Белорусский государственный университет

УТВЕРЖДАЮ
Проректор по учебной работе и образовательным ин-новациям
ОТ Грохоренко
5 июля 2023 г.

Регистрационный № УД-12538/уч.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 07 Прикладная информатика (по направлениям) направление специальности: 1-31 03 07-01 Прикладная информатика

(программное обеспечение компьютерных систем)

Учебная программа составлена на основе образовательного стандарта высшего образования ОСВО 1-31 03 07-2021, типового учебного плана №G 31-1-030/пр.-тип. от 01.07.2021 и учебных планов БГУ №G 31-1-034/уч. от 23.07.2021, №G 31-1-023/уч. ин. от 23.07.2021.

составитель:

В.А.Образцов — доцент кафедры информационных систем управления факультета прикладной математики и информатики Белорусского государственного университета

РЕЦЕНЗЕНТЫ:

С.В. Абламейко — профессор кафедры веб-технологий и компьютерного моделирования механико-математического факультета БГУ, академик НАН Беларуси, доктор технических наук, профессор

А.В. Тузиков —заведующий лабораторией математической кибернетики ОИПИ НАН Беларуси, член-корреспондент НАН Беларуси Беларуси, доктор физикоматематических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой информационных систем управления Белорусского государственного университета (протокол № 18 от 08.06.2023 г.);

Научно-методическим советом БГУ (протокол № 9 от 29.06.2023 г.)

Заведующий кафедрой

В.В. Краснопрошин

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная дисциплина «Искусственный интеллект» ориентирована на обучение студентов базовым знаниям, умениям и навыкам в области обработки информации и интеллектуального анализа данных. Изучаемые темы базируются на использовании интеллектуальных компьютерных систем и современных информационных технологий.

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Искусственный интеллект» — ознакомление студентов с основными понятиями искусственного интеллекта, методами и моделями для решения задач искусственного интеллекта, технологией построения интеллектуальных информационных систем, а также с современным состоянием и тенденциями развития проблематики искусственного интеллекта.

Задачи учебной дисциплины:

- 1. развить у студентов навыки использования моделей, методов и технологий искусственного интеллекта при решении практических задач, возникающих в различных областях науки, техники, экономики и других;
- 2. научить пользоваться методологией построения математических моделей естественных процессов с целью их последующего изучения методами искусственного интеллекта;
- 3. сформировать представление об основных алгоритмах, используемых для решения задач искусственного интеллекта, а также показать возможность оценки качества получаемых результатов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием

В системе подготовки специалиста с высшим образованием учебная дисциплина относится к модулю «Интеллектуальные системы» компонента учреждения высшего образования учебного плана специальности 1-31 03 07 Прикладная информатика (по направлениям) направление специальности:1-31 03 07-01 Прикладная информатика (программное обеспечение компьютерных систем.

Учебная программа составлена с учетом межпредметных **связей** и программ по дисциплинам: «Дискретная математика и математическая логика», «Алгоритмы и структуры данных», «Модели данных и системы управления базами данных», «Математическое моделирование», «Теория распознавания образов», «Методы и алгоритмы обработки данных», «Анализ и обработка больших данных».

Требования к компетенциям

Освоение учебной дисциплины «Искусственный интеллект» должно обеспечить формирование следующей *специализированной* компетенции:

СК-7. Использовать основные методы и модели искусственного интеллекта для различных типов данных, строить интеллектуальную систему и определять ее внутренние связи.

В результате освоения учебной дисциплины студент должен:

знать:

- типы задач искусственного интеллекта, их особенности и свойства;
- модели, методы для решения задач, основанных на знаниях;
- методологию формализации и решения задач искусственного интеллекта;
 - технологию построения систем искусственного интеллекта;
- принципы проектирования информационной составляющей практических задач искусственного интеллекта.

уметь:

- работать с новыми видами информации (знаниями) и владеть технологией проектирования и функционирования компьютерных систем, основанных на знаниях;
- использовать модели дедуктивного и индуктивного вывода, и представлять в целом их возможности и ограничения;
- использовать средства и понимать цели разработки компьютерных систем для решения задач искусственного интеллекта.

