Электрофизические и оптические свойства тонкопленочных покрытий TiAlCuN

В. А. Зайков¹⁾, С. В. Константинов²⁾, Ф. Ф. Комаров²⁾, И. В. Чижов²⁾, В. Я. Демидова¹⁾, Ю. В. Болотина¹⁾

¹⁾ Белорусский государственный университет, Минск, Беларусь, e-mail: <u>zaikov@bsu.by</u> ²⁾ Институт прикладных физических проблем им. А. Н. Севченко Белорусского государственного университета, Минск, Беларусь, e-mail: : <u>svkonstantinov@bsu.by</u>

Методом сканирующей электронной микроскопии (СЭМ) изучены структурные свойства и состав нитридных покрытий TiAlCuN. Четырёхзондовым методом проведены измерения поверхностного R_{\Box} и удельного ρ сопротивления. Методами спектрофотометрирования определен спектральный коэффициент отражения R в широком диапазоне длин волн $\lambda = 200 \div 2500$ нм. Зависимость спектрального коэффициента отражения демонстрирует металлический тип прово-димости, который хорошо описывается теорией Друде - Лоренца. Совместное использование результатов оптических и электрофизических измерений позволило оценить концентрацию электронов n и их подвижность μ в покрытиях TiAlCuN.

Ключевые слова: сканирующая электронная микроскопия; спектрофотометрирование; удельное сопротивление; коэффициента отражения; концентрация электронов; подвижность.

Electrophysical and optical properties of TiAlCuN thin film coatings

V. A. Zaikov¹⁾, S. V. Konstantinov²⁾, F. F. Komarov²⁾, I. V. Chizhov²⁾, V. Y. Demidova¹⁾, Y. V. Bolotina¹⁾

 ¹⁾ Belarusian State University, Minsk, Belarus, e-mail: <u>zaikov@bsu.by</u>
 ²⁾A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, Belarus, e-mail: <u>svkonstantinov@bsu.by</u>

The structural properties and composition of TiAlCuN nitride coatings have been studied by scanning electron microscopy (SEM). Surface R_{\Box} and resistivity ρ were carried out by the four-probe method. The spectral reflection coefficient R in a wide range of wavelengths $\lambda = 200 \div 2500$ nm was determined by spectrophotometric methods. The dependence of the spectral reflection coefficient demonstrates the metallic type of conductivity, which is well described by the Drude - Lorentz theory. The combined use of the results of optical and electrophysical measurements allowed us to estimate the electron concentration n and electron mobility μ in TiAlCuN coatings.

Keywords: scanning electron microscopy; spectrophotometry; resistivity; reflectance; electron concentration; electron mobility.

Введение

Керамические покрытия нитридов переходных металлов, полученные методом реактивного магратронного распыления, широко используются в различных промышленных приложениях. В частности, покрытия в состав которых входят следующие компоненты (Ti,Al,Cu,Si)N [1]. Такие покрытия привлекают большое внимание исследователей, т. к. имеют наноструктурное строение (размер зерен менее 100 нм),

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

плотную гранецентрированную кубической решетку и, как правило, металлический тип проводимости.

1. Формирования покрытий TiAlCuN

Осаждение покрытий TiAlCuN проводилось методом реактивного магнетронного распыления на модернизированной установке УВН-2М, оснащенной магнетроном и ионным источником «Радикал», системами нагрева подложек, подачи смещения на подложку и модульным комплексом управления расходом газов (МКУРГ) [2]. Осаждение покрытий TiAlCuN и структур TiAlCu / TiAlCuN проводилось с использованием двух композитных мишеней, изготовленных методом взрывного прессования в ГНУ «Институт порошковой металлургии» НАН Б. В таблице 1 представлен состав переданных композитных мишеней TiAlCu.

