1-DH.
In BAcc1-DH, a cyclic group q of large prime order q is used. We write this group additively and denote 

by q
∗ the set of nonzero elements of q. We also use the ring  q of residues of integers modulo q and the set 

q
∗ of nonzero (invertible) residues. The group q is constructed in the algorithm BAcc1-DH.Init. An input 

security level l determines the bit length of q. Once q is constructed, the set of private keys SKeys and the 
set of public keys PKeys are defined as q

∗ and q
∗, respectively. We use hash functions H and H1 that map to 

these sets.
The initial accumulator a0 and all subsequent accumulators are words in the alphabet q

∗. The set of 
non-empty words in an alphabet Σ is denoted by Σ+. An empty word is denoted by ⊥. The notation q

� �� �  is 
shortened to q

��. For a word w, let w  be its length and most w� � be the word obtained from w by dropping 
its last symbol. For V q� �  and u q� � , let uV denote the u-multiple of V. A word that obtained from w� ��q  
by replacing each symbol by its u-multiple is denoted as u w. Two words in q

∗ can be added symbol-wise to 
obtain a word in q.

In BAcc1-DH, the algorithms Add, PrvAdd and VfyAdd are the same as in BAcc-DH. The remaining 
algorithms are updated, the corrections are highlighted in frames in the listings below.

 Algorithm BAcc1-DH.Init     
Input: 1l (security level).
Output: a0�

��q  (initial accumulator).
Steps: 
1. Construct a group q of prime order q such that C12

l < q < C22
l, where C1, C2 are some constants.

2. Construct hash functions H Hq q: , , : , .0 1 0 1
1� � � � � � �� ��� � �Z G

3. G H� �� �1
.

4. a0 ← G.
5. Return a0.
The descriptions of q and G can be interpreted as additional outputs of the algorithm. We allow H to pro-

cess arbitrary input data assuming they are pre-encoded into a binary word.

 Algorithm BAcc1-DH.Der        
Input: a� ��q  (accumulator), u q∈*  (private key), c�� ��0 1,  (context)  .
Output: V q� �  (public key).
Steps: 
1. Parse a = G0 G1 … Gn.
2. Find i n� �� �1 2, , ,  such that uGi = G0. If such i does not exist, return ⊥.
3. C H c� � �1

.

4. Return uC.

 Algorithm BAcc1-DH.PrvDer 
Input: a� ��q  (accumulator), u q� �  (private key), V q� �  (public key), c�� ��0 1,  (context)  .
Output: �� �� � q q (proof ).

D
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Steps: 
1. Parse a = G0 G1 … Gn.
2. Find i n� �� �1 2, , ,  such that uGi = G0. If such i does not exist, return 0 0, .� �
3. C H c� � �1

. 
4. For  j = 1, 2, …, n,  j ≠ i:

a) h sj j q, ;
$←

b) rj j j js G G h CV� � � � � �0
.

5. ki q←$
.

6. ri i ik G G� � �0
.

7. h H V h qi n j
j i

� �� � �
�

�
��

�

�
��

�
�a r r r, , mod .

1 2

8. s k uh qi i i� �� �mod .

9. �� � �� �h h h s s sn n1 2 1 2
, .

10. Return δ.

 Algorithm BAcc1-DH.VfyDer 
Input: a� ��q  (accumulator), V q� �  (public key), �� �� � q q (proof ), c�� ��0 1,  (context)  .
Output: 1 (accept) or 0 (reject).
Steps: 
1. Parse �� � �h s, . If h s≠  or a h� � 1, return 0.
2. Parse a = G0 G1 … Gn, h = h1 h2 … hn and s = s1 s2 … sn.
3. C H c� � �1

.

4. For  j = 1, 2, …, n:
a) rj j j js G G h CV� � � � � �0

. 

5. If H V h h h qn na r r r, , mod ,
1 2 1 2

�� � � � � � � � �  return 0.
6. Return 1.

