УДК 621.396.67

Громыко А. В., Кныш В. П., Алешкевич Н. Н.

ЗАДАЧА СИНТЕЗА ОБЛУЧАТЕЛЯ ЗЕРКАЛЬНЫХ АНТЕНН В ПРОСТРАНСТВЕ ВЕКТОРНЫХ СФЕРИЧЕСКИХ ФУНКЦИЙ

Научно-исследовательское учреждение «Институт прикладных физических проблем имени А.Н. Севченко» Белорусского государственного университета, Минск, Беларусь.

В работе рассматривается решение обратной задачи синтеза поля облучателя по заданному распределению поля в раскрыве зеркальной антенны.

Решение уравнений Максвелла в сферической системе координат методом разделения переменных приводит к системе векторных функций, обладающих необходимой полнотой и ортогональностью для описания электромагнитного поля. Каждая элементарная волна может быть интерпретирована с физической точки зрения как источник электрических или магнитных диполей. Тангенциальные составляющие напряжённости электрического поля $E_{\tau}(\theta, \varphi, r)$ на сферической поверхности некоторого радиуса г представляются суммой электрических и магнитных волн: M_{mn} , N_{mn} .

$$\vec{E}_{\tau}(\theta,\phi,r) = \sum_{n=1}^{N} \sum_{m=-n}^{+n} A_{mn} \cdot \vec{M}_{mn} + B_{mn} \cdot \vec{N}_{mn}$$
(1)

Коэффициенты Amn, Bmn находится из решения задачи на собственные значения по известным величинам тангенциальных составляющих поля E_{θ}, E_{ϕ} на сферической поверхности радиуса r_0 , охватывающей излучающую систему.

$$A_{mn} = \frac{2n+1}{j4\pi Z_n(r_0)} \frac{(n-m)!}{(n+m)!} \frac{1}{n(n+1)} \int_{0}^{2\pi} \int_{0}^{\pi} \left[E_{\theta_{r_0}} m P_n^m - j E_{\varphi_{r_0}} \sin\theta \frac{\partial P_n^m}{\partial\theta} \right] \cdot e^{-jm\varphi} d\theta d\varphi \qquad (2)$$

$$B_{mn} = \frac{2n+1}{4\pi \left[\frac{1}{kr}\frac{\partial(rZ_n(kr))}{\partial r}\right]_{r=r_0}} \frac{(n-m)!}{(n+m)!} \frac{1}{n(n+1)} \int_{0}^{2\pi \pi} \int_{0}^{\pi} \left[E_{\theta_{r_0}}\sin\theta\frac{\partial P_n^m}{\partial\theta} - jE_{\varphi_{r_0}}mP_n^m\right] \cdot e^{-jm\varphi} d\theta d\varphi , \quad (3)$$

где $P_n^m(\theta)$ – полиномы Лежандра, $Z_n(kr)$ – сферические функции Ханкеля, k=2 π/λ – волновой вектор.

Комплексные величины E_{θ}, E_{φ} тангенциальных составляющих электрического вектора на поверхности сферы радиуса r_0 берутся из измеренных данных или из массива величин, заданных аналитически. Найденные комплексные коэффициенты разложения Amn, Bmn позволяют определить электромагнитное поле в любой точке пространства вне поверхности сферы, охватывающей излучающую систему в дальней, промежуточной и ближней зонах. Приведённые соотношения легли в основу программного обеспечения для вычисления полей на разных расстояниях от излучающей системы. Использование алгоритмов быстрого преобразования Фурье для проведения интегрирования по угловым координатам θ , φ многократно ускоряет процесс получения результатов [1,2]. Таким образом можно перейти к решению обратной задачи, то есть по заданным значениям поля на некоторой внешней поверхности и рассчитанным коэффициентам найти искомое поле на сферической поверхности, охватывающей излучатель. Рассмотрим решение некоторой теоретической задачи: найти поле облучателя для зеркальной антенны с некоторыми заданными параметрами.

Допустим, что необходимо синтезировать поле облучателя для короткофокусных антенн с отношением диаметр/фокус равным, приблизительно, двойке. Для таких антенн применение рупорных облучателей или открытого конца волновода в качестве облучателя при-

Секция 3. Прикладные проблемы радиофизики

водит к неполному облучению зеркала, а применение дипольных антенн в качестве облучателя даёт большую величину переливного излучения. За основу для расчётов примем следующие исходное параметры: облучение зеркала равномерное, фокусное расстояние 10 λ , зеркало занимает телесный угол раскрывом 120°, облучатель расположен соосно с зеркалом. Геометрия расположения представлена на рисунке 1. Центром сферической системы координат является фокус зеркала, все расчётные соотношения будут получены относительно этого начала сферической системы координат.

Рисунок 1 – Геометрия задачи. Формирование распределения поля облучателем.

