———— ПРИБОРЫ ——

УДК 621.382

ВЛИЯНИЕ СТРУКТУРНЫХ ДЕФЕКТОВ НА ЭЛЕКТРОФИЗИЧЕСКИЕ ПАРАМЕТРЫ *p-i-n*-ФОТОДИОДОВ

© 2023 г. Н. С. Ковальчук^{*a*}, С. Б. Ластовский^{*b*}, В. Б. Оджаев^{*c*}, А. Н. Петлицкий^{*a*}, В. С. Просолович^{*c*}, *, Л. В. Шестовский^{*a*}, В. Ю. Явил^{*c*}, Ю. Н. Янковский^{*c*}

^аОткрытое акционерное общество "ИНТЕГРАЛ" — управляющая компания холдинга "ИНТЕГРАЛ", ул. Казинца, 121А, Минск, 220108 Республика Беларусь ^bНаучно-практический центр НАН Беларуси по материаловедению, ул. Петруся Бровки, 19, Минск, 220072 Республика Беларусь ^cБелорусский государственный университет, пр. Независимости, 4, Минск, 220050 Республика Беларусь *E-mail: prosolovich@bsu.by Поступила в редакцию 03.04.2023 г. После доработки 05.05.2023 г. Принята к публикации 10.05.2023 г.

Представлены результаты исследований электрофизических параметров *p-i-n*-фотодиодов на основе кремния в зависимости от режимов их работы (величины внешнего смещения и температуры), изготовленных на пластинах монокристаллического кремния *p*-типа проводимости ориентации (100) с $\rho = 1000$ Ом см. Область p^+ -типа (изотипный переход) создавалась имплантацией ионов бора, области n^+ -типа — диффузией фосфора из газовой фазы. Установлено, что на вольт-амперных характеристиках при обратном смещении можно выделить три области изменения темнового тока в зависимости от приложенного напряжения: сублинейную, суперлинейную и линейную, обусловленные различными механизмами генерационно-рекомбинационных процессов в области обеднения *p-n*-перехода. Заметная зависимость величины барьерной емкости (на частоте 1 кГц) и размеров области обеднения от температуры наблюдается только при приложенных обратных напряжениях, не превышающих контактную разность потенциалов ($V \le 1$ В).

Ключевые слова: p-i-n-фотодиод, барьерная емкость, темновой ток, генерационно-рекомбинационные процессы

DOI: 10.31857/S054412692370045X, EDN: JBLRNE

1. ВВЕДЕНИЕ

Современные p-i-n-фотодиоды широко применяются в сетевых картах и коммутаторах волоконно-оптических системах связи для преобразования электромагнитных излучений в электрический сигнал. Простота конструкции, низкая стоимость и возможность изготовления прибора с оптимальными характеристиками обуславливают применение p-i-n-фотодиодов в аппаратуре космического назначения в качестве навигационных и сенсорных детекторов оптического и ИК диапазона, в системах *LIDAR* [1], а также в оптических межспутниковых каналах связи [2].

Введение *i*-слоя собственного полупроводника между *p*- и *n*-слоями примесного полупроводника позволяет существенно увеличить размер области пространственного заряда. Конструкция прибора позволяет достигнуть практически полного поглощения оптического излучения в *i*-слое и сокращения времени переноса зарядов из *i*-зо-

ны в легированные области. Таким образом, основное преимущество *p-i-n*-фотодиодов заключается в быстром переключении, так как поглощение излучения происходит в *i*-слое, где за счет дрейфового переноса носители заряда имеют высокие скорости. Другим преимуществом является высокая квантовая эффективность, поскольку толщина *i*-слоя обычно больше обратного коэффициента поглощения, и все фотоны поглощаются в *i*-слое. Кремниевые *p*-*i*-*n*-фотодиоды обладают квантовой эффективностью выше 80-90% в интервале длин волн 400-1100 нм, хорошей чувствительностью (0.5 А/Вт) и малым временем нарастания импульса (несколько наносекунд). Квантовая эффективность определяется, прежде всего, величиной темнового тока, связанной с концентрацией свободных носителей заряда, которые генерируются в объеме кремния в отсутствие внешнего светового возбуждения, например, в результате термогенерации. Генерационными центрами являются различные технологические (фоновые) примеси и другие структурные дефекты (например, дислокации, микродефекты, вакансионные скопления и скопления междоузельных атомов, дефектно-примесные комплексы). В работе проведен анализ изменения электрофизических параметров *p-i-n*-фотодиодов на основе кремния с вертикальной структурой и охранным кольцом в зависимости от режимов их работы (величины внешнего смещения и температуры).

2. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

Приборы изготавливались на пластинах монокристаллического кремния р-типа проводимости ориентации (100) с $\rho = 1000$ Ом см, выращенных методом бестигельной зонной плавки. Область *p*⁺-типа анода (изотипный переход) создавалась имплантацией ионов В⁺ во всю поверхность непланарной стороны пластины. области n^+ -типа катода и охранного кольца – диффузией Р из газовой фазы в планарную сторону пластины. Измерения вольт-амперных и вольт-фарадных характеристик (соответственно далее в тексте ВАХ и ВФХ) производились на измерителе параметров полупроводниковых приборов Agilent B1500A с зондовой станцией Cascade Summit 11000B-AP в диапазоне температур -30...70°С с шагом 10°С. Определение локальных дефектов в приповерхностной фоточувствительной области осуществлялось с помощью растрового электронного микроскопа "*HITACHI*" типа *S*-4800 (РЭМ) согласно методике [3] в сканирующем режиме и в режиме наведенного тока с энергиями пучка электронов 20 и 30 кэВ, соответственно. Спектры релаксационной спектроскопии глубоких уровней (DLTS) измерялись при длительности импульса заполнения 0.01 с и окне скорости эмиссии 19 с $^{-1}$. Спектры измерялись при обратном смещении -5 В в режимах заполнения ловушек основными и неосновными носителями заряда. В первом случае напряжение заполнения было 0 В, а во-втором -2 В.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены ВАХ темновых токов фоточувствительной области и охранного кольца исходного фотодиода при 20°С. Видно, что обратный темновой ток (I_R) возрастает с увеличением обратного смещения, при этом зависимости для фоточувствительной области и для охранного кольца качественно похожи. Для *p*-*n*-перехода на основе кремния при 20°С основной вклад в обратный темновой ток вносит дрейфовая составляющая, обусловленная генерационно-рекомбинационными процессами в области обеднения [4]. Следует отметить, что на ВАХ при обратном смещении как фоточувствительной области, так и

Рис. 1. Обратные ВАХ фоточувствительной области (кривая *I*) и охранного кольца (кривая *2*) *p-i-n*-фотодиода при температуре 20°С.

охранного кольца, наблюдаются ступеньки вблизи $V_1 \approx 25$ В и $V_2 \approx 70$ В. Это связано, вероятно, с термической генерацией носителей заряда с глубоких уровней. Данный факт так же позволяет сделать предположение о неоднородном распределении технологических примесей с глубокими уровнями по объему кристалла. Ранее качественно подобные ВАХ наблюдались нами при исследовании диодов генераторов шума, сформированных на сильнолегированных подложках монокристаллического кремния ($\rho = 0.005$ Ом см) [5]. Наличие ступенек на вольт-амперных характеристиках было связано с неоднородным распределением примесей по объему подложки.

