2023 г.

Завелующий кафелрой

А.В. Лебедев

Учебная программа составлена на основе ОСВО 1-31 01 04-2021, учебного плана УВО для специальности 1-31 01 04 Биоинженерия и биоинформатика № G31-1-206/уч. от 22.03.2022 г.

СОСТАВИТЕЛИ:

Сташулёнок Сергей Павлович, доцент кафедры функционального анализа и аналитической экономики механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕЦЕНЗЕНТЫ:

Пыжкова Ольга Николаевна, заведующий кафедрой высшей математики Учреждения образования «Белорусский государственный технологический университет», кандидат физико-математических наук, доцент;

Матейко Олег Михайлович, доцент кафедры общей математики и информатики механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой функционального анализа и аналитической экономики (протокол N 13 от 22.05.2023);

Научно-методическим советом БГУ (протокол № 9 от 29.06.2023)

Заведующий кафедрой

А.В. Лебедев

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Теория вероятностей» — подготовка специалистов, способных использовать фундаментальные математические знания в качестве основы при проведении биологических исследований.

Задачи учебной дисциплины:

- 1. Ознакомление студентов с основными принципами теории вероятностей и примерами их приложений
- 2. Формирование у студентов навыков абстрактного математического мышления и умения применять его в задачах
 - 3. Повышение их математической культуры.

Место учебной дисциплины. В системе подготовки специалиста с высшим образованием учебная дисциплина относится **к модулю** «Математика» государственного компонента.

Учебная программа составлена с учетом межпредметных **связей** и программ с дисциплинами: «Линейная алгебра», «Математический анализ».

Требования к компетенциям

Освоение учебной дисциплины «Теория вероятностей» должно обеспечить формирование следующей *базовой профессиональной* компетенции:

БПК-2. Применять современные математические методы и модели при проведении теоретических и экспериментальных исследований в области биоинженерии и биоинформатики.

В результате освоения учебной дисциплины студент должен: знать:

- основные понятия теории вероятностей;
- основные математические модели случайных явлений;
- предельные теоремы теории вероятностей;

уметь:

- использовать основные закономерности случайных явлений;
- применять методы теории вероятностей в других науках;

владеть:

- аналитическими методами теории вероятностей

Структура учебной дисциплины

Дисциплина изучается в 3 семестре. Всего на изучение учебной дисциплины «Теория вероятностей» отведено:

- в очной форме получения высшего образования: 108 часов, в том числе 48 аудиторных часов, из них: лекции - 16 часов, практические занятия - 28 часов, управляемая самостоятельная работа - 4 ч (ДОТ).

Трудоемкость учебной дисциплины составляет 3 зачетные единицы.

Форма текущей аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. ВЕРОЯТНОСТНЫЕ ПРОСТРАНСТВА

- Тема 1.1. *Введение. Терминология теории вероятностей*. Предмет и задачи теории вероятностей. События, операции над событиями.
 - Тема 1.2. Аксиоматика Колмогорова. Свойства вероятности.
- Тема 1.3. Примеры вероятностных пространств. Классическое, конечное, дискретное вероятностные пространства. Геометрическое вероятностное пространство, парадокс Бертрана. Статистическая вероятность и устойчивость частот.

Раздел 2. НЕЗАВИСИМОСТЬ.

- Тема 2.1. *Условные вероятности*. Определение условной вероятности. Теоремы умножения. Формула полной вероятности и формулы Байеса.
- Тема 2.2. *Независимость событий*. Определение независимости двух событий и независимости в совокупности нескольких событий.
- Tema 2.3. *Независимые испытания*. Схема Бернулли, полиномиальная схема.
- Тема 2.4. Предельные теоремы в схеме Бернулли. Локальные и интегральные предельные теоремы Муавра Лапласа и Пуассона и их приложения (в обзорном порядке).

Раздел 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.

- Тема 3.1. Случайные величины и их распределения
- Тема 3.2. *Классификация случайных величин*. Теорема Лебега. Функция и плотность распределения.
- Тема 3.3. *Многомерные случайные величины*. Свойства многомерной функции распределения. Классификация многомерных случайных величин.
 - Тема 3.4. Независимость случайных величин. Критерии независимости.
- Тема 3.5. Функциональные преобразования случайных величин. Функции от случайных величин и соответствующие преобразования функции и плотности распределения (в ознакомительном порядке).