Security
In this section, we justify the security of BAcc1-DH examining five security requirements stated in [1] and 

section «Contexts».
The security definitions in [1] allow runtime environments to be managed. We use this to replace the hash 

functions H and H1 with random oracles [2] and permit these oracles to be programmed. Technically, this is 
achieved by manipulating the random tape of the algorithm BAcc1-DH.Init which constructs H and H1. 
The random oracle responds to a fresh input μ with a random output h and repeats a previous output when an 
input is repeated. Programming the oracle consists in assigning a given random output h to a given input m. 
Conflicts can potentially occur when programming, namely, the input m may already be associated with an 
output h′ ≠ h. Fortunately, we avoid conflicts.

To justify the unlinkability and severance, we use the well-known DDH (decisional Diffie – Hellman) prob-
lem [3]. This problem is specified with respect to a cyclic group q with a generator G and consists in deciding 
for a given tuple G uG vG wG u v w q, , , , , , ,� � � �  if w ≡ uv mod .q� �  The algorithm  that solves DDH guesses 
if this is indeed the case and outputs either 1 (true) or 0 (false).

Definition 2. Let 𝒢 be an algorithm that constructs a cyclic group q and its generator G given an input 1l. 
The DDH problem is hard with respect to 𝒢 if for any polynomial-time algorithm  operating on q and G 
constructed by calling 𝒢  ll� � it holds that the advantage

Adv P P  � � � � � � ��
�
�

�
�
�
� � � ��G uG vG uvG u v G uG vG wG uq, , , : , , , , :

$
1 1 ,, ,

$v w q��
�
�

�
�
�

�


is negligible in l. The probabilities here are over a random tape of  and 𝒢 and over a random choice of u, v and w.
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Theorem. The BAcc1-DH instantiation of the BAcc1 scheme satisfies the requirements of consistency, 
soundness, blindness, unlinkability, and severance in the programmable random oracle model provided that 
DDH is hard with respect to BAcc1-DH.Init.

P r o o f. Let us examine security requirements each time switching to the scope of the corresponding secu-
rity definition. For full details of the first four security definitions we refer the reader to [1].

Consistency. Let ℰ control a random tape of the algorithm  and be able to restart (rewind) the algorithm 
with the tape repeating. This is possible since ℰ is allowed to manage the runtime environment of . Let  re-
turn a proof r, s� � with s k hu q� �� �mod  on the first run. On the second run, the random tape is repeated and, 
therefore, the word r as well as the input a a r, ,�� � to the oracle H are also repeated. The oracle is programmed 

to return a fresh random output h′ on this input. Since h′ differs from the first output h with probability q
q
-1

, 

after q
q

O l�
� � �

�
�

�
�
�

1
1

1

2
 restarts on average ℰ gets h′ ≠ h and the corresponding � � � �� �s k h u qmod . After that 

ℰ determines
u s s h h q� �� � �� �� � �1

mod .

We use here the standard arguments for Σ-protocols [4; 5].
Soundness. It is justified similarly to the consistency. A private key u is determined by two different outputs 

of H on the same input a r r r, , .
1 2

�� �n V
Blindness. The algorithm 𝒮1 generates h s q, ,

$←  constructs r a a� � �� �s h most  and programs H, that 
is, assigns the output h to the input a a r, , .�� �  The algorithm 𝒮1 returns a pair r, s� � as a proof α. This proof is 
accepted by BAcc-DH.VfyAdd and is statistically indistinguishable from the standard proof generated by 
BAcc-DH.PrvAdd provided that H is a random oracle.

The algorithm 𝒮2 is constructed similarly.
Unlinkability. Let us construct an algorithm  that solves an instance G uG vG wG, , ,� � of DDH by playing 

the game G n m cl
l , , ,� � for the role of 𝒱.

The algorithm  acts as follows.
1. Programs the runtime environment when calling BAcc1-DH.Init in step 1 of the game:

  • uses q from the instance of DDH;
  • assigns H G1 �� � �  and H c vG

1� � � .

