ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ, 2023, том 57, № 6, с. 465-471

– РАДИАЦИОННАЯ ХИМИЯ

УДК 544.54:541.6

РАДИАЦИОННО-ИНДУЦИРОВАННАЯ МОДИФИКАЦИЯ СПЕКТРОВ ОТРАЖЕНИЯ ПЛЕНОК ДИАЗОХИНОННОВОЛАЧНОГО ФОТОРЕЗИСТА ПРИ ИМПЛАНТАЦИИ ИОНОВ Аg⁺

© 2023 г. А. А. Харченко^{*a*}, Д. И. Бринкевич^{*b*}, *, С. Д. Бринкевич^{*b*}, *c*, В. С. Просолович^{*b*}

^а Научно-исследовательское учреждение "Институт ядерных проблем" Белорусского государственного университета (НИИ ЯП БГУ), ул. Бобруйская, 11, Минск, 220006 Республика Беларусь ^b Белорусский государственный университет, пр. Независимости, 4, Минск, 220050 Беларусь

^с ООО "Мой медицинский центр — высокие технологии", Октябрьский пр., 122,

Всеволожск, Ленинградская область, 188640 Россия

**E-mail: Brinkevich@bsu.by* Поступила в редакцию 11.06.2023 г. После доработки 12.07.2023 г. Принята к публикации 14.07.2023 г.

Методом измерения спектров отражения исследованы имплантированные ионами Ag⁺ пленки позитивного диазохинонноволачного фоторезиста ФП9120 толщиной 1.5 мкм, нанесенные на поверхность пластин кремния марки КДБ-10 (111) методом центрифугирования. Показано, что ионная имплантация приводит к уменьшению показателя преломления фоторезиста, обусловленному радиационным сшиванием молекул новолачной смолы, а также снижением плотности ρ и молекулярной рефракции R_M фоторезиста. Установлено, что при увеличении дозы имплантации Ag⁺ в области непрозрачности фоторезистивной пленки наблюдается рост коэффициента отражения. Обнаруженные изменения оптических свойств пленок в условиях ионной имплантации объяснены с учетом особенностей радиационно-химических процессов в фенол-формальдегидном фоторезисте.

Ключевые слова: диазохинонноволачный фоторезист, имплантация ионов серебра, спектр отражения, показатель преломления

DOI: 10.31857/S0023119323060062, EDN: RFIRPX

введение

Диазохинонноволачные (ДХН) резисты являются основными позитивными резистами, используемыми в процессе субмикронной литографии. Ионная имплантация (ИИ) широко применяется в современной полупроводниковой микро- и наноэлектронике для создания легированных и изолирующих слоев. Взаимодействие ДХН-резистов с электромагнитным излучением в ультрафиолетовой, вилимой, рентгеновской и гамма-частях спектра исследовано достаточно подробно [1-3]. Однако влияние ионной имплантации на оптические свойства указанных материалов изучено недостаточно, хотя протекающие при ИИ в фоторезистах (ФР) радиационно-индуцированные процессы могут оказывать существенное влияние на выход годных приборов. Целью настоящей работы являлось изучение влияния имплантации ионов серебра на спектры отражения пленок диазохинонноволачного резиста марки ФП9120.

МЕТОДИКА ЭКСПЕРИМЕНТА

Пленки позитивного фоторезиста ФП9120 толщиной 1.5 мкм наносились на поверхность пластин кремния марки КДБ-10 с ориентацией (111) методом центрифугирования при скорости вращения 1800 об/мин. Перед формированием пленки фоторезиста кремниевые пластины подвергали стандартному циклу очистки поверхности в органических и неорганических растворителях. Время вращения центрифуги составляло 40 с. После нанесения фоторезиста на рабочую сторону пластины проводилась сушка в течение 50-55 мин при температуре 88°С. Толщина пленок ФР контролировалась на профилометре "Dectak" по 5 фиксированным точкам на каждой пластине. при этом отклонения от среднего значения по пластине для всех исследовавшихся образцов не превышали 1%.