Раздел 4. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

- Тема 4.1. *Математическое ожидание и его свойства*. Математическое ожидание случайной величины. Свойство мультипликативности математических ожиданий.
 - Тема 4.2. Моменты случайных величин. Дисперсия и ее свойства.
- Тема 4.3. *Коэффициент корреляции*. Коэффициент корреляции и его свойства.

Раздел 5. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ.

- Тема 5.1. *Центральная предельная теорема*. Предельная теорема для независимых одинаково распределенных слагаемых.
 - Тема 5.2. Законы больших чисел (в обзорном порядке).

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

темы		Количество аудиторных часов				сов	00B	81
Номер раздела, т	Название раздела, темы,	лекции	практические Занятия	семинарские занятия	лабораторные занятия	иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1.	ВЕРОЯТНОСТНЫЕ ПРОСТРАНСТВА	3	6					
1.1	Введение. Терминология теории вероятностей.	1	1					Опрос
1.2.	Аксиоматика Колмогорова.	1	1					Опрос
1.3.	Примеры вероятностных пространств.	1	4					Опрос, собеседование
2.	НЕЗАВИСИМОСТЬ	4	7				2	-
2.1.	Условные вероятности	1	2					Опрос, собеседование
2.2.	Независимость событий	1	2					Опрос
2.3.	Независимые испытания	1	2					Опрос, собеседование
2.4.	Предельные теоремы в схеме Бернулли.	1	1				2 (ДОТ)	Контрольная работа
3.	СЛУЧАЙНЫЕ ВЕЛИЧИНЫ	5	5					
3.1	Случайные величины и их распределения	1	1					Опрос
3.2.	Классификация случайных величин	1	1					Опрос
3.3.	Многомерные случайные величины	1	1					Опрос, собеседование
3.4.	Независимость случайных величин	1	1					Опрос, собеседование
3.5.	Функциональные преобразования случайных величин	1	1					Контрольная работа

4.	ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН	2	7	2	
4.1.	Математическое ожидание и его свойства	1	3		Опрос, дискуссия
4.2.	Моменты случайных величин		3		письменные отчеты по
					аудиторным
					практическим
					упражнениям.
4.3.	Коэффициент корреляции	1	1	2 (ДС	Т) Коллоквиум, контрольная
					работа
5.	ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ	2	3		
5.1.	Центральная предельная теорема	1	1		Опрос, дискуссия
5.2.	Законы больших чисел	1	2		Коллоквиум, контрольная
					работа
	ВСЕГО	16	28	4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Коган, Е. А. Теория вероятностей и математическая статистика : учебник / Е. А. Коган, А. А. Юрченко. Москва : ИНФРА-М, 2023
- 2. Дерр, В. Я. Теория вероятностей и математическая статистика: учебное пособие для вузов / В. Я. Дерр. Санкт-Петербург: Лань, 2021. 596 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/159475
- 3. Севастьянов, Б. А. Курс теории вероятностей и математической статистики: учебник для студентов вузов, обучающихся по специальностям "Математика" и "Механика" / Б. А. Севастьянов. Изд. стер. Москва: URSS: ЛЕНАНД, 2020. 255 с.

Перечень дополнительной литературы

- 1. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л. Теория вероятностей: учебник. 3-е изд., с изменен. Минск: БГУ, 2013: http://elib.bsu.by/handle/123456789/93935
- 2. Теория вероятностей : практикум : учеб. пособие для студ вузов по мат. спец. : в 2 ч. Ч. 1 / [авт.: Н. В. Лазакович, Е. М. Радыно, С. П. Сташулёнок, С. Л. Штин, О.Л. Яблонский] ; под ред. Н. В. Лазаковича. Минск : БГУ, 2011. 147 с.: http://elib.bsu.by/handle/123456789/38806.
- 3. Теория вероятностей : практикум : учеб. пособие для студ вузов по мат. спец. : в 2 ч. Ч. 2 / [авт.: Н. В. Лазакович, Е. М. Радыно, С. П. Сташулёнок, А. Г. Яблонская, О.Л. Яблонский] ; под ред. Н. В. Лазаковича. Минск : БГУ, 2014. 175 с.: http://elib.bsu.by/handle/123456789/113437.
- 4. Маталыцкий, М. А. Теория вероятностей и математическая статистика: учебник для студ. уво по физико-математическим спец. / М. А. Маталыцкий, Г. А. Хацкевич. Минск: Вышэйшая школа, 2017. 591 с.
- 5. Гнеденко Б. В. Курс теории вероятностей. URSS, 2022.Ж данович В.Ф., Лазакович Н.В. Радыно Н.Я. Задания к лабораторным работам по курсу теории вероятностей и математической статистики в двух частях. Ч.1. Минск, 1998.
- 6. Жданович В.Ф., Лазакович Н.В. Радыно Н.Я., Сташулёнок С.П. Задания к лабораторным работам по курсу теории вероятностей и математической статистики в двух частях. Ч.2. Минск, 1999.
- 7. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л. Курс теории вероятностей: электронное учебное пособие. Минск: Электронная книга БГУ, 2003: http://elib.bsu.by/handle/123456789/10291.
- 8. Чистяков В. П. Курс теории вероятностей. URSS, 2021.
- 9. Белько, И. В. Теория вероятностей, математическая статистика, математическое программирование: учеб. пособие для студ. учреждений