Таблица 1

N⁰	Состав мишени					
мишени	Ті, масс.%	Ті, атом.%	Al, масс.%	Al, атом.%	Си, масс.%	Си, атом. %
1	56	46,4	31,0	45,5	13	8,1
2	74,5	69,0	14,0	23,0	11,5	8,0

Состав композитных мишеней TiAlCu

Схема управления процессом осаждения покрытий с помощью прибора МКУРГ обеспечивает воспроизводимость процесса осаждения по составу, позволяя поддерживать постоянное соотношение между потоками распыленных атомов металла мишени и реактивного газа на подложке при условии постоянства значений рабочего давления и тока источника питания. Параметром контроля в приборе МКУРГ является степень реактивности α , определяемая через интенсивности спектральных линий материала мишени по формуле [2]:

$$\alpha = \frac{(I_0 - I)}{(I_0 - I^*)},$$
(1)

где α – степень реактивности; I_0 – интенсивность линии титана в разряде на чистом аргоне; I – текущая величина интенсивности линии титана в смеси аргон - азот; I^* - интенсивность линии титана для полностью азотированной мишени.

Процессы напыления проводили при двух значениях степени реактивности α : $\alpha = 0,605$ (покрытия состава близкого к стехиометрическому) и $\alpha = 0,474$ (покрытия нестехиометрического состава, обогащенные металлическими компонентами (Ti+Al)/N > 1).

2. Результаты и обсуждение

Анализ микрофотографий структур поперечных сечений покрытий TiAlCuN показал, что осажденные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади сечения. Поверхность всех образцов покрытий TiAlCuN является гладкой и однородной. В качестве примера на рис. 1 представлена микрофотография скола и поверхности образца 2N1, полученного с использованием мишени № 2 в режиме, обеспечивающем стехиометрический состав покрытия TiAlCuN (степень реактивности $\alpha = 0,605$).

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Режим осаждения: мишень № 2; степень реактивности α = 0,605; ток разряда I = 1 А; давление р = 7,0·10⁻¹ Па; напряжение смещения U_{см} = -200 В; температура подложки T= 370 °C.

Puc.1. СЭМ – микрофотография скола и поверхности образца 2N1

Для образцов 1N1 и 2N1, полученных в режимах близких к стехиометрическим ($\alpha = 0,605$), как на кремнии (Si), так и на оксиде кремния (SiO₂) характерна столбчатая микроструктура, с небольшим увеличением диаметра столбцов по мере роста покрытий. При этом средний размер столбцов не превышает 20 ÷ 30 нм. Покрытия TiAlCuN (образцы 1N2 и 2N2), полученные при меньшем значении степени реактивности $\alpha = 0,474$ с превышением металла (Ti + Al) над реактивной компонентой (N₂), имеют структуру или более мелкокристаллическую (образец 2N2 на Si) или субнанокристаллическую (образец 1N2 на Si и образец 2N2 на SiO₂).

В таблице 2 представлены результаты энерго-дисперсионного анализа (EDX) для покрытий TiAlCuN, полученные из мишеней 1 и 2, для двух различных режимов осаждения: степень реактивности $\alpha = 0,605$ и $\alpha = 0,474$. В таблице 2 представлены: стехиометрический состав, толщина, скорость осаждения покрытий TiAlCuN.

Таблица 2

ſ	Образец	(Ti + Al), %	(N), %	(Ti+Al)/(N)	<i>h</i> , нм	τ, c	<i>v</i> , нм/с
	1N1	43,63	44,70	0,9928	1900	5400	0,352
	1N2	47,05	37,94	1,240	1290	2580	0,500
	2N1	43,84	44,16	0,9928	1120	3000	0,373
	2N2	56,17	31,40	1,789	1280	2580	0,496

Стехиометрия состава, толщина, скорость осаждения нитридных покрытий TiAlCuN на SiO₂ подложках (образцы: мишень № 1 - 1N1 и 1N2, мишень № 2 - 2N1 и 2N2.)

Слоевое (поверхностное) сопротивление покрытий TiAlCuN, измеряли четырехзондовым методом с помощью измерителя удельных сопротивлений (ИУС) на тонкопленочных покрытиях TiAlCuN, нанесенных на SiO₂-подложку. Удельное сопротивление р покрытий TiAlCuN, рассчитывали по формуле:

$$\rho = R_{\Box} \times h, \tag{2}$$

где R_{\Box} – слоевое сопротивление; h – толщина покрытия, полученная из СЭМ – микрофотографий (пример определения h представлен на рис. 1).

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

В таблице 3 представлены: значения поверхностного сопротивления; толщины покрытий; удельные сопротивления TiAlCuN покрытий.