Для обратной BAX *p*-*n*-перехода, в области пространственного заряда которого преобладает генерация электронно-дырочных пар, присуща степенная зависимостью тока от приложенного напряжения $I_R \sim V^n$ [4]. На рис. 2 приведена ВАХ темнового тока в двойном логарифмическом масштабе, которая может быть разбита на три участка: $I - сублинейный, n \sim 0.5$. Такая зависимость характерна для резкого ассиметричного *p*-*n*-перехода, для которого рост I_R с напряжением связан с ростом области обеднения (W) по степенному закону с n = 0.5 [4]. В широкозонных полупроводниках с низкой концентрацией собственных носителей заряда n_i (таких, как Si) и большой концентрацией генерационно-рекомбинационных центров (низкое значение τ_e) при комнатной температуре преобладает генерационный ток (J_{gen}). При заданной температуре J_{gen} пропорционален ширине обедненного слоя, который в свою очередь зависит от приложенного обратного смещения V[4].

$$J_{\text{gen}} = \int_{0}^{W} q \left| U \right| dx \approx q \left| U \right| W = \frac{q n_{i} W}{\tau_{e}}, \qquad (1)$$

МИКРОЭЛЕКТРОНИКА том 52 № 4 2023

$$J_{\text{gen}} \sim \frac{1}{\tau_e}; \ J_{\text{gen}} \sim W \sim (V_{bi} + V)^{1/2}.$$
 (2)

Таким образом, следует ожидать для резкого *p*-*n*-перехода степенную зависимость генерационного тока от приложенного напряжения с показателем степени n = 0.5. Из исследований температурных зависимостей I_R (рис. 3) установлено, что генерация носителей заряда на участке I (при приложенных напряжения от 0 до 10 В) происходит с энергетического уровня 0.20 эВ.

При напряжениях от 10 до 25 В (участок II) обратный ток также возрастает с ростом V и n становится больше 0.5 ($n \sim 2$). Такая суперлинейная зависимость, вероятно, обусловлена высокой концентрацией рекомбинационно-генерационных центров и их неоднородным распределением по объему кристалла [6].

На участке III при V~ 35-70 В (рис. 2) ток прямо пропорционален $V(n \sim 1)$. На данном участке ток экспоненциально зависит от температуры. генерация носителей заряда при данных напряжениях смещения происходит с энергетического уровня 0.26 эВ. Из исследований ВАХ и температурных зависимостей обратного тока можно заключить, что процессы формирования темнового тока обусловлены термической генерацией носителей заряда с глубоких уровней и, вероятно, неоднородным распределением технологических (фоновых) примесей и/или микродефектов по объему кристалла. Исходя из различного энергетического положения глубоких уровней на участке I и на участке III следует, что в генерационно-рекомбинационных процессах участвуют различные виды дефектов структуры. Однако, данные эффекты могут быть обусловлены и особенностями изменения размеров области обеднения при приложении внешнего смещения.

Из данных ВФХ следует, что барьерная емкость (C_6) исследуемого прибора уменьшается с увеличением обратного напряжения (рис. 4). Согласно [4] зависимость емкости от приложенного обратного смещения имеет вид $1/C^2 \sim V$ для резкого асимметричного *p*-*n*-перехода и $1/C^3 \sim V$ для плавного *p*-*n*-перехода.

Проведенные теоретические расчеты зависимости толщины области обеднения (W) от приложенного напряжения в соответствии с [4] и сравнение их с экспериментальными результатами из измерений барьерной емкости C_6 и обратного тока I_R показали (рис. 5), что переход резкий асимметричный.

Из рис. 5 также следует, что на участке II, несмотря на то, что $I_R \sim V^2$, величина обратной емкости $1/C \sim W$ по-прежнему продолжает расти по закону с n = 0.5. Следовательно, рост величины обратного тока происходит не только за счет увеличения толщины W, но и за счет включения нового механизма генерации внутри области обеднения,

Рис. 2. ВАХ темновых токов *p-i-n*-фотодиода в двойном логарифмическом масштабе при $T = 20^{\circ}$ С.

Рис. 3. Температурные зависимости обратного тока *p-i-n*-фотодиода при различных значениях напряжения смещения, В: 1 – 10, 2 – 20, 3 – 40.

Рис. 4. Зависимость барьерной емкости *p-i-n*-фотодиода от приложенного обратного напряжения. $T = 20^{\circ}$ C, F = 1 кГц.

Рис. 5. Расчетные зависимости толщины области обеднения W от приложенного напряжения и их сравнение с экспериментальными данными $1/C_6$ и I_R .