- высш. образования по экон. спец. / И. В. Белько, И. М. Морозова, Е. А. Криштапович. Минск : Новое знание, 2016 ; Москва : ИНФРА-М. 298 с.
- 10.Высшая математика. Практикум: учебное пособие для студентов учреждений высшего образования по естественнонаучным и экономическим специальностям: в 2 ч. / [авт.: О. М. Матейко и др.]; под ред. С. А. Самаля. Минск: РИВШ, 2020—. ISBN 978-985-586 403- Ч. 2:. 2022. 359 с.
- 11. Трушков, А. С. Статистическая обработка информации. Основы теории и компьютерный практикум + CD: учебное пособие / А. С. Трушков. Санкт-Петербург: Лань, 2020. 152 с. ISBN 978-5-8114-4322-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/126947.
- 12. Коршунов, Д. А. Сборник задач и упражнений по теории вероятностей: учебное пособие для вузов / Д. А. Коршунов, С. Г. Фосс, И. М. Эйсымонт. 3-е изд., испр. и доп. Санкт-Петербург: Лань, 2022. 220 с. ISBN 978-5-8114-8328-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/187568.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущего контроля и текущей аттестации.

Для диагностики компетенций могут использоваться следующие средства текущего контроля: опрос, собеседование, дискуссия, коллоквиум, контрольная работа, письменные отчеты по аудиторным (домашним) практическим упражнениям.

Формой текущей аттестации по дисциплине «Теория вероятностей» учебным планом предусмотрен зачет.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 2.4. Предельные теоремы. 2 ч(ДОТ)

Студент изучает локальные и интегральные предельные теоремы Муавра — Лапласа и Пуассона и их приложения. Форма контроля – контрольная работа.

Тема 4.3. Коэффициент корреляции. 2 ч(ДОТ)

Студент изучает определение и свойства коэффициента корреляции, рассматривает примеры применений понятий в конкретных задачах.

Форма контроля – коллоквиум, контрольная работа.

Примерная тематика практических занятий

Занятие № 1. *Терминология теории вероятностей*. Предмет и задачи теории вероятностей. События, операции над событиями. *Аксиоматика Колмогорова*. Свойства вероятности. Классическая вероятность.

Занятие N_{2} 2. *Примеры вероятностных пространств*. Классическое, конечное, дискретное вероятностные пространства.

Занятие № 3. *Примеры вероятностных пространств*. Геометрическое вероятностное пространство, парадокс Бертрана. Статистическая вероятность и устойчивость частот.

Занятие № 4. *Условные вероятности*. Определение условной вероятности. Теоремы умножения. Формула полной вероятности и формулы Байеса.

Занятие № 5. *Независимость событий*. Определение независимости двух событий и независимости в совокупности нескольких событий. Независимость классов событий.

Занятие № 6. *Независимые испытания*. Схема Бернулли, полиномиальная схема.

Занятие № 7. *Предельные теоремы*. Локальные и интегральные предельные теоремы Муавра — Лапласа и Пуассона и их приложения. *Случайные величины и их распределения*

Занятие № 8. *Классификация случайных величин*. Теорема Лебега. Распределения: биномиальное, геометрическое, пуассоновское, равномерное, нормальное. Функция и плотность распределения. *Многомерные случайные величины*. Свойства многомерной функции распределения. Классификация многомерных случайных величин.

Занятие № 9. *Независимость случайных величин*. Критерии независимости в задачах. *Функциональные преобразования случайных величин*. Функции от случайных величин и соответствующие преобразования функции и плотности распределения. Формула свертки в задачах.

Занятие № 10. *Математическое ожидание и его свойства*. Вычисление математических ожиданий конкретных распределений случайных величин.

