
79

О б р а з е ц ц и т и р о в а н и я:
Агиевич СВ, Казловский МА. Расширение функционально-
сти слепых аккумуляторов: контексты. Журнал Белорусского
государственного университета. Математика. Информа-
тика. 2024;1:79–85 (на англ.).
EDN: KMXHJP

F o r c i t a t i o n:
Agievich SV, Kazlouski MA. Extending the functionality of
blind accumulators: contexts. Journal of the Belarusian State
University. Mathematics and Informatics. 2024;1:79–85.
EDN: KMXHJP

А в т о р ы:
Сергей Валерьевич Агиевич – кандидат физико-математиче-
ских наук; заведующий научно-исследовательской лаборато-
рией проблем безопасности информационных технологий.
Максим Анатольевич Казловский – аспирант кафедры ма-
тематического моделирования и анализа данных факультета
прикладной математики и информатики. Научный руково-
дитель – С. В. Агиевич.

A u t h o r s:
Sergey V. Agievich, PhD (physics and mathematics); head of
the IT security research laboratory.
agievich@bsu.by
https://orcid.org/0000-0002-9413-8574
Maksim A. Kazlouski, postgraduate student at the department
of mathematical modelling and data analysis, faculty of applied
mathematics and computer science.
kazlouskima@bsu.by
https://orcid.org/0009-0004-4908-2841

Агиевич С. В., Казловский М. А. Расширение функцио-
нальности слепых аккумуляторов: контексты 79

Agievich S. V., Kazlouski M. A. Extending the functionality
of blind accumulators: contexts 85

УДК 004.056.5

РАСШИРЕНИЕ ФУНКЦИОНАЛЬНОСТИ
СЛЕПЫХ АККУМУЛЯТОРОВ: КОНТЕКСТЫ

С. В. АГИЕВИЧ 1), М. А. КАЗЛОВСКИЙ 2)

1)Научно-исследовательский институт прикладных проблем математики и информатики БГУ,
пр. Независимости, 4, 220030, г. Минск, Беларусь

2)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Слепой аккумулятор предназначен для децентрализованной загрузки авторизованными сторо-
нами своих личных ключей с последующей выгрузкой открытых ключей. Выгружаемый открытый ключ связан
с одной из сторон, хотя и неизвестно с какой. Схема слепого аккумулятора расширяется так, чтобы открытый
ключ стороны был привязан к определенному контексту и этот ключ было вычислительно трудно связать с от-
крытыми ключами той же стороны, полученными в других контекстах. Слепые аккумуляторы с контекстами ока-
зываются полезными в различных сценариях электронного голосования, например при переголосовании. Пред-
лагается реализация схемы слепого аккумулятора с контекстами, и обосновывается ее безопасность.

Ключевые слова: электронное голосование; переголосование; криптографический аккумулятор; слепой акку-
мулятор; распознавательная задача Диффи – Хеллмана.

Благодарность. Авторы выражают признательность анонимным рецензентам за ценные отзывы, которые по-
могли улучшить редакционное и техническое качество статьи.

80

Журнал Белорусского государственного университета. Математика. Информатика. 2024;1:79–85
Journal of the Belarusian State University. Mathematics and Informatics. 2024;1:79–85

EXTENDING THE FUNCTIONALITY
OF BLIND ACCUMULATORS: CONTEXTS

S. V. AGIEVICH a, M. A. KAZLOUSKI b

aResearch Institute for Applied Problems of Mathematics and Informatics, Belarusian State University,
4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

bBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
Corresponding author: S. V. Agievich (agievich@bsu.by)

Abstract. Blind accumulators collect private keys of eligible entities in a decentralised manner not getting information
about the keys. Once the accumulation is complete, an entity processes the resulting accumulator and derives a public key
which refers to a private key previously added by this entity. We extend the blind accumulator scheme with the context
functionality so that the derived key is bound to a specific context and this key is computationally hard to associate with
public keys of other contexts. Blind accumulators with contexts are useful in various e-voting scenarios, for example in
revoting. We provide an instantiation of the extended blind accumulator scheme and justify its security.

Keywords: e-voting; revoting; cryptographic accumulator; blind accumulator; decisional Diffie – Hellman problem.
Acknowledgements. The authors thank the anonymous referees for their valuable feedback that helped improve the

editorial and technical quality of the paper.