владеть:

- навыками постановки задачи, разработки математической модели и технологией построения компьютерных систем искусственного интеллекта;
 - методами решения задач логического вывода.

Структура учебной дисциплины

Дисциплина изучается в 5 семестре. Всего на изучение учебной дисциплины «Искусственный интеллект» отведено:

— в очной форме получения высшего образования: 108 часов, в том числе 68 аудиторных часов, из них: лекции — 34 часа, практические занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Краткое введение в проблематику ИИ

Тема 1.1. Введение в предмет ИИ

Искусственный интеллект, области его применения, этапы его развития как науки. Основные термины. Проблема искусственного интеллекта. Области применения и некоторые конкретные задачи искусственного интеллекта. Характеризация классов задач, решаемых искусственным интеллектом. Задачи искусственного интеллекта и информация.

Тема 1.2. Общая схема решения задач

Типы задач в математике, прикладной математике и информатике. Примеры задач и возможности формализации. Дедуктивные и индуктивные задачи. Типизация задач искусственного интеллекта. Связь между алгоритмами и информацией и их влияние на качество решения задач. Типы ИИ и возможность их построения. Связь с уровнями сознания. Объектная схема реальности и ее связь с тестом Тьюринга.

Тема 1.3. Индуктивные задачи

Модели для решения индуктивных задач. Задачи искусственного интеллекта как задачи принятия решений в условиях неполной информации. Задачи на основе прецедентной информации. Ограничения и возможности решения задач в условиях неопределённой информации. Обоснованность и качество решения задач. Свойства задач ИИ, общая методология их решения.

Раздел 2. Основные модели искусственного интеллекта

Тема 2.1. Логические модели

Необходимость логики в искусственном интеллекте. Соотношение искусственного интеллекта и логики. Классификация логических формализмов.

Логические системы. Исчисление высказываний. Алфавит, аксиомы, правила вывода. Выполнимые и общезначимые формулы. Проблема доказуемости в логических системах. Алгоритмы доказательства разрешимости в логике высказываний. Принцип резолюций. Алгоритм резолюции для формул, не приведенных к конъюнктивной нормальной форме. Вывод в базах знаний продукционного типа

Исчисление предикатов. Основные определения. Доказательство Алгоритм предикатов. приведения выполнимости В исчислении форме. резолюций конъюнктивной нормальной Метод исчислении предикатов. Алгоритм резолюции с унификацией.

Дедуктивные и индуктивные логики, соотношение между ними. Примеры индуктивных логик и их использование в искусственном интеллекте. Формализация логики вычислимости, многозначной логики, модальной логики. Возможность вывода в неклассических логиках. Обоснованность вывода.

Методы и алгоритмы, их численные характеристики. Связь с задачами искусственного интеллекта.

Тема 2.2. Нейронные сети и генетические алгоритмы

Персептроны. Общие понятия о нейронной сети. Полносвязные и многослойные нейронные сети. Обучение нейронной сети. Сети обратного и встречного распространения. Структура нейронной сети. Обратное распространение ошибки. Связь с искусственным интеллектом.

Генетические алгоритмы. Компоненты генетических алгоритмов. Операции в генетических алгоритмах. Принцип работы генетических алгоритмов. Генетическое программирование. Операции над деревьями. Связь с искусственным интеллектом.

Тема 2.3. Модели распознавания образов

Постановки задач распознавания образов. Общее представление о задаче распознавания образов. Принципы выбора средств, языка и др. при формализации. Классификация средств, постановок. Условия разрешимости. Связь с аналогичными условиями для задач распознавания в математике.

Метод опорных векторов, его двойственная задача (без ядер). Обобщённые линейные модели. Метрики качества в задачах классификации. Задача кластеризации. K-Means.

Общие принципы построения алгоритмов распознавания образов с обучением и без обучения. Связь с искусственным интеллектом.