что подтверждает высказанное выше предположение о неравномерном распределении глубоких рекомбинационных центров по объему области обеднения. При напряжениях более 8 В для обратного тока появляется дополнительный канал утечки, т.е. включается новый механизм увеличения I_R , не связанный с увеличением W от V.

Высокие значения $n \ (n > 0.5)$ наблюдались нами ранее при анализе ВАХ биполярных транзисторов [7] и могут быть связаны с целым рядом причин, обусловленных ограничениями применения статистики Холла-Шокли-Рида, в рамках которой получены выражения (1) и (2). Среди этих причин прежде всего следует выделить высокую концентрацию рекомбинационно-генерационных центров и их неоднородное распределение. Кроме того, эти центры могут входить в состав протяженных дефектов или областей скоплений дефектов. Высокие значения *n* (от 0.5 и выше) наблюдались ранее в приборах, изготовленных по стандартной технологии с применением для формирования легированных областей ионной имплантации, и характерны для генерационной составляющей обратного тока диодов с наличием дислокаций или других структурных дефекты в области *p*-*n*-перехода [8]. Такие дефекты заметно увеличивают токи утечки *p-n*-перехода. Особенно губительно для приборов сочетание дислокаций и примесей металлов с большими коэффициентами диффузии. В кремниевых переходах при декорировании дислокаций металлическими примесями наблюдалось увеличение токов утечки вплоть до короткого замыкания p-n-перехода [8, 9].

В настоящее время существует лишь качественное объяснение результатов экспериментов, в которых увеличение токов утечки связывается с образованием по дислокациям "мостиков" повышенной проводимости через область пространственного заряда *p*-*n*-перехода. Оценки [8, 9] дают сопротивления этих "мостиков" от 20 МОм до нескольких Ом. Эта интерпретация опирается на известный факт стекания примеси к дислокациям. Наиболее распространенное объяснение влияния дислокаций на токи утечки основывается на исследованиях, в которых показано, что дислокация в кремнии *n*-типа ведет себя как цепочка акцепторов, а в *p*-кремнии – как цепочка доноров. Поэтому из условий электронейтральности дислокация должна образовывать вокруг себя трубку повышенной концентрации основных носителей заряда [9].

Однако, как показали исследования методом растровой электронной микроскопии (РЭМ), увеличение обратных токов рассматриваемого p-i-nфотодиода не может быть связано с утечками через р-п-переход вследствие шунтирования его структурными дефектами типа дислокаций, скоплений на них примесей и т.п. На всех изображениях РЭМ (рис. 6) в фоточувствительных областях фотодиода не наблюдалось контрастов, свидетельствующих о наличии размерных дефектов, являющихся локальными генерационно-рекомбинационными центрами (ГРЦ) вблизи металлургической границы *р-п*-перехода. Таким образом, анализ полученных результатов позволяет заключить, что скопления ГРЦ находятся внутри области обеднения *p-i-n*-фотодиода на некотором расстоянии от р-п-перехода, причем распределены в ней неравномерно. Такими дефектами могут быть скопления микродефектов, формирующиеся вследствие флуктуаций температуры, возникающих как в результате вращения кристалла в процессе выращивания в асимметричном тепловом поле, так и при

Рис. 6. Изображения приповерхностной фоточувствительной области p-*i*-*n*-фотодиода полученные РЭМ в режиме сканирования (a) и в режиме наведенного тока (δ).

высокотемпературных технологических обработках при изготовлении приборов. Существует три типа микродефектов, образующихся в бездислокационных монокристаллах, выращенных методом бестигельной зонной плавки, различающихся размерами, структурой и условиями возникновения [10, 11]. А-дефекты представляют собой призматические дислокационные петли междоузельного типа и их скопления размерами 0.5-5.0 мкм. В-дефекты являются кластерами междоузельных атомов, их размеры не превышают 0.005-0.05 мкм. С-дефекты – являются скоплениями точечных дефектов междоузельного типа размером ~4.10 нм. Наличие дефектов структуры в бездислокационных монокристаллах кремния определяет физические свойства этих кристаллов и качество приборных структур на основе кремния.

