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Abstract—Image inpainting, the process of filling in missing 

or damaged regions within images, has witnessed a significant 

evolution in recent years, driven primarily by deep learning 

methodologies. This paper provides an overview of modern ar-

chitectures used for image inpainting, and addresses how they 

can be applied to protect sensitive information. 
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I. INTRODUCTION  

Image inpainting is one of the most important tasks in 
computer vision(CV), which is equivalent to image 
completion. It finds application in various domains, from 
science to industry. The fundamental task of image inpainting 
is to restore damaged or occluded regions so that the proposed 
patch seamlessly completes regions. 

The main task of image inpainting is to fill missing areas 
by the information present on the image and can be perceived 
as inverse problem[13]. Conventional approaches work well 
on small damages by focusing on statistics and pattern 
matching[14], which has limits in terms of robustness when a 
more complex scene and contextual representation is lacking. 
Another challenge for the classical approach is a large gap. A 
more recent and popular approach to the problem is 
convolutions neural networks(CNNs). 

In the following sections, we will delve into the key 
components of image inpainting, including data-driven 
approaches, the role of convolutional neural networks 
(CNNs), generative adversarial networks (GANs), and the 
critical issue of evaluating inpainting results. We will also 
discuss practical applications of image inpainting across 
diverse domains, underscoring its role as an enabling 
technology in contemporary society. 

II. RELATED WORK 

A. Classical approaches 

Classical approaches appeared in the early 2000s after 
Bertalmio et al.[16] introduced the basic algorithmic approach 
based on the techniques used by professional art restorators, 
based on distance fields. Over the next decade, many more 
approaches were introduced which were based on statistics of 
the images. [5], [7], [20] 

However, it has limitations with larger gap sizes. A break 
through in efficiency and performance was done by Barnes et 
al. [14] with a tool PatchMake which optimized the 
performance of patch filling. Despite covering larger areas, it 
still fails with context-aware patches. Despite all the 
advancements traditional methods still fail with semantic 
information of the images and that is where deep learning 
approaches surpass them. 

B. Deep learning approaches 

The deep learning field has witnessed rapid growth since 
the introduction of AlexNet in 2012. The breakthrough for 
image inpainting was done by Pathak et al. [4], after which the 
number of works in the field increased exponentially from 
year to year. The base principle is the presence of an encoder 
which captures the content representation of the scene into 
latent feature representation and a decoder which 
subsequently decodes it into a restored image. There are two 
main classes of deep learning models used for image 
inpainting, which are CNNs and GANs, although other 
architectures like recursive neural networks (RNNs) are also 
sometimes introduced.[9] 

CNNs are a fundamental building block in many 
inpainting architectures. They are used to extract features from 
both the known and surrounding regions of the image. For 
inpainting, you can mask the missing region in the input image 
and use the encoder-decoder architecture to generate the 
missing content. Attention mechanisms are often integrated 
into deep inpainting networks to allow the model to focus on 
relevant parts of the image when generating missing content. 
Self-attention mechanisms, like those used in Transformer 
architectures, can help capture long-range dependencies and 
improve inpainting quality. 

After generating the inpainted image, post-processing 
techniques can be applied to enhance the final result, by 
blending the completed region with the color of the 
surrounding pixels. In particular, the fast marching method 
[20], followed by Poisson image blending [21] demonstrates 
promising results. 

Deep learning-based image inpainting has made 
significant strides in producing realistic and visually pleasing 
results. Researchers continue to explore novel architectures 
and training strategies to further advance the state-of-the-art 
in this field. 

III. MODERN ARCHITECTURES 

The rapid advancements in the realm of AI-generated 
content have brought about new techniques, revolutionizing 
the way we approach image inpainting problems. In this 
section, we delve into the modern algorithms that utilize deep 
learning models, allowing high-quality realistic image 
generation. The ability to understand the global context of an 
image and successfully impute missing regions characterize 
these cutting-edge models. 

A. Irregular Mask Inpainting 

NVIDIA's Inpaiting model [1] was specifically designed 
for image inpainting tasks involving irregular masks. The 
introduction of partial convolutions is the core innovation of 
this model. These convolutions were developed to allow the 
network to effectively process irregular masks. They ensure 
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that only valid information from visible parts of the image is 
used to generate the inpainting for the masked region. 