Имплантация ионами Ag⁺ с энергией 30 кэВ в интервале доз 5 × 10^{16} —1 × 10^{17} см⁻² в режиме постоянного ионного тока (плотность тока *j* = 4 мкА см⁻²) проводилась при комнатной температуре в оста-

Рис. 1. Спектральные зависимости коэффициента отражения исходной (*1*) и имплантированной ионами Ag^+ дозой 5×10^{16} см⁻² (*2*) пленок фоторезиста $\Phi\Pi$ 9120 на кремнии.

точном вакууме не хуже 10^{-5} Па на имплантаторе ИЛУ-3. Во избежание перегрева и деструкции образца в процессе имплантации использовалась кассета, обеспечивающая эффективный сток ионного заряда с поверхности полимера и плотный контакт с металлическим основанием, охлаждаемым водой.

Спектры отражения структур фоторезист-кремний регистрировались в области прозрачности фоторезистивной пленки в диапазоне $\lambda = 210-1100$ нм однолучевым спектрофотометром *PROSKAN MC*-122 при комнатной температуре с разрешением не хуже 1 нм. Перед каждым измерением производилась калибровка прибора. Спектры отражения регистрировались при угле падения и отражения 20° к нормали. Измерения методом атомно-силовой микроскопии показали, что рельеф поверхности пленки достаточно гладкий; для исходных и имплантированных пленок средняя арифметическая шероховатость R_a поверхности не превышала 2 нм.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В спектрах отражения необлученных фоторезистивных пленок в области прозрачности ($\lambda > 300$ нм) наблюдались интерференционные полосы, обусловленные отражением света от границ раздела фоторезист—кремний и фоторезист—воздух (рис. 1, кривая *I*). При увеличении длины волны в диапазоне 300—500 нм имел место быстрый рост интенсивности полос интерференции, обусловленный ростом интенсивности светового луча, отраженного от границы раздела фоторезист-кремний, вследствие уменьшения поглощения в пленке ФР.

В имплантированных ионами Ag⁺ фоторезистивных пленках интерференционная картина наблюдалась на фоне широкой неселективной полосы отражения с максимумом вблизи 650 нм (рис. 1, кривая 2). Интенсивность и положение указанной полосы отражения практически не зависит от дозы имплантации в исследовавшемся диапазоне доз $5 \times 10^{16} - 1 \times 10^{17}$ см⁻². Широкая полоса с максимумом вблизи 650 нм в спектрах отражения наблюдалась ранее при имплантации ионами Ag⁺ халькогенидных стеклообразных полупроводников, кварцевого стекла и стеклообразных полимеров [4, 5]. Максимум указанной полосы зависит от исходной матрицы и для имплантации ионов серебра в полимерную матрицу находится в диапазоне длин волн 560-600 нм [5]. Авторы [4] связывали данную полосу с проявлением эффекта поверхностного плазмонного резонанса в металлических наночастицах, сформированных в матрице при имплантации. Это также подтверждалось расчетными спектрами Ми-резонансов. Поверхностный плазмонный резонанс максимален при дозах (5–10) × 10^{16} см⁻², когда в матрице формируются близкие к сферическим наночастицы серебра с резкими границами [5, 6].

В области непрозрачности фоторезистивной пленки ($\lambda < 300$ нм) имел место рост коэффици-

Рис. 2. Спектральные зависимости оптической разности хода лучей 2*dn* в пленках исходного фоторезиста (*1*) и имплантированного ионами Ag^+ дозами 5 × 10¹⁶ (*2*) и 1 × 10¹⁷ см⁻² (*3*).

ента отражения (рис. 1, кривые *1*, *2*), наблюдавшийся уже при дозе облучения 5×10^{16} см⁻². При дальнейшем увеличении дозы до 1×10^{17} см⁻² коэффициент отражения практически не изменялся. Ранее аналогичный эффект наблюдался при высокоэнергетичном воздействии (γ -облучение, ионная имплантация) на пленки полиэтилентерефталата [7] и полиимида [8, 9] и был обусловлен радиационно-стимулированной перестройкой надмолекулярной структуры полимера в приповерхностной области и релаксацией остаточных механических напряжений, возникающих в процессе изготовления пленки.