Тема 2.4. Модели нечеткой математики

Основы языка нечеткой математики. Нечеткие множества, отношения. Построение модели нечеткой логики и нечеткий вывод. Логика немонотонных рассуждений. Степени неопределенности. Неточный вывод на основе факторов уверенности. Связь с вероятностной логикой. Примеры решения задач в условиях неопределенности. Связь с задачами искусственного интеллекта

Тема 2.5. Большие языковые модели (LLM)

Задачи для LLM: генеративные задачи, написание кода, вопросно-ответные задачи, создание чатов, обработка текстов, поиск информации, исправление текста. Принципы построения и функционирования LLM.

Построение генеративных моделей ИИ. Информация для построения таких моделей. Мультимодальные генеративные модели. Типы генеративного ИИ, примеры и варианты его использования.

Галлюцинации, промпты, копилоты, плагины и другие характеристики и технологии генеративного ИИ.

Раздел 3. Представление об информации и технологиях решения задач ИИ *Тема 3.1. Информация для моделей ИИ*

Понятие информации, данных, знаний. Представление об информации. Модель информации. Типы информации. Измерение информации.

Формализация понятия знаний. Соотношение между данными и знаниями. Смысл проблемы представления знаний. Модели представления знаний. Технология знаний. Знания в Прологе.

Модели представления знаний: логическая, сетевая, продукционная и фреймовая. Универсальная модель представления информации на основе объектного представления. Продукции в Прологе.

Тема 3.2. Технологии для построения систем ИИ

Задачи искусственного интеллекта и программы. Концепция системы, основанной на знаниях. Структура системы, основанной на знаниях - KBS (knowledge base system). Языки для построения KBS.

Структура программных средств для решения задач искусственного интеллекта. Функциональные, методологические и технологические требования к интеллектуальным информационным системам. Операции вывода в Прологе.

Назначение и структура экспертных систем. Разработка экспертных систем. Задачи, решаемы экспертной системой. Примеры и проблемы.

Проблема представления знаний в экспертных системах. Продукционная модель представления знаний. Архитектура экспертных систем. Методология и этапы разработки экспертных систем. Работа со структурными элементами в Прологе.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

	Название раздела, темы	Количество аудиторных часов)B	Ж
Номер раздела, темы		Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1.	Краткое введение в проблематику ИИ							
1.1	Введение в предмет ИИ	2						Устный опрос
1.2	Общая схема решения задач	2						Устный опрос
1.3	Индуктивные задачи	2						Устный опрос
2.	Основные модели искусственного							
	интеллекта							
2.1	Логические модели							
2.1.1	Классификация логических формализмов.	2						Устный опрос
2.1.2	Исчисление высказываний	2			4			Устный опрос
2.1.3	Исчисление предикатов.	2			2			Устный опрос Расчетно-графические задания
2.1.4	Дедуктивные и индуктивные логики	2						Устный опрос Контрольная работа по теме 2.1.1
2.2	Нейронные сети и генетические алгоритмы	4						Устный опрос
2.3	Модели распознавания образов							Устный опрос Реферат

2.3.1	Постановки задач распознавания образов.	2	4		
2.3.2	Общие принципы построения алгоритмов распознавания	2	4	2	Устный опрос Расчетно-графические задания
2.4	Модели нечеткой математики	2			Устный опрос
2.5	Большие языковые модели (LLM)	2			Устный опрос Коллоквиум по разделу 2.1
3	Представление об информации и				
	технологиях решения задач ИИ				
3.1	Информация для моделей ИИ				
3.1.1	Формализация понятия знаний	2	4		Устный опрос
3.1.2	Модели представления знаний	2	4		Устный опрос
3.2	Технологии для построения систем ИИ				
3.2.1	Концепция системы, основанной на знаниях.	2	4	2	Устный опрос
3.2.2	Назначение и структура экспертных систем	2	4		Устный опрос Расчетно-графические задания
	ВСЕГО		30	4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Воронов, М В. Системы искусственного интеллекта: учебник и практикум для студентов высших учебных заведений, обучающихся по ИТ и математическим направлениям / М. В. Воронов, В. И. Пименов, И. А. Небаев. Москва: Юрайт, 2022. 256 с.
- 2. Редько, В Г. Эволюция, нейронные сети, интеллект: модели и концепции эволюционной кибернетики / В. Г. Редько; предисл. Г. Г. Малинецкого. Изд. стер. Москва: URSS: ЛЕНАНД, 2020. 220 с.
- 3. Николенко, С. Глубокое обучение. Погружение в мир нейронных сетей / С. Николенко, А. Кадурин, Е. Архангельская. Санкт-Петербург [и др.]: Питер, 2020. 476 с. URL: https://ibooks.ru/bookshelf/377026.