Introduction
A blind accumulator is a cryptographic container that collects private keys and outputs (derives) the corre-

sponding public keys. A private key is added to the accumulator in a provably correct manner while remaining
secret, that is, known only to its owner. The derived public key is accompanied by a proof that it refers to some
of the collected private keys while it is computationally hard to determine which one. In addition, blind accu-
mulators are managed in the decentralised manner.

Blind accumulators are introduced in [1] as a tool for organising decentralised electronic voting (e-voting).
Voters use the accumulated private keys to sign ballots, the derived public keys are used to verify signatures.
The voter’s public key acts as an immutable pseudonym, which can be used to prevent double voting or, con-
versely, allow multiple ballots to be cast with only the last one to be counted.

The last possibility, the so-called revoting, is an important feature of modern e-voting systems. The direct
revoting based on blind accumulators have the following drawback: an adversary can track the change in the
opinions of voters (while not violating their anonymity) by observing ballots. It is desirable to organise revo-
ting in such a way that it is difficult to relate the original and subsequent ballots of the same voter.

This motivates us to extend the functionality of blind accumulators. In section «Contexts», we enrich inter-
faces of the blind accumulator algorithms by adding to some of them a parameter that describes a target con-
text: regular voting, revoting, second round voting, etc. To ensure that voter’s object in different contexts are
hard to associate with each other, we introduce an additional security requirement called severance. In section
«Instantiation», we propose an instantiation of the extended blind accumulator scheme. In section «Security»,
we justify the security of the proposed instantiation.

Contexts
Cryptographic accumulators are special encodings of tuples of objects. We write a � � �S to denote that an

accumulator a encodes a tuple S. We interpret tuples as ordered multisets bringing standard set notations such as
the curly braces, the membership (∈) and union (∪) symbols.

A blind accumulator scheme introduced in [1] is a tuple of polynomial-time algorithms BAcc =(Init,
Add, PrvAdd, VfyAdd, Der, PrvDer, VfyDer)that are defined as follows.

1. The probabilistic algorithm Init: 1l a0 takes a security level l ∈ (in the unary form) and outputs an
initial accumulator a

0
� �� �.

We assume that a0 implicitly refers to l and public parameters (such as a description of an elliptic curve) and
that these parameters implicitly define a set of private keys SKeys and a set of public keys PKeys.

2. The deterministic algorithm Add: a a, sk� � �
 takes an accumulator a � � �S and a private key sk, and

outputs an updated accumulator � � � � ��� ��a S sk .

81

Краткие сообщения
Short Communications

We assume that a is an output of either Init or some previous call to Add. This ensures the consistency
of a, i. e. that it is constructed as

a a a� � � � �� �� �� �� � � �Add Add Add Add Init SK
0 1 2 0

1, , , , , ,sk sk sk skn
l

i eeys,

and, therefore, is an incrementally built encoding [S] of the multiset S sk sk skn� �� �1 2
, , , .

We also assume that the public parameters referenced in the initial accumulator a0 are passed to all accu-
mulators incrementally built from it.

3. The probabilistic algorithm PrvAdd: a a, ,�� �sk � takes accumulators a, a′ and a private key sk, and
generates a proof α that �� � �a aAdd , .sk

4. The deterministic algorithm VfyAdd: a a, ,�� �� b takes accumulators a, a′ and a proof α that
�� � �a aAdd , sk for some private key sk. The algorithm verifies the proof and outputs either b = 1 for accep-

tance or b = 0 for rejection.
5. The deterministic algorithm Der: a, sk pk� � � takes an accumulator a and a private key sk, and either

derives a public key pk or outputs the error symbol ⊥.
We require that for a consistent a � � �S , Der a, sk� � � � if and only if sk ∉ S.
6. The probabilistic algorithm PrvDer: a, ,pk sk� � � takes an accumulator a, a private key sk and a public

key pk, and generates a proof δ that pk sk� � �Der a, .

7. The deterministic algorithm VfyDer: a, ,pk b�� � takes an accumulator a, a public key pk and a proof δ
that pk sk� � �Der a, for some private key sk. The algorithm verifies the proof and outputs either b = 1 for ac-
ceptance or b = 0 for rejection.