Let 𝑊 be the convolution kernel and 𝑏 its corresponding 
bias. Assume 𝑋 be the pixels for the convolution windows and 
𝑀 -- the corresponding binary mask. The partial convolution 
is defined as:  

𝑥′ = {
𝑊𝑇(𝑋 ⊙ 𝑀)

𝑠𝑢𝑚(1)

𝑠𝑢𝑚(𝑀)
, if 𝑠𝑢𝑚(𝑀) > 0

0, otherwise

 

Where ⊙  denotes the element-wise product. The 
convolution results depend only on unmasked inputs. The 

scaling factor 
sum(1)

sum(M)
 applies scaling corresponding to the 

varying amount of unmasked pixels. 

The model has a U-Net-like architecture, where partial 
convolutions replace every convolutional layer. The last 
partial convolution layer’s input will contain the 
concatenation of the original input image with hole and 
original mask, making it possible for the model to copy non-
hole pixels.  

The significance of the loss function cannot be overstated, 
as it plays a foundational role in shaping the results of image 
inpainting. Loss functions are a mathematical metrics that 
quantify the dissimilarity between the imputed image and the 
ground truth. In addition to their role in model training, they 
can be designed to enforce the generation of realistic and 
locally consistent inpaintings. Furthermore, the choice of loss 
function allows task-specific optimizations. Depending on the 
objective, the loss function can prioritize various aspects, such 
as contextual coherence or style. 

The proposed loss function targets both per-pixel 
reconstruction as well as seamlessness of the resulting image. 
In the paper, they use a variety of loss function in order to 
calculate the total loss. First, the per-pixel losses ℒℎ𝑜𝑙𝑒 , ℒ𝑣𝑎𝑙𝑖𝑑 
are calculated. These are the 𝐿1losses for the hole and valid 
pixel respectively, calculated on the final inpainting.  The total 
variation loss ℒ𝑇𝑉 [3] acts a smoothing penalty on a 1-pixel 
dilation of the mask region. Last but not the least, the the style 
loss (ℒ𝑠𝑡𝑦𝑙𝑒) and perceptual loss(ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡)[3] are calculated: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑣𝑎𝑙𝑖𝑑 + 6ℒℎ𝑜𝑙𝑒 + 0.05ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡 + 120ℒ𝑠𝑡𝑦𝑙𝑒 + 0.1ℒ𝑇𝑉 

Nowadays, state-of-the-art models may include adversar-
ial loss and Image-Dependent Markov Random Field (ID-
MRF) loss terms. By combining these loss functions, the 
model can learn to produce images that not only exhibit spatial 
coherence and smoothness but also capture the fine-grained 
details and content of the input image, resulting in visually 
convincing results.  

The loss term weights are determined by performing a hy-
perparameter search on a subset of validation images. 

Holes present a problem for Batch Normalization since the 
mean and variance will be computed for masked regions. 
However, as we progress through each layer, the missing pix-
els are steadily filled, typically becoming entirely absent once 
we reach the decoder stage. Therefore, we can either perform 
two-phase training: train with Batch Normalization, then 
freeze batch normalization layers in the encoding part and 
fine-tune the model. Moreover, removing batch normalization 
at all is also an option, since such models train on big datasets, 
meaning small batch size. 

B. Wasserstein Generative Adversarial Imputation Network 

Training Generative Adversarial Networks for image 
inpainting poses several challenges. GANs are known for 
mode collapse, training instability, and convergence issues, 
often resulting in poor image quality and mode dropping. 
Wasserstein Loss offers a more stable and informative 
objective function compared to traditional GAN losses like the 
Jensen-Shannon divergence, making it suitable for GAN 
training. Additionally, usage of gradient penalty via 
techniques like gradient clipping or norm clipping helps 
prevent discriminator gradients from exploding, thereby 
providing stable training.[19] This regularization technique 
encourages the generator to produce more diverse and realistic 
samples, mitigating mode collapse issues. 

The Wasserstein Generative Adversarial Imputation 
Network(WGAIN) implements this approach. [18] They used 
Wasserstein GAN as a generator with norm clipping to satisfy 
the Lipschitz constraint. During the training phase, three types 
of missingness were used: noise, single square in the center 
and randomly located multiple squares. This combination of 
different mask types allows us to effectively apply the trained 
model for hiding private information in an image. Thus, the 
user provides a mask made with multiple square regions, and 

Fig. 1 Overview of an architecture with two discriminators. The global discriminator network takes the entire image as input, while the local discriminator 
network takes only a small region around the completed area as input. Both discriminator networks are trained to determine if an image is real or completed 

by the completion network, while the completion network is trained to fool both discriminator networks. 
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the trained WGAIN model repaint areas containing sensible 
information. 