Имплантация ионов Ag⁺ приводила также к смещению интерференционных максимумов и изменению расстояния между ними (рис. 1, кривые 1, 2). Интерференционные максимумы наблюдаются тогда, когда оптическая разность хода лучей, отраженных от границ раздела воздух/ФР и ФР/кремний, равна целому числу длин волн

$$2dn = m\lambda_m,\tag{1}$$

где n — показатель преломления фоторезистивной пленки; d — расстояние, проходимое световым пучком в фотополимере; m — номер максимума в спектрах отражения; λ_m — длина волны, соответствующая m-максимуму.

Экспериментальные данные свидетельствуют о том, что при имплантации ионов Ag⁺ наблюдалось изменение величины *dn*. Величина *d* определяется геометрической толщиной полимерной пленки. Измерения, проведенные механическим способом на профилометре "*Dectak*" показали, что существенной усадки фоторезиста в процессе имплантации не наблюдается. Толщина пленки изменялась в пределах погрешности измерений, составлявшей ~10 нм, при всех исследовавшихся дозах имплантации вплоть до максимальной 1 × $\times 10^{17}$ см⁻². Эти экспериментальные результаты коррелируют с данными работы [10], полученными методом атомно-силовой микроскопии при имплантации узким ионным пучком тонкой полиимидной пленки. В этой работе [10] показано, что усадка пленки полиимида наблюдается только при флюенсах ионов свыше 1×10^{17} см⁻² и даже при $\Phi = 1 \times 10^{18}$ см⁻² величина усадки была менее 80 нм, что составляет менее 4.5% толщины пленки. Такой же результат наблюдается и для полимерной пленки фоторезиста [11, 12]. Поскольку геометрическая толщина пленки в процессе имплантации существенно не изменяется, значения оптической разности хода лучей 2dn отражают изменение при имплантации показателя преломления *п* фоторезистивной пленки.

На основании спектров отражения по номеру и положению максимумов/минимумов были рассчитаны зависимости оптической разности хода лучей 2*dn* от длины волны λ , представленные на рис. 2, согласно формуле (1). Зависимость 2*dn*(λ) для исходных образцов фоторезиста выглядит как нормальная дисперсия *dn/d* λ < 0. В исходных пленках показатель преломления *n* возрастает от 1.68 при λ = 1000 нм до 1.9 при 300 нм.

После проведения ионной имплантации дозой 5×10^{16} см⁻² наблюдается уменьшение показателя преломления (рис. 2). Так, при $\lambda = 930$ нм величина *n* снижается на ~7% — от 1.68 в исходной пленке до 1.56 в имплантированной.

При дальнейшем увеличении дозы до 1 × $\times 10^{17}$ см⁻² наблюдается противоположный эф-фект – возрастание показателя преломления ФР пленки *n* до 1.63 при $\lambda = 930$ нм (рис. 2, кривая *3*).

На наш взгляд, наблюдаемое увеличение показателя преломления обусловлено формированием при дозах ~1 × 10^{17} см⁻² легированного серебром сплошного карбонизированного слоя. Аморфизированный углерод может иметь величину *п* в диапазоне до 3.0 [13], что существенно превышает показатель преломления фоторезиста. Как известно [9], при внедрении Ag⁺ с энергией 30 кэВ толщина имплантированного слоя составляет ≈45 нм. Оценки показывают, что при такой толщине карбонизированного слоя для согласия с экспериментальными результатами его показатель преломления должен быть ~2.5. Эта величина сопоставима с наблюдаемыми ранее в работе [14] значениями п модифицированного слоя пленок полиимида, имплантированных ионами никеля (n = 2.3).

Фенолформальдегидные смолы являются одними из старейших представителей сетчатых полимеров. Их получают при конденсации фенола и формальдегида, как правило, в присутствии специальных функциональных добавок, регулирующих молекулярную массу, степень сшивки сетки или же отдельные физико-химические свойства полимерного компаунда. Кроме того, состав и строение полимера сильно зависят от условий проведения реакций синтеза и отверждения полимера, а также технологических обработок. С учетом нерегулярного строения, основной структурный фрагмент фенолформальдегидной смолы (I) может быть представлен в следующем обобщенном виде:

Согласно формуле Лоренц—Лорентца [15], показатель преломления n полимеров с молярной массой повторяющегося звена M, плотностью вещества ρ и молекулярной рефракцией R_M можно определить из выражения:

$$n^2 = \frac{M + 2R_M\rho}{M - R_M\rho}.$$
 (1)

Молекулярная рефракция R_M является аддитивной величиной и складывается из рефракций R_i отдельных атомов и инкрементов для типов химических связей (двойная, тройная).