Зеркало облучается полем одной поляризации. Оценка необходимого количества гармоник для представления поля N =kR₀ (R₀=10 λ) приводит к величине количества гармоник порядка 60. По этим исходным данным были проведены расчеты коэффициентов A_{mn}, B_{mn} (амплитуд сферических гармоник), необходимых для представления поля на сферической поверхности, сопряженной с зеркалом, (в пределах телесного угла).

Распределения амплитуд гармоник Amn, Bmn приведены на рисунке 2.

Рисунок 2 – Распределение амплитуд коэффициентов А_{mn}(слева), В_{mn}(справа) для равномерного облучения зеркала. Номер N – радиальный индекс изменяется от 1 до 40, индекс m изменяется от -n до +n.

Полученный набор коэффициентов A_{mn}, B_{mn} позволяет оценить точность представления поля для различных N. На рисунке 3 приведены центральные строки распределений амплитуд полей на поверхности сферы радиуса $R_0=10 \lambda$ для различного количества сферических гармоник, участвующих в представлении поля. Вне всяких сомнений, N=40 дает более близкую аппроксимацию поля в пределах заданного (150°-30°=120°) телесного угла. Доля «переливного» излучения находится на уровне -20dB и ниже.

В рассматриваемой задаче синтеза поля облучателя основной интерес представляет поле в непосредственной близости от фокуса. Смоделируем сначала поле на поверхности сферы радиуса R₀=10λ на основе коэффициентов A_{mn}, B_{mn}, но для гармоник с максимальным номером N=8. На рисунке 4 представлены результаты такого моделирования.

Рисунок 3 – Центральные сечения распределений амплитуд полей для N=40 (слева) и для N=15 (справа) на поверхности сферы радиуса R₀=10 λ.

Рисунок 4 – Вид центральных сечений распределений амплитуды (слева) и фазы (справа) поля на поверхности сферы радиуса 10 лямбда, N=8.

В представлении поля участвуют гармоники с максимальным номером N=8. Анализ фазового распределения показывает, что теоретически можно получить фазовое распределение (равномерное) в пределах заданного телесного угла. Амплитудное распределение имеет пульсации в пределах до -2dB в телесном угле 40° -140° градусов, спад амплитуды поля от края сопряженной сферы с крутизной 10dB/10°.

Рассмотрим картины полей, получающиеся при расчетах, на малых расстояниях от начала координат (фокуса зеркала). Представляет интерес, естественно, картина поля на поверхности сферы радиуса 1лямбда с тем же набором гармоник. На рисунке 5 приведены центральные строки распределений амплитуд и фаз полей на поверхности сферы радиуса 1λ для N=8. Отметим «гладкий» характер распределений амплитуды и фазы. На рисунке 6 приведены центральные строки распределений амплитуд и фаз полей на сфере радиуса 0.8λ.

Рисунок 5 – 8 гармоник в представлении поля на поверхности сферы радиуса 1 λ.

Рисунок 6 – 8 гармоник в представлении поля на поверхности сферы радиуса 0,8 λ .

Проявляется реактивный характер представления поля. Амплитуда и фаза поля имеют изрезанный характер. Аналитически такой эффект обусловлен поведением функций Ханкеля: модуль функции резко возрастает при N < kR. Возрастание амплитуды поля говорит о том, что в этом месте должен находится источник поля со своими амплитудой и фазой.

Подобный подход к решению обратной задачи, то есть по заданным значениям поля на некоторой внешней сферической поверхности и рассчитанным коэффициентам разложения Amn,Bmn найти искомое поле на сферической поверхности, охватывающей излучатель, позволяет синтезировать оптимальный облучатель в рамках поставленной задачи .Для практической проверки теории в X-диапазоне длин волн были изготовлены несколько видов облучателей, реализующих дипольный подход. Амплитудно-фазовые характеристики облучателей измерялись на поверхности сферы радиусом 15 λ , пересчитывались на поверхности сфер малого радиуса. Проведенная коррекция облучателей позволила получить прогнозные характеристики облучения поверхности зеркала.

Список литературы

1. Будай А. Г. Алгоритм восстановления характеристик антенных систем по измерениям на сферической поверхности / А. Г. Будай, А. П. Гринчук, А. В. Громыко // Материалы 9й Международной научно-технической конференции «Приборостроение – 2016», Минск, 23 -25 ноября 2016, С.154 -155.

2. Будай А. Г. Восстановление пространственных характеристик слабонаправленных антенн по результатам измерения поля на сферической поверхности./ А. Г. Будай, А. П. Гринчук, А. В. Громыко // Материалы 5-ой Международной научно-практической конференции «Прикладные проблемы информатики, радиофизики и физики конденсированного состояния», Минск, 2019, С. 171-174.

3. Вуд. П. Анализ и проектирование зеркальных антенн / П. Вуд. – М. – 1984. – 208 с.