Занятие № 11. *Математическое ожидание и его свойства*. Свойство мультипликативности математических ожиданий. *Моменты случайных величин*.

Занятие № 12. *Моменты случайных величин*. Дисперсия и ее свойства. Вычисление дисперсий.

Занятие № 13. *Коэффициент корреляции*. Коэффициент корреляции и его свойства. Вычисление коэффициента корреляции. *Центральная предельная теорема*. Предельная теорема для независимых одинаково распределенных невырожденных слагаемых с конечной дисперсией.

Занятие № 14. *Законы больших чисел*. Сходимость по вероятности для последовательности случайных величин.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется метод который учебной дискуссии, предполагает участие студентов В целенаправленном обмене мнениями, идеями ДЛЯ предъявления И согласования существующих позиций в определенной задаче.

Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний при решении задач, определение способов их решения.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск (подбор) и обзор литературы и электронных источников по изучаемой теме;
 - выполнение домашнего задания;
- работы, предусматривающие решение задач и выполнение упражнений;
 - изучение материала, вынесенного на самостоятельную проработку;
 - подготовка к практическим занятиям;
 - научно-исследовательские работы;
 - анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

Примерный перечень тестовых заданий для опроса и собеседования

- 1. Из урны, содержащей 6 перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2, ..., 6 равна 1) 1/720; 2) 1/36; 3) 1/360; 4) 1/1440; 5) 1/46656.
- 2. Из урны, содержащей 4 перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2, ..., 4 равна 1) 1/4; 2) 1/36; 3) 1/12; 4) 4/24; 5) 1/24.

- 3. Из урны, содержащей 5 перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2, ..., 5 равна 1) 1/5; 2) 1/120; 3) 5/120; 4) 4/24; 5) 1/240.
- 4. Игральная кость бросается два раза. Вероятность того, что оба раза появится одно и то же число очков равна: 1) $\frac{1}{2}$; 2) $\frac{1}{6}$; 3) $\frac{1}{36}$; 4) $\frac{1}{18}$; 5)1/72.
- 5. Из следующих утверждений неверным является: 1) всякое элементарное событие является случайным; 2) геометрическое вероятностное пространство это математическая модель случайного эксперимента, в котором число исходов более чем счётно; 3) дискретное вероятностное пространство это математическая модель случайного эксперимента в котором число исходов счётно; 4) конечное вероятностное пространство это математическая модель случайного эксперимента с конечным числом исходов; 5) классическое вероятностное пространство это математическая модель случайного эксперимента с конечным числом равновозможных исходов.
- 6. Пусть случайные события A и B рассматриваются на одном и том же вероятностном пространстве, причем P(A|B) > 0. Тогда $1)P(A|B) + P(\overline{A}|B) = 1$; 2) $P(A|B) + P(\overline{A}|\overline{B}) = 1$; 3) $P(A|\overline{B}) + P(\overline{A}|B) = 1$; 4) P(A|B) + P(A|B) = 1.
- 7. События A и B несовместны и независимы. Тогда верно: 1) хотя бы одно из событий является невозможным; 2) хотя бы одно из событий имеет нулевую вероятность; 3) каждое из событий имеет нулевую вероятность; 4) каждая из вероятностей этих событий отлична от нуля; 5) каждое из событий невозможно.
- 8. Пусть P(A)=0, а B произвольное случайное событие, рассматриваемое на том же вероятностном пространстве, что и A. Тогда: 1) события A и B несовместны; 2) события A и B независимы; 3) наступление события A влечет наступление события B; 4) события A и B противоположны.
- 9. Монета брошена 100 раз. Тогда вероятность выпадения 50 гербов равна: 1) 0,5; 2) 0, 25; 3) $\frac{C_{100}^{50}}{2^{100}}$; 4) $\frac{C_{100}^{1}}{2^{100}}$ 5) $\frac{C_{150}^{50}}{2^{100}}$.
- 10. Монета брошена 50 раз. Тогда вероятность выпадения 25 гербов равна: 1) 0,5; 2) 0, 25; 3) $\frac{C_{50}^{25}}{2^{50}}$; 4) $\frac{C_{50}^{1}}{2^{50}}$ 5) $\frac{C_{50}^{25}}{2^{25}}$.
- 11. Случайная величина имеет пуассоновское распределение. Ошибочно следующее утверждение: 1) ее математическое ожидание равно дисперсии;