Возможны различные механизмы снижения показателя преломления при высокоэнергетичном облучении полимеров. К уменьшению величины *n*, как следует из формулы (1), должно приводить увеличение молярной массы полимера *M*. Действительно, при облучении фенолформальдегидных смол реакции сшивания доминируют над деструкцией в силу особенностей строения полимера [16].

К снижению величины n при ионной имплантации приводит также газовыделение (преимущественно водорода и его соединений) из имплантированного слоя. Это обуславливает снижение плотности вещества ρ , поскольку толщина пленки фоторезиста существенно не изменяется, а масса ее снижается. Кроме того, газовыделение приводит также к снижению молекулярной рефракции R_M вследствие уменьшения вклада рефракций R_i атомов водорода. В соответствии с выражением (2) снижение величин ρ и R_M должно приводить к уменьшению значения n. Совокупность указанных обстоятельств и обуславливает уменьшение показателя преломления n фоторезиста в процессе ионной имплантации.

Механизмы радиационно-индуцированных превращений фенолформальдегидных фоторезистов нами подробно рассматривались в статьях как в условиях имплантации ионами [17–19], так и облучения частицами с низкими значениями линейной передачи энергии: электронами и фотонами [2, 3, 20]. Поэтому в настоящей работе будут лишь схематично приведены ключевые реакции, которые лежат в основе наблюдаемых изменений оптических свойств пленок в условиях ионной имплантации.

Наблюдаемое при ионной имплантации увеличение молекулярной массы фенолформальдегидных фоторезистов происходит в основном в результате рекомбинации различных кислород-(II) и углеродцентированных радикалов (III), например, по реакции (2). Вторым возможным процессом, приводящим к образованию новых углерод-углеродных связей и росту средней молекулярной массы полимера, является присоединение радикалов к макромолекулам. Однако высокие значения линейной передачи энергии для ионов серебра, а также мощности дозы, создаваемые промышленным ускорителем при имплантации, создают очень большие концентрации радикалов в треках. Поэтому вклад радикал-молекулярных процессов в увеличение молекулярной массы будет ничтожен по сравнению с бирадикальными реакциями рекомбинации по реакции (2) и аналогичным.

Образование низкомолекулярных соединений: водорода, воды, формальдегида происходит вследствие распада возбужденных макромолекул по представленным ниже реакциям (3)–(5). Эти низкомолекулярные соединения легко удаляются из пленки в условиях ионной имплантации: глубокий вакуум и небольшой нагрев. Тем ни менее, среди продуктов радиационно-индуцированных превращений фоторезиста методом ИК-Фурье спектрометрии НПВО мы ранее фиксировали формальдегид [20]. Возможно также выделение метана, поскольку в состав смолы вводятся небольшие количества ксилола — регулятора молекулярной массы.

Можно заметить, что радиационная модификация в основном происходит по боковым заместителям ароматических колец. В результате распада возбужденных частиц в полимере будет снижаться содержание водорода и происходит накопление различных хиноидных структур, которые в силу наличия системы сопряженных кратных связей устойчивее в условиях радиолиза, по сравнению с исходным полимером. Конечным результатом накопления хиноидных структур при ионной имплантации является графитизация фенолформальдегидного фоторезиста в области термализации тяжелых ионов Аg. Получающийся таким образом металло-углеродный композит имеет высокий показатель преломления, близкий к алмазу (2.42 [21]).