Перечень дополнительной литературы

- 4. Искусственный интеллект. Справочник в 3-х томах. М.: Радио и связь 1990.
- 5. Построение экспертных систем. Под ред. Ф. Хейес-Рота, Д. Уотермена, Д. Лената. М.: Мир 1987.
- 6. Д. Уотерман. Руководство по экспертным системам. М.: Мир 1989.
- 7. У. Гренандер. Лекции по теории образов. В 3-х кн. М.: Мир 1983.
- 8. Себастьян Рашка Python и машинное обучение ISBN: 978-5-97060-409-0, 418 с.
- 9. Хемминг Р.В. Численные методы. М., Наука 1972.
- 10.С.Рассел, П.Норвиг Искусственный интеллект: современный подход. 4-издание, ISBN 978-5-907365-27-8, пер. с англ.- М.: Диалектика-Вильямс 2022 - 640 стр.
- 11.Д.Люгер Искусственный интеллект: стратегии решения сложных проблем. 4-издание, пер. с англ.- М.: Вильямс -2003 864 стр.
- 12.С.Рассел, П.Норвиг Искусственный интеллект: современный подход. 2-издание, пер. с англ.- М.: Вильямс -2006 1408 стр.
- 13.Основы искусственного интеллекта: учебное пособие / Е. В. Боровская, Н. А. Давыдова/ 4 изд., электрон. М.: Лаборатория знаний 2020 г. 130 с.
- 14.Хофштадтер Д. Гедель, Эшер, Бах: эта бесконечная гирлянда. Самара, изд. Дом "Бахрах-М"-2001 752 стр.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Для диагностики компетенций в рамках учебной дисциплины рекомендуется использовать следующие формы:

Устная форма:

- устный опрос;
- коллоквиум

Письменная форма:

- контрольная работа;
- расчетно-графические задания;
- реферат.

Устно-письменная форма:

- зачет по учебной дисциплине.

На лекционных занятиях по учебной дисциплине «Искусственный интеллект» предусматривается изложение теории с включением проблемного подхода к изучению отдельных тем.

Формой текущей аттестации по дисциплине «Искусственный интеллект» учебным планом предусмотрен зачет.

При формировании итоговой отметки используется рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний в итоговую отметку:

- − устная форма (опрос, коллоквиум) 20 %;
- − расчетно-графические задания 20 %;
- контрольная работа 40 %.
- реферат 20 %.

Отметка «зачет» выставляется студенту, имеющему отметку за текущую успеваемость не ниже 4 («четырех») баллов и сдавшему в срок все задания.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 2.3.2 Общие принципы построения алгоритмов распознавания образов (2 ч).

Задание. Изучить метод построения алгоритмов распознавания на основе меры прецедентности. Предложить варианты его расширения для оценивания сходства. Оценить сложность реализации в любой известной студенту системе программирования.

Форма контроля: Устный опрос.

Тема 3.2 Технологии для построения систем ИИ. Языки для построения KBS. (2 ч).

Задание. Изучить методы поиска в глубину и ширину средствами языка программирования Prolog. Предложить варианты их использования для

решения задачи построения кратчайших путей на графах. Оценить сложность реализации построенного алгоритма в языке Prolog.

Форма контроля: Устный опрос.

Примерная тематика лабораторных занятий

Занятия 1-3: Задача логического вывода в базах знаний продукционного типа

- а) База знаний продукционного типа;
- b) Машина дедуктивного вывода;
- с) Протокол работы программы;
- d) Обратный вывод.

Занятия 4-7: Задача распознавания образов с обучением

- а) Изучить представленные документы и требования к решению;
- b) В репозитариях машинного обучения выбрать задачу;
- с) Метрический алгоритм для задачи распознавания с обучение;
- d) Функционал качества.