- 2) ее математическое ожидание положительно; 3) случайная величина имеет дискретный закон распределения; 4) её математическое ожидание отрицательно.
- 12. Случайная величина ξ стандартно нормально распределена. Тогда М ξ^{2009} равно: 1) 2009; 2) –2009; 3) 1; 4) 1004,5; 5) 0.
- 13. Случайная величина ξ стандартно нормально распределена. Тогда $M(\xi+3)$ равно: 1) 1,5; 2) 6; 3) 1; 4) 3; 5) 0.
- 14. Закон распределения биномиальной случайной величины имеет следующий вид $P(\xi = k) = C_{50}^k \left(\frac{1}{2}\right)^{50}$, k = 0,1,...,50. Тогда М ξ равно: 1) 0; 2) 1; 3) 25; 4) 50; 5)100.
- 15. Закон распределения биномиальной случайной величины имеет следующий вид $P(\xi = k) = C_{50}^k \left(\frac{1}{2}\right)^{50}$, k = 0,1,...,50. Тогда $D\xi$ равно: 1) 0; 2) 1; 3) 25; 4) 50; 5) 12,5.
- 16. Из равенства $M\xi\eta = M\xi M\eta$ следует: 1) независимость случайных величин ξ,η ; 2) некореллированность случайных величин ξ,η ; 3) абсолютная непрерывность случайных величин ξ,η ; 4) сингулярность случайных величин ξ,η ; 5) дискретность случайных величин ξ,η .
- 17. Из равенства $D(\xi + \eta) = D\xi + D\eta$ следует: 1) случайные величины ξ, η независимы; 2) некореллированность случайных величин ξ, η ; 3) абсолютная непрерывность случайных величин ξ, η ; 4) сингулярность случайных величин ξ, η ; 5) дискретность случайных величин ξ, η .
- 18. Из равенства $D(\xi \eta) = D\xi + D\eta$ следует: 1) случайные величины ξ, η независимы; 2) некореллированность случайных величин ξ, η ; 3) абсолютная непрерывность случайных величин ξ, η ; 4) сингулярность случайных величин ξ, η ; 5) дискретность случайных величин ξ, η .
- 19. Из равенства $cov(\xi,\eta)=0$ следует: 1 случайные величины ξ,η независимы; 2) некореллированность случайных величин ξ,η ; 3) абсолютная непрерывность случайных величин ξ,η ; 4) сингулярность случайных величин ξ,η ; 5) дискретность случайных величин ξ,η .

- 20. Из равенства $\rho(\xi,\eta)=0$ следует: 1) случайные величины ξ,η независимы; 2) некореллированность случайных величин ξ,η ; 3) абсолютная непрерывность случайных величин ξ,η ; 4) сингулярность случайных величин ξ,η ; 5) дискретность случайных величин ξ,η .
- 21. Из следующих утверждений верным является: 1) случайные величины ξ и $D\xi$ независимы; 2) у сингулярных случайных величин не существует математическое ожидание; 3) дискретные случайные величины независимы; 4) вырожденная случайная величина абсолютно непрерывна; 5) из равенства нулю дисперсии и математического ожидания следует абсолютная непрерывность случайной величины.

Примерный перечень заданий для контрольных работ

- 1. Бросаются одновременно две игральные кости. Найти вероятность того, что сумма выпавших очков равна 5.
- 2. Монета брошена 100 раз. Чему равна вероятность выпадения 10 гербов?
- **3.** Случайные величины ξ и ξ^2 независимы. Можно ли утверждать, что ξ вырожденная случайная величина? Ответ обосновать.
- **4.** а) Закон распределения биномиальной случайной величины имеет следующий вид $P(\xi = k) = C_5^k (0.5)^5$, k = 0.1,...,5. Найти закон распределения $\eta = -\xi$
- б) Случайная величина ξ принимает значения -1 , 0, 1 с вероятностями 0,25, 0,5 и 0,25 соответственно. Найти её функцию распределения.
- **5.** ξ равномерно распределенная случайная величина на отрезке [0,1]. Найти её математическое ожидание.
- **7.** Привести пример случайной величины, имеющей дискретное распределение вероятностей. Найти её математическое ожидание и дисперсию.
- **8.** Последовательность состоит из **независимых** одинаково распределенных случайных величин, принимающих два значения 0 и 1, каждое с вероятностью 0,5. Выполняются ли для этой последовательности закон больших чисел, центральная предельная теорема? Ответы обосновать.