Further details on the algorithms and additional requirements are presented in [1].
To support contexts, we extend the interfaces of the last three algorithms. We describe a context with

a non-empty binary word (string) c and use it as an additional input parameter of Der, PrvDer and VfyDer.
Denote the resulting extension of BAcc by BAcc1.

The algorithm Der of BAcc1 takes a triple a, ,sk c� � and outputs a public key pk bound to the context c.
We require that if sk ←$

,SKeys sk ∈ S and a � � �S , then   pk sk� � �Der a, has a fixed distribution D over
PKeys regardless of S and c.

Hereinafter we write r r RL
1 2
, , �� to denote that r1, r2, … are chosen independently at random from a set R

according to a probability distribution L and denote by $ the uniform distribution.
The paper [1] defines four security requirements for blind accumulators, namely, consistency, soundness,

blindness, and unlinkability. To extend these notions to BAcc1, we modify the last three requirements as fol-
lows:

  • in the definition of soundness, the algorithms and ℰ take the additional input c that is transferred to
VfyDer and Der, respectively;

  • in the definition of blindness, the algorithms 𝒮2 takes the additional input c that is transferred to Der and
PrvDer;

  • in the definition of unlinkability, the game G takes the additional input c that is repeated when calling
Der.

The consistency, soundness, blindness, and unlinkability do not guarantee that the public keys derived in
different contexts are hard to associate with each other. To ensure such guarantees, we introduce an additional
requirement called severance.

Consider an algorithm that takes a consistent accumulator a � � �S of security level l, different context
strings c, c′ and public keys pk, pk ′. The first public key is derived from a using sk ∈ S in the context c. The al-
gorithm guesses if the second public key is also derived from a using sk but in the context c′. The algorithm
returns 1 (true) or 0 (false). We allow all elements of S except sk to be predefined and thus known to . There-
fore, it is enough to consider only the simplest case S sk�� �.

Definition 1. A scheme BAcc1 provides severance if for any different context strings c, c′ and for any pro-
babilistic polynomial-time algorithm described above it holds that

Adv P a
a 1 a a

 � � � � �� � �
� � � � �

, , , , :

, , ,
$

c c pk pk
sk sl

1
0 0

Init AddSKeys kk

pk sk c pk sk c
� �

� � � �� �� �

�
�
�

��

�
�
�

��
�

Der Dera a, , , , ,

82

Журнал Белорусского государственного университета. Математика. Информатика. 2024;1:79–85
Journal of the Belarusian State University. Mathematics and Informatics. 2024;1:79–85

� � �� � �
� � � � � � �
�

P a
a 1 a a

 , , , , :

, , ,
$

c c pk pk
sk sk

pk

l

1
0 0

Init AddSKeys

DDer PKeysa, , ,sk c pk� � ��

�
�
�

��

�
�
�

��

is negligible in l.

Instantiation
In [1], an instantiation of the BAcc scheme, called BAcc-DH, is proposed. We modify BAcc-DH to sup-

port the BAcc1 functionality. The resulting instantiation is called BAcc1-DH.
In BAcc1-DH, a cyclic group q of large prime order q is used. We write this group additively and denote

by q
∗ the set of nonzero elements of q. We also use the ring  q of residues of integers modulo q and the set

q
∗ of nonzero (invertible) residues. The group q is constructed in the algorithm BAcc1-DH.Init. An input

security level l determines the bit length of q. Once q is constructed, the set of private keys SKeys and the
set of public keys PKeys are defined as q

∗ and q
∗, respectively. We use hash functions H and H1 that map to

these sets.
The initial accumulator a0 and all subsequent accumulators are words in the alphabet q

∗. The set of
non-empty words in an alphabet Σ is denoted by Σ+. An empty word is denoted by ⊥. The notation q

� �� � is
shortened to q

��. For a word w, let w be its length and most w� � be the word obtained from w by dropping
its last symbol. For V q� � and u q� � , let uV denote the u-multiple of V. A word that obtained from w� ��q
by replacing each symbol by its u-multiple is denoted as u w. Two words in q

∗ can be added symbol-wise to
obtain a word in q.