МИКРОЭЛЕКТРОНИКА том 52 № 4 2023

Дефекты структуры, как сказано выше, могут образовываться как в процессе выращивания кристаллов (ростовые микродефекты), так и в процессе изготовления полупроводниковых приборов (постростовые микродефекты). В процессе изготовления прибора кристалл на ряде этапов подвергается высокой термической обработке (диффузия, постимплантационный отжиг и т.п.). При термообработке в кристаллах кремния протекают сложные процессы генерации и рекомбинации собственных точечных дефектов и взаимодействия их с различного вида как примесными, так и собственными структурными дефектами. В общем виде к ним относятся следующие: высокотемпературная генерация и рекомбинация точечных дефектов в кристаллической решетке кристалла; эмиссия и встраивание точечных дефектов в

Рис. 7. Температурные зависимости барьерной емкости на частоте F = 1 кГц при различных значениях напряжения смещения, В: 1-20; 2-10; 3-5; 4-0.5; 5-0.

Рис. 8. Температурная зависимость относительной величины обратного квадрата барьерной емкости *p-i-n*-фотодиода. V = 0 В, F = 1 кГц. Температура $T_1 = 263$ К.

структуру микродефектов; генерация и рекомбинация точечных дефектов на поверхности кристалла, обуславливающие возникновение диффузионных потоков объем – поверхность и наоборот; образование различных преципитатов за счет взаимодействия точечных дефектов между собой и с примесными атомами [12]. В результате происходит рост микродефектов и трансформация исходной дефектной структуры, которая проходит ряд последовательных стадий от совокупности вакансионных и междоузельных микродефектов до крупных дефектов. Так как распределение ростовых микродефектов в объеме кристалла неоднородно, то одновременно возможно образование и рост дефектов в различных участках активной области прибора (области обеднения). Отсутствие размерных дефектов, являющихся локальными рекомбинационными центрами вблизи металлургической

границы *p*-*n*-перехода, вероятно обусловлено геттерирующим действием примеси фосфора, вводимой в кристалл для формирования *p*-*n*-перехода методом диффузии из газовой фазы в планарную сторону пластины [13, 14].

Исследования температурной зависимости барьерной емкости при различных напряжениях смещения (на частоте 1 кГц) показали (рис. 7), что заметная зависимость C_6 наблюдается только при напряжениях, не превышающих контактную разность потенциалов ($V \le 1$ В). В случае резкого несимметричного перехода [4]

$$C_{6} \equiv \frac{dQ_{c}}{dV} = \frac{\varepsilon_{s}}{W} = \sqrt{\frac{q\varepsilon_{s}N_{B}}{2}} \left(V_{bi} \pm V - \frac{2kT}{q} \right)^{-1/2} = \frac{\varepsilon_{s}}{\sqrt{2L_{D}}} (\beta V_{bi} \pm \beta V - 2)^{-1/2}, \qquad (3)$$

а $W \sim (V_{bi} + V)^{1/2}$, где V – приложенное напряжение. В свою очередь

$$W = \sqrt{\frac{2\varepsilon_S V_{bi}}{qN_B}},\tag{4}$$

где $N_B = N_D$ или N_A в слаболегированной части *pn*-перехода, а контактная разность потенциалов

$$qV_{bi} = E_g - (qV_n + qV_p) = kT \ln\left(\frac{n_{n0}p_{p0}}{n_i^2}\right) \approx \\ \approx kT \ln\left(\frac{N_A N_D}{n_i^2}\right),$$
(5)

где E_g — ширина запрещенной зоны; qV_n и qV_p положение уровня Ферми в запрещенной зоне относительно дна зоны проводимости в полупроводнике *n*-типа и относительно потолка валентной зоны в полупроводнике *p*-типа; n_{n0} и p_{p0} равновесные концентрации электронов и дырок в полупроводнике *n*-типа и дырок в полупроводнике *p*-типа, соответственно; N_D и N_A — концентрации доноров и акцепторов; n_i — собственная концентрация носителей заряда в полупроводнике.