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

ЗАКЛЮЧЕНИЕ

В работе показано, что имплантация ионами Ag^+ дозой до 5 × 10^{16} см $^{-2}$ приводит к уменьшению показателя преломления фоторезиста, обусловленному радиационным сшиванием новолачной смолы, а также снижением плотности о и молекулярной рефракции R_M фоторезиста, вследствие выделения низкомолекулярных соединений при распаде возбужденных макромолекул. При увеличении дозы до 1×10^{17} см⁻² наблюдается возрастание оптической длины 2dn фоторезистивного слоя, вызванное, на наш взгляд, формированием в области пробега ионов серебра карбонизированного слоя с показателем преломления $n \sim 2.5$. существенно превышающим показатель преломления фоторезиста. Установлено, что при имплантации Ag⁺ наблюдается рост коэффициента отражения в области непрозрачности ($\lambda = 200 -$ 300 нм) фоторезистивной пленки.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа финансировалась в рамках государственной программы научных исследований "ГПНИ "Фотоника и электроника для инноваций", 2021-2025 годы", "Микро- и наноэлектроника", № 20212560.

СПИСОК ЛИТЕРАТУРЫ

- Моро У. Микролитография. Принципы, методы, материалы. В 2-х ч. Ч. 2. М: Мир, 1990. 632 с. (Moreau W.M. Semiconductor lithography. Principles, practices and materials. N.Y., London: Plenum Press. 1988)
- Бринкевич С.Д., Бринкевич Д.И., Просолович В.С., Свердлов Р.Л. // Химия высоких энергий. 2021. Т. 55. № 1. С. 66–75. https://doi.org/10.31857/S0023119321010071
- 3. Вабищевич С.А., Бринкевич С.Д., Вабищевич Н.В., Бринкевич Д.И., Просолович В.С. // Химия высоких энергий. 2021. Т. 55. № 6. С. 461–468. (Vabishchevich S.A., Brinkevich S.D., Vabishchevich N.V., Brinkevich D.I., Prosolovich V.S. // High Energy Chemistry. 2021. V. 55. № 6. Р. 495. https://doi.org/10.1134/S0018143921060151) https://doi.org/10.31857/S0023119321060152
- Ganeev R.A., Ryasnyansky A.I., Stepanov A.L., Usmanov T. // Phys. Stat. Sol. 2003. M. B. 238. R5.
- Галяутдинов М.Ф., Нуждин В.И., Фаттахов Я.В., Фаррахов Б.Ф., Валеев В.Ф., Осин Ю.Н., Степанов А.Л. // Письма в ЖТФ. 2016. Т. 42. В. 4. С. 30.
- Головчук В.И., Харченко А.А., Бринкевич Д.И., Лукашевич М.Г., Вабищевич С.А., Вабищевич Н.В. // Вестник ПГУ. Серия С. Фундаментальные науки. 2017. № 2. С. 42.
- 7. Бумай Ю.А., Бринкевич Д.И., Волобуев В.С., Долгих Н.И., Карпович И.А., Лукашевич М.Г. // Вестник БГУ.

Сер. 1. Физика. Математика. Информатика. 2012. № 3. С. 41.

- Харченко А.А., Бринкевич Д.И., Бринкевич С.Д., Лукашевич М.Г., Оджаев В.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 1. С. 94–99. (Kharchenko A.A., Brinkevich D.I., Brinkevich S.D., Lukashevich M.G., Odzhaev V.B. // J. of Surface Investigation. X-ray, synchrotron and neutron techniques. 2015. V. 9. № 1. Р. 87. https://doi.org/10.1134/S1027451015010103) https://doi.org/10.7868/S0207352815010102
- 9. Бринкевич Д.И., Харченко А.А., Бринкевич С.Д., Лукашевич М.Г., Оджаев В.Б., Валеев В.Ф., Нуждин В.И., Хайбуллин Р.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 8. С. 25–30. (Brinkevich D.I., Kharchenko A.A., Brinkevich S.D., Lukashevich M.G., Odzhaev V.B., Valeev V.F., Nuzhdin V.I., Khaibullin R.I. // J. of Surface Investigation. X-ray, synchrotron and neutron techniques. 2017. V. 11. № 4. P. 801.)