2. Generates j m� �� �$
, , , .1 2

3. Processes BAcc1-DH.Add and BAcc1-DH.PrvAdd calls made by  and determines used private 
keys. To do this,  restarts  several times and extracts private keys from the provided proofs acting as the 

algorithm ℰ that justifies the consistency. It takes m O m
l� �

�
�

�
�
�2
 restarts on average to determine all the keys.

4. Makes its own calls to BAcc1-DH.Add (the order of calls is determined by ) numbered 1, …,  j – 1, 
j + 1, …, m using keys u u u uj j m q1 1 1

, , , , ,
$� � �� �

�  generated by itself. The calls are accompanied by proofs 
constructed using BAcc1-DH.PrvAdd.

5. Makes the  j call to BAcc1-DH.Add in a non-standard way embedding the private key u hidden in the 
instance G uG vG wG, , , .� �  To do this, performs transitions Gi  uGi, using the knowledge of di = logG Gi and 
determining uGi as d uGi � �. The discrete logarithms di are indeed known to , since they are products of its 
own private keys and  private keys extracted from the proofs.

6. Accompanies the  j call to BAcc1-DH.Add with the a proof of consistency indistinguishable from the 
real one and obtained by programming the oracle H. Here  acts as the algorithm 𝒮1 that justifies the blindness. 
Note that the inputs of H when constructing proofs of consistency at different steps of accumulator manage-
ment are certainly different since the length of the accumulators as words increases. Therefore, there are no 
conflicts when programming.

7. Processes the final accumulator a = G0 G1 … Gn and generates public keys. The public keys Vi, i ≠ j, are 
constructed using BAcc1-DH.Der as u H c u vGi i1� � � . The public key Vj is constructed by the instance of 
DDH as wG. This is the correct public key with w = uv mod q and a random public key with a random w. Let b 
be the indicator of the correctness of Vj. The bit b is unknown to  and is not used by it (unlike 𝒱).

8. Passes  the public keys V V Vm1 2
, , , ,�� �  waits the guess ^b and outputs it as its own guess to 

DDH G uG vG wG, , , .� �
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The algorithm  requires m O m
l� �

�
�

�
�
�2
 restarts of  on average and additional time polynomial in l. Thus, 

if  is polynomial, then  is expected polynomial. At the same time,

Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^
.Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^

.Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^
.

This means that if DDH is hard, i. e. Adv � � is negligible, then Adv � � is also negligible and the unlink-
ability is ensured.

Severance. Let us construct an algorithm  that solves an instance P uP vP wP, , ,� � of DDH using an al-
gorithm  from definition 1. The algorithm  takes an accumulator a of capacity 1, different context strings 
c c, ,��� ��0 1  and public keys V, V ′.

The algorithm  acts as follows.
1. Generates r q� �$   and calculates G ← rP.
2. Simulates the call a0 ← BAcc1-DH.Init ll� � using q from the instance of DDH and assigning 

H G1 �� � �  so that a0 = G. Additionally assigns H c P
1� � � , H c vP

1
�� � � .

3. Simulates the call a ← BAcc1-DH.Add a
0
, u� � assigning a = G′G, where �� � � �G uG r uP . Accompa-

nies a with a proof of consistency indistinguishable from the real one and obtained by programming the ora-
cle H. Here  acts as the algorithm 𝒮1 that justifies the blindness.

4. Using the instance of DDH, constructs public keys V uP uH c� � � �1  and V ′ = wP. Note that V is the cor-
rect public key derived from a using u in the context c. If w = uv mod q, then �� � � � �� �V u vP uH c1  is the correct 
public key derived from a using u in the context c′. If w is random, then V ′ is a random public key. Let b be the 
indicator of the correctness of V ′. The bit b is unknown to  and has to be guessed by it.

5. Passes  the tuple a, , , , ,c c V V� �� �  waits the guess ^b and outputs it as its own guess to DDH P uP vP wP, , , .� �
If  is polynomial, then  is also polynomial. At the same time, repeating the computations above, 

Adv AdvB A� � � � �. This means that if DDH is hard, i. e. Adv � � is negligible, then Adv � � is also negligible 
and the severance is ensured. 
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