In BAcc1-DH, the algorithms Add, PrvAdd and VfyAdd are the same as in BAcc-DH. The remaining
algorithms are updated, the corrections are highlighted in frames in the listings below.

 Algorithm BAcc1-DH.Init
Input: 1l (security level).
Output: a0�

��q (initial accumulator).
Steps:
1. Construct a group q of prime order q such that C12

l < q < C22
l, where C1, C2 are some constants.

2. Construct hash functions H Hq q: , , : , .0 1 0 1
1� � � � � � �� ��� � �Z G

3. G H� �� �1
.

4. a0 ← G.
5. Return a0.
The descriptions of q and G can be interpreted as additional outputs of the algorithm. We allow H to pro-

cess arbitrary input data assuming they are pre-encoded into a binary word.

 Algorithm BAcc1-DH.Der
Input: a� ��q (accumulator), u q∈* (private key), c�� ��0 1, (context)  .
Output: V q� � (public key).
Steps:
1. Parse a = G0 G1 … Gn.
2. Find i n� �� �1 2, , , such that uGi = G0. If such i does not exist, return ⊥.
3. C H c� � �1

.

4. Return uC.

 Algorithm BAcc1-DH.PrvDer
Input: a� ��q (accumulator), u q� � (private key), V q� � (public key), c�� ��0 1, (context)  .
Output: �� �� � q q (proof).

D

83

Краткие сообщения
Short Communications

Steps:
1. Parse a = G0 G1 … Gn.
2. Find i n� �� �1 2, , , such that uGi = G0. If such i does not exist, return 0 0, .� �
3. C H c� � �1

.
4. For j = 1, 2, …, n, j ≠ i:

a) h sj j q, ;
$←

b) rj j j js G G h CV� � � � � �0
.

5. ki q←$
.

6. ri i ik G G� � �0
.

7. h H V h qi n j
j i

� �� � �
�

�
��

�

�
��

�
�a r r r, , mod .

1 2

8. s k uh qi i i� �� �mod .

9. �� � �� �h h h s s sn n1 2 1 2
, .

10. Return δ.

 Algorithm BAcc1-DH.VfyDer
Input: a� ��q (accumulator), V q� � (public key), �� �� � q q (proof), c�� ��0 1, (context)  .
Output: 1 (accept) or 0 (reject).
Steps:
1. Parse �� � �h s, . If h s≠ or a h� � 1, return 0.
2. Parse a = G0 G1 … Gn, h = h1 h2 … hn and s = s1 s2 … sn.
3. C H c� � �1

.

4. For j = 1, 2, …, n:
a) rj j j js G G h CV� � � � � �0

.

5. If H V h h h qn na r r r, , mod ,
1 2 1 2

�� � � � � � � � � return 0.
6. Return 1.

Security
In this section, we justify the security of BAcc1-DH examining five security requirements stated in [1] and

section «Contexts».
The security definitions in [1] allow runtime environments to be managed. We use this to replace the hash

functions H and H1 with random oracles [2] and permit these oracles to be programmed. Technically, this is
achieved by manipulating the random tape of the algorithm BAcc1-DH.Init which constructs H and H1.
The random oracle responds to a fresh input μ with a random output h and repeats a previous output when an
input is repeated. Programming the oracle consists in assigning a given random output h to a given input m.
Conflicts can potentially occur when programming, namely, the input m may already be associated with an
output h′ ≠ h. Fortunately, we avoid conflicts.

To justify the unlinkability and severance, we use the well-known DDH (decisional Diffie – Hellman) prob-
lem [3]. This problem is specified with respect to a cyclic group q with a generator G and consists in deciding
for a given tuple G uG vG wG u v w q, , , , , , ,� � � � if w ≡ uv mod .q� � The algorithm that solves DDH guesses
if this is indeed the case and outputs either 1 (true) or 0 (false).

Definition 2. Let 𝒢 be an algorithm that constructs a cyclic group q and its generator G given an input 1l.
The DDH problem is hard with respect to 𝒢 if for any polynomial-time algorithm operating on q and G
constructed by calling 𝒢  ll� � it holds that the advantage

Adv P P � � � � � � ��
�
�

�
�
�
� � � ��G uG vG uvG u v G uG vG wG uq, , , : , , , , :

$
1 1 ,, ,

$v w q��
�
�

�
�
�

�

is negligible in l. The probabilities here are over a random tape of and 𝒢 and over a random choice of u, v and w.