Таблица 3

Образец	R \Box , Ом/ \Box	<i>h</i> , мкм	ρ, мкОм∙см
1N1	33,57	1,90	6378
1N2	5,37	1,29	692
2N1	2,98	1,31	388
2N2	1,20	1,30	156

Слоевое и удельное сопротивление покрытий TiAlCuN, меди и алюминия

Анализ слоевого и удельного сопротивления нитридов TiAlCuN на SiO₂-подложках показал, что образцы 1N1 и 2N1, состава близкого к стехиометрии, имеют значительно более высокое сопротивление, что является прямо противоположным по сравнению с нитридом титана (TiN). Вероятная причина – добавка Cu, которая в нестехиометрических покрытиях концентрируется по границам зерен и приводит к снижению потенциального барьера. Покрытия, полученные из мишени № 2 с отношением металлов Ti/Al > 2,1, имеют практически на порядок меньшее значение удельного сопротивления чем покрытия, полученные из мишени № 1 с отношением металлов Ti/Al \leq 0,61. Вероятная причина – образование диэлектрических кластеров AlN в покрытии. Удельное сопротивление ρ связано с микропараметрами материала покрытия TiAlCuN формулой:

$$\rho = \frac{1}{e \cdot n \cdot \mu},\tag{3}$$

где *е* - заряд электрона; *n* - концентрация; µ – подвижность электронов.

Спектральный коэффициент отражения тонкопленочных металлоподобных покрытий с высокой концентрацией свободных электронов (электронного газа), хорошо описывается теорией Друде - Лоренца [3]. Фундаментальными понятиями теории являются плазменная частота и плазменная длина (λ_p). Концентрация электронов (п) связана с плазменной длиной (λ_p) по формуле [3]:

$$n = \sqrt{\frac{\pi}{\lambda_e \cdot r_e}},\tag{4}$$

где *n* - концентрация электронов; λ_p – плазменная длина; $r_p = 2,818 \cdot 10^{-15}$ м – радиус электрона.

Исследования коэффициента отражения в видимой и ближней ИК областях спектра покрытий TiAlCuN проводили с помощью двухлучевого спектрофотометра Lambda 1050. На рис. 2 представлены зависимости суммарного коэффициента отражения для образцов от длины волны. Все зависимости, кроме зависимости 1 на рис. 2, *a*, имеют металлический тип поведения коэффициента отражения. По точке перегиба на зависимости коэффициента отражения от длины волны, представленных на рис. 2, можно определить плазменную длину λ_p [3], а по формуле (4)

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

рассчитать концентрацию свободных электронов *n*. Подвижность электронов µ, можно вычислить по формуле (3).

А - мишень № 1, режимы осаждения 1 и 2; Б - мишень № 2, режимы осаждения 1 и 2. *Рис.2.* Зависимость коэффициента отражения (*R* %) покрытий TiAlCuN от длины волны (λ нм)

В таблице 4 представлены: удельное сопротивление; плазменная длина; концентрация электронов; подвижность электронов в покрытиях TiAlCuN.

Таблица 4

Плазменная длина, концентрация и подвижность электронов в покрытиях TiAlCuN

Название	ρ, мкОм∙см	λ _р , нм	$n, 10^{22} \text{ cm}^{-3}$	μ, см²/В·с
1N1	6378	-	-	-
1N2	692	605	0,30	3,01
2N1	388	320	0,11	14,6
2N2	156	890	0,14	28,6

Заключение

В результате комплексного исследования СЭМ – микрофотографий, удельного сопротивления и спектрального коэффициента отражения покрытий TiAlCuN также использования теории Друде - Лоренца определены основные микропараметры покрытий TiAlCuN различного стехиометрического состава, в частности: удельного сопротивления, плазменной длины, концентрации свободных электронов и подвижности электронов.

Библиографические ссылки

- 1. Microstructure and mechanical properties of nanomultilayered AlTiN/Cu coatings prepared by a hybrid system of AIP and PDCMS / H. Mei [et al.] // Ceramics International. 2023. Vol. 49, No. 1. P. 226–235.
- 2. Система контроля расхода газов для применения в технологии реактивного магнетронного распыления / И. М. Климович [и др.] // Приборы и методы измерений. 2015. Т. 6, № 2. С. 139–147.
- 3. *Patsalas P., Logothetidis S.* Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films // Journal of Applied Physics. 2001. Vol. 90, No 9. P. 4725–4734.

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.