В выражение для C_6 (3) входят два параметра, зависящие от температуры: относительная диэлектрическая проницаемость є и высота потенциального барьера qV_{bi} . При повышении температуры є увеличивается, а qV_{bi} уменьшается [15]. Поскольку є входит в числитель формулы для C_6 , а qV_{bi} в знаменатель, то при повышении температуры барьерная емкость возрастает. Однако, в формулу (3) кроме того входит величина $V_{bi} + V$ (сумма запирающего напряжения и высоты потенциального барьера). Следовательно, при напряжениях смещения $V \le V_{bi}$ зависимость W от температуры определяется температурной зависимостью V_{bi} . Проведенное моделирование по формулам (3)–(5)

2023

Рис. 9. Зависимости барьерной емкости *p-i-n*-фотодиода от частоты измерений при *T* = 20°С при различных напряжениях смещения.

показало, что при увеличении температуры контактная разность потенциалов и толщина обедненного слоя уменьшаются, а барьерная емкость увеличивается. При этом выполняется соотношение $1/C^2 \sim W^2 \sim V_{bi}$ (рис. 8).

Исследования частотной зависимости $C_6 p$ -*i*-*n*-фотодиода показали (рис. 9), что барьерная емкость существенно зависит от частоты измерений тогда, когда размеры W полностью определяются величиной V_{bi} , т.е. при $V \le V_{bi}$. Если размеры Wопределяются внешним приложенным обратным смещением ($V \gg V_{bi}$), то C_6 практически не зависит от частоты. Уменьшение C_6 при частотах более 100 кГц для напряжения смещения $V \le V_{bi}$, учитывая амплитуду сканирующего сигнала (25 мВ), вероятно связано с возрастанием влияния диффузионной емкости.

Следует отметить, что из измерений DLTS новых видов дефектов обнаружено не было, спектры имеют типичный вид для кремния *р*-типа. При анализе полученных результатов следует учитывать, что исследования *DLTS* производились при напряжениях смещения, не превышающих 10 В, т.е. исследования соответствовали области I темновой вольт-амперной характеристики p-i-n-фотодиода. Данный факт согласуется с результатами исследований методом растровой электронной микроскопии, из которых следует, что в фоточувствительных областях фотодиода вблизи металлургической границы *p-n*-перехода не наблюдалось наличия размерных дефектов (типа дислокаций), являющихся локальными генерационно-рекомбинационными центрами. Наблюдаемые особенности вольт-амперных характеристик обусловлены структурными дефектами, расположенными в глубине обедненной области *p-i-n*-фотодиода.

ЗАКЛЮЧЕНИЕ

Установлено, что для *p-i-n*-фотодиодов на темновых ВАХ при обратном смещении можно выделить три области изменения тока в зависимости от приложенного напряжения: сублинейную (0-8 B), суперлинейную (10-25 B) и линейную (более 25 В). При напряжениях смещения свыше 8 В ток начинает возрастать по суперлинейному закону, однако размеры области обедненения по-прежнему продолжают расти по сублинейному закону. Это обусловлено появлением при данных напряжениях дополнительного канала для генерационного тока, обусловленного высокой концентрацией ГРЦ в области обеднения и их неоднородным распределением по объему кристалла. Такими дефектами структуры являются как ростовые микродефекты, образующиеся в процессе выращивания монокристаллов, так и постростовые микродефекты, которые формируются в процессе изготовления полупроводниковых приборов. На частоте измерений ВФХ 1 кГц заметная зависимость величины барьерной емкости и размеров области обеднения от температуры для *p-i-n*-фотодиодов наблюдается только при приложенных обратных напряжениях, не превышающих контактную разность потенциалов ($V \le 1$ B). Показано, что барьерная емкость *p-i-n*-фотодиодов практически не зависит от частоты измерений, если размеры области обеднения определяются внешним приложенным обратным смещением ($V \gg V_{bi}$). На частотах более 100 кГц при $V \le V_{bi}$ наблюдается уменьшение C_6 , обусловленное проявлением возрастающего влияния диффузионной емкости.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них конфликт интересов отсутствует.