84

Журнал Белорусского государственного университета. Математика. Информатика. 2024;1:79–85
Journal of the Belarusian State University. Mathematics and Informatics. 2024;1:79–85

Theorem. The BAcc1-DH instantiation of the BAcc1 scheme satisfies the requirements of consistency,
soundness, blindness, unlinkability, and severance in the programmable random oracle model provided that
DDH is hard with respect to BAcc1-DH.Init.

P r o o f. Let us examine security requirements each time switching to the scope of the corresponding secu-
rity definition. For full details of the first four security definitions we refer the reader to [1].

Consistency. Let ℰ control a random tape of the algorithm and be able to restart (rewind) the algorithm
with the tape repeating. This is possible since ℰ is allowed to manage the runtime environment of . Let re-
turn a proof r, s� � with s k hu q� �� �mod on the first run. On the second run, the random tape is repeated and,
therefore, the word r as well as the input a a r, ,�� � to the oracle H are also repeated. The oracle is programmed

to return a fresh random output h′ on this input. Since h′ differs from the first output h with probability q
q
-1

,

after q
q

O l�
� � �

�
�

�
�
�

1
1

1

2
 restarts on average ℰ gets h′ ≠ h and the corresponding � � � �� �s k h u qmod . After that

ℰ determines
u s s h h q� �� � �� �� � �1

mod .

We use here the standard arguments for Σ-protocols [4; 5].
Soundness. It is justified similarly to the consistency. A private key u is determined by two different outputs

of H on the same input a r r r, , .
1 2

�� �n V
Blindness. The algorithm 𝒮1 generates h s q, ,

$← constructs r a a� � �� �s h most and programs H, that
is, assigns the output h to the input a a r, , .�� � The algorithm 𝒮1 returns a pair r, s� � as a proof α. This proof is
accepted by BAcc-DH.VfyAdd and is statistically indistinguishable from the standard proof generated by
BAcc-DH.PrvAdd provided that H is a random oracle.

The algorithm 𝒮2 is constructed similarly.
Unlinkability. Let us construct an algorithm that solves an instance G uG vG wG, , ,� � of DDH by playing

the game G n m cl
l , , ,� � for the role of 𝒱.

The algorithm acts as follows.
1. Programs the runtime environment when calling BAcc1-DH.Init in step 1 of the game:

  • uses q from the instance of DDH;
  • assigns H G1 �� � � and H c vG

1� � � .

2. Generates j m� �� �$
, , , .1 2

3. Processes BAcc1-DH.Add and BAcc1-DH.PrvAdd calls made by and determines used private
keys. To do this, restarts several times and extracts private keys from the provided proofs acting as the

algorithm ℰ that justifies the consistency. It takes m O m
l� �

�
�

�
�
�2
 restarts on average to determine all the keys.

4. Makes its own calls to BAcc1-DH.Add (the order of calls is determined by) numbered 1, …, j – 1,
j + 1, …, m using keys u u u uj j m q1 1 1

, , , , ,
$� � �� �

� generated by itself. The calls are accompanied by proofs
constructed using BAcc1-DH.PrvAdd.

5. Makes the j call to BAcc1-DH.Add in a non-standard way embedding the private key u hidden in the
instance G uG vG wG, , , .� � To do this, performs transitions Gi uGi, using the knowledge of di = logG Gi and
determining uGi as d uGi � �. The discrete logarithms di are indeed known to , since they are products of its
own private keys and private keys extracted from the proofs.

6. Accompanies the j call to BAcc1-DH.Add with the a proof of consistency indistinguishable from the
real one and obtained by programming the oracle H. Here acts as the algorithm 𝒮1 that justifies the blindness.
Note that the inputs of H when constructing proofs of consistency at different steps of accumulator manage-
ment are certainly different since the length of the accumulators as words increases. Therefore, there are no
conflicts when programming.

7. Processes the final accumulator a = G0 G1 … Gn and generates public keys. The public keys Vi, i ≠ j, are
constructed using BAcc1-DH.Der as u H c u vGi i1� � � . The public key Vj is constructed by the instance of
DDH as wG. This is the correct public key with w = uv mod q and a random public key with a random w. Let b
be the indicator of the correctness of Vj. The bit b is unknown to and is not used by it (unlike 𝒱).