https://doi.org/10.1134/S1027451017040188

- Харченко А.А., Шварков С.Д., Колесник Е.А., Лукашевич М.Г. // Вестн. Белорус. гос. ун-та. Сер. 1, Физика. Математика. Информатика. 2012. № 2. С. 29.
- Харченко А.А., Бринкевич Д.И., Просолович В.С., Бринкевич С.Д., Оджаев В.Б., Янковский Ю.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 6. С. 14–18. (Kharchenko A.A., Brinkevich D.I., Prosolovich V.S., Brinkevich S.D., Odzaev V.B., Yankovski Yu.N. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2020. V. 14. № 3. P. 558. https://doi.org/10.1134/S1027451020030283) https://doi.org/10.31857/S1028096020060084
- Бринкевич Д.И., Харченко А.А., Просолович В.С., Оджаев В.Б., Бринкевич С.Д., Янковский Ю.Н. // Микроэлектроника. 2019. Т. 48. № 3. С. 235–239. (Brinkevich D.I., Kharchenko A.A., Prosolovich V.S., Odzhaev V.B., Brinkevich S.D., Yankovski Yu.N. // Russian Microelectronics. 2019. V. 48. № 3. Р. 197. https://doi.org/10.1134/S1063739719020021) https://doi.org/10.1134/S0544126919020029
- Коншина Е.А. Аморфный гидрогенизированный углерод и применение его в оптических устройствах. СПб. СПбГУ ИТМО. 2010. 94 с.
- Бумай Ю.А., Долгих Н.И., Харченко А.А., Валеев В.Ф., Нуждин В.И., Хайбуллин Р.И., Нажим Ф.А., Лукашевич М.Г., Оджаев В.Б. // ЖПС. 2014. № 2. С. 192. (Bumai Yu.A., Dolgikh N.I., Kharchenko A.A., Valeev V.F., Nuzhdin V.I., Khaibullin R.I., Nagim F.A., Lukashevich M.G., Odzhaev V.B. // Journal of Applied Spectroscopy. 2014. V. 81. № 2. Р. 188.)
 - https://doi.org/10.1007/s10812-014-9908-7
- 15. Аскадский А.А., Кондрашенко В.И. Компьютерное материаловедение полимеров. Том 1. Атомно-молекулярный уровень. М.: Научный мир, 1999. 544 с.
- Грасси Н., Скотт Дж. Деструкция и стабилизация полимеров. М.: Мир, 1988. 246 с. (Grassie N., Scott G. Polymer degradation and stabilisation. Cambridge University Press. 1985)
- 17. Бринкевич Д.И., Бринкевич С.Д., Олешкевич А.Н., Просолович В.С., Оджаев В.Б. // Химия высоких энергий. 2020. Т. 54. № 2. С. 126. (Brinkevich D.I.,

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 57 № 6 2023

Brinkevich S.D., Oleshkevich A.N., Prosolovich V.S., Odzhaev V.B. // High Energy Chemistry. 2020. V. 54. № 2. P. 115–122.) https://doi.org/10.1134/S0018143920020046) https://doi.org/10.31857/S0023119320020047

- Бринкевич С.Д., Гринюк Е.В., Бринкевич Д.И., Просолович В.С. // Химия высоких энергий. 2020. Т. 54.
 № 5. С. 377. (Brinkevich S.D., Grinyuk E.V., Brinkevich D.I., Prosolovich V.S. // High Energy Chemistry. 2020. V. 54. № 5. Р. 342–351.) https://doi.org/10.1134/S0018143920050045). https://doi.org/10.31857/S0023119320050046
- 19. Бринкевич Д.И., Бринкевич С.Д., Просолович В.С. // Химия высоких энергий. 2022. Т. 56. № 4. С. 284. (Brinkevich D.I., Brinkevich S.D., Prosolovich V.S.

Ion Implantation in Diazoquinone–Novolac Photoresist // High Energy Chemistry. 2022. V. 56. № 4. P. 270–276.) https://doi.org/10.1134/S0018143922040051) https://doi.org/10.31857/S0023119322040052

471

- 20. Бринкевич С.Д., Бринкевич Д.И., Просолович В.С., Ластовский С.Б., Петлицкий А.Н. // Журнал прикладной спектроскопии. 2020. Т. 87. № 6. С. 941. (Brinkevich S.D., Brinkevich D.I., Prosolovich V.S., Lastovskii S.B., Pyatlitski A.N. // Journal of Applied Spectroscopy. 2021. V. 87. № 6. Р. 1072–1078.) https://doi.org/10.1007/s10812-021-01111-9
- 21. Физико-химические свойства полупроводниковых веществ. Справочник. М.: Наука, 1979. 340 с.