Занятия 8-10: Основы языка Пролог

- а) Синтаксис языка;
- b) Использование предикатов;
- с) Семантические модели языка Пролог;
- d) Рекурсия.

Занятия 11-13: Структура Пролог-программы и Управление выполнением программ

- а) Структура программы;
- b) Внутренняя база данных Пролога;
- с) Предикаты ввода-вывода;
- d) Предикаты преобразования типов;
- е) Механизм поиска в глубину.

Занятия 14-15: Организация структур данных на языке Пролог

- а) Списки;
- b) Схемы обработки списков;
- с) Множества.

Все требования к выполнению лабораторных работ формализованы. Подробное их описание можно найти на сайте EDUFPMI.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса рекомендуется использовать перечисленные ниже методы.

Метод учебной дискуссии, который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласовании существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

Метод группового обучения, который представляет собой форму организации учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине следует использовать современные информационные ресурсы: разместить на образовательном портале EDUFPMI комплекс учебных и учебнометодических материалов (учебно-программные материалы, учебное издание для теоретического изучения дисциплины, методические указания к лабораторным занятиям, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательного стандарта высшего образования и учебнопрограммной документации, в т.ч. вопросы для подготовки к зачету, задания, тесты, вопросы для самоконтроля, тематика рефератов и др., список рекомендуемой литературы, информационных ресурсов и др.).

Темы реферативных работ

Всего предполагается выполнение каждым студентом написание 1 реферата. Тематику реферата студент выбирает самостоятельно в любой группе, каждая из которых примерно соответствует разделам учебного плана. Требования к рефератам указаны на портале EDUFPMI.

$\mathcal{N}\!$	Формулировка темы						
группы тем							
-	1.7						
	1. Ваше определение интеллектуальной информационной системы						
T	(ИИС). Каким образом ИИС связана с проблемой ИИ. Введите						
1	критерий ее "интеллектуальности". Приведите по пять аргументов						
	"за" и "против" возможности построения ИИС, удовлетворяющей						
	Вашему критерию "интеллектуальности". Примеры задач,						
	которые могли бы решаться в с помощью такой ИИС.						
	2. Ваше определение задач ИИ. В чем разница между						
	индивидуальной (конкретной) задачей ИИ и всей совокупностью						
	задач, которые относятся к области ИИ. Какими свойствами						

	1	
		обладают совокупности задач ИИ. Отличаются ли и чем задачи
		ИИ от задач математики, прикладной математики и информатики?
	3.	Приведите пример интерпретации логической системы DH
		(лекция 3). Какие классы в Вашей интерпретации не пусты.
		Является ли MU теоремой системы DH? Приведите
		доказательство своего утверждения.
	1.	Ваш вариант принципа индукции (по аналогии с принципом
II		дедукции). Как в этом варианте можно построить индуктивную
11		резолюцию. Примеры задач, которые могли бы решаться с
		помощью соответствующего алгоритма индуктивной резолюции.
	2.	
		логики. Как может в этом случае быть построен алгоритм
		резолюции. Сравните построенный алгоритм с алгоритмом
		резолюции для стандартной логики. Приведите пример задачи,
		которая могла бы решаться обоими алгоритмами. Какой из
		результатов предпочтительнее?
	3.	Приведите пример задачи распознавания образов и выберите
		(постройте) для ее решения алгоритм. Что можно сказать о
		качестве предложенного решения? Почему выбранный
		(предложенный) алгоритм является наилучшим для решения
		Вашей задачи? Существует ли возможность решения Вашей
		задачи алгоритмом резолюции?
	4	Система DH*). Предложите нечеткий вариант данной системы.
	''	Что можно сказать о выводимости утверждения MU в рамках
		нечеткой системы DH? Какие классы в этом случае окажутся
		непустыми?
	5	Приведите пример задачи, которая может решаться с
		использованием генетических алгоритмов и нейронных сетей.
		Покажите, как это можно сделать. Приведите аргументы в пользу
		одного из подходов.
	1.	
	1.	определения ввести понятие измеримости знаний? Чем знания
III		отличаются от данных и каково их соотношение с информацией?
		Приведите примеры.
	2.	· · · ·
	_	задач из области ИИ. Приведите ее структуру и опишите функции.
		Попытайтесь обосновать свою точку зрения. Приведите пример
		системы для решения конкретной задчи ИИ.
	3.	
],	Предложите свой вариант проектирования БЗ. Приведите пример
		задачи ИИ и постройте для нее БЗ. Попытайтесь обосновать свой
		вариант БЗ, покажите его предпочтительность по сравнению с
		другими возможными вариантами.