СПИСОК ЛИТЕРАТУРЫ

- João Pereira do Carmo, Moebius B., Pfennigbauer M., Bond R., Bakalski I., Foster M., Bellis S., Humphries M., Fisackerly R., Houdou B. Imaging lidars for space applications // Novel Optical Systems Design and Optimization. XI. 2008. V. 7061. P. 70610J-01-70610J-12.
- De Carlo P. M., Roberto L., Marano G., L'Abbate M., Oricchio D., Venditti P. Intersatellite link for earth observation satellites constellation // SPACEOPS, Roma, Italy. 2006. P. 19–23.
- Солодуха В.А., Шведов С.В., Петлицкий А.Н., Петлицкая Т.В., Чигирь Г.Г., Пилипенко В.А., Филипеня В.А., Жигулин Д.В., Уситименко Д.С. Анализ дефектов интегральных схем с использованием растрового электронного микроскопа в режиме наведенного тока // Современные информационные и электронные технологии: сборник трудов 19-ой Международной научно-практической конференции, Одесса, 28 мая-01 июня 2018 г. Одесса, 2018. С. 48-49.
- 4. *Sze S.M., Lee M.K.* Semiconductor Devices: Physics and Technology. Pub. 3. John Wiley & Sons Singapore Pte. Limited. 2012. 582 p.
- Буслюк В.В., Оджаев В.Б., Панфиленко А.К., Петлицкий А.Н., Просолович В.С., Филипеня В.А., Янковский Ю.Н. Электрофизические параметры диодов генераторов широкополосного шума // Микроэлектроника. 2020. Т. 49. № 4. С. 315–320.
- 6. *Liefting R., Wijburg R.C.M., Custer J.C., Wallinga H.* Improved device performance by multistep or carbon

co-implants. IEEE Trans. Electron Devices // 1994. V. ED-41. P. 50–55.

- Оджаев В.Б., Панфиленко А.К., Петлицкий А.Н., Просолович В.С., Шведов С.В., Филипеня В.А., Явид В.Ю., Янковский Ю.Н. Исследование влияния технологических примесей на вольт-амперные характеристики биполярного n-p-n-транзистора // Весці Нацыянальнай Акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2018. Т. 63. № 2. С. 244–249.
- Сорокин Ю.Г. Влияние дислокаций на электрические параметры *p-n*-переходов // Тр. Всес. Электротехнического института. 1980. № 90. С. 91–101.
- 9. *Plantinga G.H.* Effect of dislocation on the transistors parameters fabricated by shallow diffusied // IEEE Trans. Electron Devices. 1969. V. 16. № 4. P. 394–400.
- Рейви К. Дефекты и примеси в полупроводниковом кремнии / Под ред. С.Н. Горина. М.: Мир, 1984. 472 с.
- Мильвидский М.Г., Освенский В.Б. Структурные дефекты в монокристаллах полупроводников. М.: Металлургия, 1984. 256 с.
- Таланин В.И., Таланин И.Е. Применение диффузионной модели образования ростовых микродефектов для описания дефектообразования в термообработанных монокристаллах кремния // Физика твердого тела. 2013. Т. 55. Вып. 2. С. 247–251.
- Климанов Е.А. О механизмах геттерирования генерационно-рекомбинационных центров в кремнии при диффузии фосфора и бора // Успехи прикладной физики. 2015. Т. 3. № 2. С. 121–125.
- Hugo S.A., Hiesmair H., Weber E.R. Gettering of metallic impurities in photovoltaic silicon // Applied Physics A. 1997. V. 64. № 2. P. 127–137.
- 15. *Берман Л.С.* Варикапы. М.–Л.: "Энергия", 1965. 40 с.