8. Passes the public keys V V Vm1 2
, , , ,�� � waits the guess ^b and outputs it as its own guess to

DDH G uG vG wG, , , .� �

85

Краткие сообщения
Short Communications

The algorithm requires m O m
l� �

�
�

�
�
�2
 restarts of on average and additional time polynomial in l. Thus,

if is polynomial, then is expected polynomial. At the same time,

Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^
.Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^

.Adv AdvB B B A� � � � �� � � � �� � � � �� � � � �� � � � �P P P P1 1 1 0 1 1 1 0b b b b b b^ ^
.

This means that if DDH is hard, i. e. Adv � � is negligible, then Adv � � is also negligible and the unlink-
ability is ensured.

Severance. Let us construct an algorithm that solves an instance P uP vP wP, , ,� � of DDH using an al-
gorithm from definition 1. The algorithm takes an accumulator a of capacity 1, different context strings
c c, ,��� ��0 1 and public keys V, V ′.

The algorithm acts as follows.
1. Generates r q� �$ and calculates G ← rP.
2. Simulates the call a0 ← BAcc1-DH.Init ll� � using q from the instance of DDH and assigning

H G1 �� � � so that a0 = G. Additionally assigns H c P
1� � � , H c vP

1
�� � � .

3. Simulates the call a ← BAcc1-DH.Add a
0
, u� � assigning a = G′G, where �� � � �G uG r uP . Accompa-

nies a with a proof of consistency indistinguishable from the real one and obtained by programming the ora-
cle H. Here acts as the algorithm 𝒮1 that justifies the blindness.

4. Using the instance of DDH, constructs public keys V uP uH c� � � �1 and V ′ = wP. Note that V is the cor-
rect public key derived from a using u in the context c. If w = uv mod q, then �� � � � �� �V u vP uH c1 is the correct
public key derived from a using u in the context c′. If w is random, then V ′ is a random public key. Let b be the
indicator of the correctness of V ′. The bit b is unknown to and has to be guessed by it.

5. Passes the tuple a, , , , ,c c V V� �� � waits the guess ^b and outputs it as its own guess to DDH P uP vP wP, , , .� �
If is polynomial, then is also polynomial. At the same time, repeating the computations above,

Adv AdvB A� � � � �. This means that if DDH is hard, i. e. Adv � � is negligible, then Adv � � is also negligible
and the severance is ensured.

References
1. Agievich S. Blind accumulators for e-voting. In: Nemoga K, Ploszek R, Zajac P, editors. Proceedings of Central European con-

ference on cryptology – CECCʼ22; 2022 June 26–29; Smolenice, Slovakia. Bratislava: Mathematical Institute of the Slovak Academy
of Sciences; 2022. p. 15–18.

2. Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols. In: Denning DE, Pyle R,
Ganesan R, Sandhu RS, Ashby V, editors. CCSʼ93. Proceedings of the 1st ACM conference on computer and communications security;
1993 November 3–5; Fairfax, USA. New York: Association for Computing Machinery; 1993. p. 62–73. DOI: 10.1145/168588.168596.

3. Boneh D. The decision Diffie – Hellman problem. In: Buhler JP, editor. Algorithmic number theory. Proceedings of the Third Inter-
national symposium, ANTS-III; 1998 June 21–25; Portland, USA. Berlin: Springer; 1998. p. 48–63 (Goos G, Hartmanis J, van Leeuwen J,
editors. Lecture notes in computer science; volume 1423). DOI: 10.1007/BFb0054851.

4. Cramer RJF. Modular design of secure yet practical cryptographic protocols [dissertation on the Internet]. Amsterdam: Univer-
siteit van Amsterdam; 1997 [cited 2023 December 1]. 187 p. Available from: https://ir.cwi.nl/pub/21438/21438A.pdf.

5. Damgård I. On Σ-protocols [Internet]. Aarhus: University of Aarhus; 2002 [cited 2023 December 1]. 22 p. Available from: https://
cs.au.dk/~ivan/Sigma.pdf.

Received 08.12.2023 / revised 13.03.2024 / accepted 13.03.2024.