Примерный перечень вопросов к зачету

- 1. Задача в ИИ. Виды ИИ. Объектная схема.
- 2. Примеры задач. Что такое задача в математике. Примеры.
- 3. Общая схема решения задач.
- 4. Задача и информация. Уровни сознания. Формализация задачи. Функционал качества.
- 5. Дедуктивные и индуктивные задачи. Представление об эволюции задачи.
- 6. Представление о моделировании. Модель, информация.
- 7. Классификация моделей. Типы. Схема классификации.
- 8. Общая структура логических моделей. Структура, свойства. Примеры.
- 9. ИВ. Построение модели и основные ее свойства. Операции, типы формул.
- 10. Проблема доказуемости формул. Теорема Поста. Свойства ИВ. Принцип дедукции. Принцип полной и трансфинитной индукции.
- 11. Алгоритмы доказательства разрешимости. Семантическое дерево. Тривиальный алгоритм. Алгоритм Куайна. Алгоритм редукции.
- 12. Метод резолюции. Алгоритм приведения к КНФ. Резольвента. Алгоритм резолюции.
- 13. ИП. Построение модели. Доказательство выполнимости в ИП. Приведение к предваренной (префиксной) форме. Приведение к сколемовской нормальной форме. Удаление кванторов всеобщности. Приведение к КНФ.
- 14. Метод резолюции. Эрбранова область. Алгоритм резолюции.
- 15. Смысл дедуктивности логических систем. Примеры дедуктивных логик.
- 16. Примеры индуктивных логик. Логика подтверждений Д.Пойа. Вероятностная логика.
- 17. Задачи распознавания образов. Формальная постановка задач распознавания образов и классификации.
- 18. Содержательная постановка ЗРО. Примеры задач распознавания образов
- 19. Алгоритмы РО. Геометрическая интерпретация в пространстве R2. Схема построения алгоритмов. Пример алгоритмов распознавания с обучением.
- 20. Алгоритмы классификации (таксономии). Пример алгоритмов классификации.
- 21. Основы моделирования НС. Классификация НС. Построение НС. Архитектура. Математика.
- 22. Предельные результаты для НС. Персептрон. Примеры задач.
- 23. Основы моделирования ГА. Принцип корректировки. Биология. Компоненты ГА. Построение ГА. Операции. Описание алгоритма.
- 24. ГА в различных пространствах. Примеры задач.
- 25. Необходимость нечеткой математики. Неопределенность среды существования ЕИ. Типы неопределенности.
- 26. Формализация языка. Основные нечеткие конструкции. Функция принадлежности. Операции над нечеткими множествами и отношениями. Нечеткие функции. Принципы нечеткой математики.
- 27. Нечеткая математика в ИИ. Примеры использования.

- 28. Что такое информация. Какие существуют подходы к определению. Формы информации.
- 29. Формализация понятия данных и знаний, связь между ними. Свойства знаний.
- 30. Измерение информации (энтропия, прирост информации).
- 31. Классификация моделей представления. Краткое описание моделей.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
1. Теория распознавания образов	Информац ионных систем управления	Нет	Изменений не требуется (протокол № 18 от 08.06.2023 г.).

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ на ____/___ учебный год

N_0N_0	Дополнени	ия и изменения	Основание		
ПП					
Учебн	ная программа і	пересмотрена и ол	обрена на заседани	ии кафелры	
			ол № от		
Y - I		, J P (P			
2000					
завед	ующий кафедрой				
	(степень, звание)	(подпись)	(И.О.Фамилия)		
	()	((
* ****	DOMESTIC A LO				
	РЖДАЮ				
Декан	факультета				
	(степень, звание)	(подпись)	(И.О.Фамилия)		
	()	(,	(11. C. T WILLIAM)		