Примерный перечень вопросов к зачёту

- 1. Пространство элементарных событий.
- 2. Случайные события, действия над ними. Алгебры и сигма-алгебры событий [2, с. 11-13]. Пример алгебры, не являющейся сигма-алгеброй.
- 3. Размещения из n элементов по k элементов, перестановки из n элементов, сочетания из n по k (из n элементов по k элементов). Их количество [2, с. 27 28].
- 4. Аксиоматическое определение вероятности [2, с. 16 17]. Вероятностное пространство. Свойства вероятности [2, с. 19 20].

- 5. Конечное и классическое вероятностные пространства.
- 6. Дискретное вероятностное пространство. Примеры [2, c. 22 24].
- 7. Геометрическое вероятностное пространство.
- 8. Задача о встрече.
- 9. Парадокс Бертрана [2, c. 24 26].
- 10. Условные вероятности.
- 11. Теоремы умножения. Примеры [2, c. 41 43].
- 12. Формулы полной вероятности и Байеса. Примеры применений этих формул [2, с. 44 45].
- 13. Независимость событий. Пример Бернштейна [2, с. 45 48].
- 14. Схема независимых испытаний Бернулли. Формула. Примеры применений. [2, с. 50 51]. *Теоремы Пуассона и Муавра Лапласа (в ознакомительном порядке, без доказательств)* [2, с. 53 56].
- 15. Случайная величина [2, с. 63 64]. Примеры случайных величин.
- 16. Пример неизмеримого по Лебегу множества [1, с. 42 43]. Пример отображения, не являющегося случайной величиной.
- 17. Функция распределения случайной величины [2, с. 67].
- 18. Свойства функции распределения [2, с. 69].
- 19. Дискретные [2, с. 71] и абсолютно непрерывные [2, с. 74] распределения.
- 20. Примеры дискретных [2, с. 73] и абсолютно непрерывных распределений [2, с. 75, 76].
- 21.Плотность случайной величины. *Функции от случайных величин* (в ознакомительном порядке) [2, с. 78].
- 22. Многомерные случайные величины (случайные векторы) [2, с. 79].
- 23. Независимость случайных величин [2, с. 86].
- 24. Понятие о математическом ожидании случайной величины [2, с. 101]. Примеры вычислений [2, с. 102–104].
- 25. Математическое ожидание произведения независимых случайных величин [2, с. 96, свойство 9].
- 26. Формулы для вычисления математических ожиданий [2, с. 101].
- 27. Дисперсия. Свойства дисперсии[2, с. 105–107]. Примеры вычислений [2, с. 107 110].
- 28. Понятие о коэффициенте корреляции [2, с. 114].
- 29. Понятие о предельных теоремах теории вероятностей (понятие о законе больших чисел [2, с. 183, теорема Хинчина без доказательства] и о центральной предельной теореме [2, с. 166, теорема 1 без доказательства]).

Литература для списка вопросов к зачету, на которую есть ссылки в списке вопросов

1. Антоневич, A. Б., Радыно Я. В. Функциональный анализ и интегральные уравнения / Минск : БГУ, 2006.

https://elib.bsu.by/handle/123456789/28955

- 2. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л. Теория вероятностей: учебник. 3-е изд., с изменен. Минск: БГУ, 2013.https://elib.bsu.by/handle/123456789/93935
- 3. Теория вероятностей. Практикум: учеб. пособие: в 2 ч. Ч. 1 / Н. В. Лазакович [и др.]; под ред. Н. В. Лазаковича. https://elib.bsu.by/handle/123456789/38806
- 4. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л. Курс теории вероятностей. Электронная книга БГУ. 2003. https://elib.bsu.by/handle/123456789/10291

Дополнительная литература для списка вопросов к зачёту

5. Кононов С. Г., Тышкевич Р. И., Янчевский В. И. Введение в математику: В 3 ч. Ч. 1. Множества и функции . Минск: БГУ, 2003 https://elib.bsu.by/handle/123456789/10303 (для изучения метода математической индукции (с. 44), отношений эквивалентностей (с. 74))

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную
требуется		учреждения высшего	программу (с
согласование		образования по	указанием даты и
		учебной дисциплине	номера протокола)
1.Математиче	Кафедра	нет	Вносить изменения
ская	математической		не требуется
статистика	кибернетики		(протокол № 13 от
			22.05.2023)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/	учебный год
		<i>J</i> , ,

№	Дополнения и изменения	Основание
п/п		
Viiofii		ura na antaritur tra hautar r
у чеона	ая программа пересмотрена и одобрена: (протокол N	на заседании кафедры от 202 г.)
	`	
Заведу	ющий кафедрой	
	РЖДАЮ факультета	