C. Globally and Locally Consistent Image Inpainting 

Achieving both a global and local consistency is crucial 
for image inpainting since it ensures that the completed 
regions seamlessly blend into the overall context of the image 
while preserving the fine-grained details and textures. Without 
both aspects, inpainted regions may stand out as unnatural, 
disrupting the overall visual experience and failing to meet the 
expectations of viewers. Therefore, a successful image 
inpainting method must strike a balance between preserving 
the global context and maintaining local details and textures. 

A simple modification of GAN architecture allows to 
address both aspects at the same time. Two discriminators are 
used in order to achieve global and local consistency. (Fig. 1) 
The global discriminator focuses on capturing the larger 
context of the image to ensure global consistency. It generates 
an initial estimate of the completed image. Meanwhile, the 
local discriminator, which refines the initial estimate by 
focusing on the details and textures within the image. This 
network helps achieve local consistency and ensures that the 
completed regions blend seamlessly with the existing content. 
The results from both discriminators are used to make the final 
decision. 

In order to improve training stability, the some 
modification to the generator were enforced. The generator 
input consists of the masked image and the mask. Therefore, 
the training procedure is more stable, since random noise 
doesn't play any role in the generation. The generator may be 
conditioned on the known parts of the input image and the 
mask indicating the regions to be inpainted. This conditioning 
helps the generator focus on the specific task of completing 
the missing regions while considering the context. 

D. Inpaint Anything 

Nowadays, the state-of-the-art (SOTA) image inpainting 
models, like LaMa[10], Repaint[11], MAT[12], ZITS[15] 
have demonstrated exceptional performance. These models 
are capable of effectively inpainting large regions, handling 
complex patterns, and working well on high-resolution 
images. However, they usually rely on detailed masks. 

Segment Anything Model(SAM) is a SOTA model from 
Meta AI that can create segmentation masks for any object, in 
any image. It can be used to generate accurate masks for all 
objects in an image. Thus, using an ensemble of SAM and 
SOTA inpainters we can create a model for removing any 
object from an image.  

Inpaint Anything [16] allows users to easily remove 
objects from an image with a single click. Moreover, the 
proposed ensemble provides an opportunity to fill the selected 
region with realistic computer-generated images. In addition, 
the SOTA inpaiter can be replaced with a different SOTA 
model. To illustrate, combining SAM with Stable Diffusion 
(SD)[17] results in a "Fill Anything" model, giving the end 
user more control over the final inpainting. 

This approach allows us to address a vast variety of 
computer vision problems: content restoration, privacy 
protection, and real-time image manipulation. When a portion 
of an image is removed, the Inpaint Anything model can 
restore the missing region seamlessly. Therefore, we can 
address the protection of private data. In scenarios where 
sensitive information needs to be protected, such regions can 

be selected using the SAM model and later imputed with 
SOTA inpainter, such as LaMa. Thus, the Inpaint Anything 
model and be used intelligently to inpaint over ”secret” areas 
to protect privacy. 

The model can ensure the inpainted areas maintain visual 
consistency with the surrounding content, to create high-
resolution and natural-looking results. Since there are mobile 
versions of the SAM, the Inpaint Anything model can used 
interactively using mobile phones. Therefore, this ensemble 
model can further develop image editing software. 

IV. CONCLUSION 

We have represented modern approaches to image 
inpainting. These models can be applied to solve a vast variety 
of problems, such as object removal and protection of private 
information. We argue that the simplest approach to use for 
this goal is the Inpaint Anything model. The paint anything 
has two phases: segmentation and inpainting. The 
segmentation phase is done through the state-of-the-art 
Segment Anything model. This model and be easily fine-
tuned to better suit the given dataset. Thus, we can improve 
the performance of the resulting model. Meanwhile, the 
inpainted phase is covered via a SOTA inpainting model such 
as LaMa or the Stable Diffusion. The inpainting models can 
be fine-tuned as well. Meaning that we have control over the 
quality and style of the inpainting.  Therefore, we can provide 
the end user with a suitable interface in order to give control 
over the final inpainting. 
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