Степанов А. А., Смирнов А. Г.

ТОНКОПЛЕНОЧНЫЕ ТРАНЗИСТОРНЫЕ СТРУКТУРЫ НА OCHOBE INGAZNO

Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь

В работе представлены результаты исследования тонкопленочных транзисторных структур на основе полупроводникового соединения InGaZnO (IGZO), формируемого методом магнетронного плазмохимического осаждения. Исследованы их структурно-морфологические и электрофизические свойства. Полученные слои характеризуются высокой подвижностью носителей заряда и прозрачностью, что позволяет их использовать при изготовлении ЖК- и OLED – активно-матричных дисплеев нового поколения.

Введение

InGaZnO (IGZO) представляет собой аморфный прозрачный проводящий оксид n-типа. Интерес к получению и исследованию таких оксидов особенно возрос в последние годы с развитием так называемой «гибкой» электроники, поскольку IGZO является идеальным материалом по нескольким причинам, а именно его оптическим свойствам, аморфной природе и возможности формировать пленки низкотемпературными методами [1, 2].

IGZO-материал продемонстрировал многообещающие результаты в широком спектре применений, включая прозрачные тонкопленочные транзисторы (ТПТ). При этом тонкопленочные транзисторы представляют особый интерес, поскольку широко используются для активно-матричной адресации ЖК- и OLED — телевизоров, ноутбуков, смартфонов и др., в том числе на гибких носителях. Несмотря на то, что аморфный и поликристаллический кремний, а также разнообразные органические полупроводниковые материалы широко используются в таких устройствах в настоящее время, их недостатки хорошо известны и практически малоустранимы. Так, например, аморфный кремний (α-Si) непрозрачен в видимой области спектра, имеет малую подвижность носителей заряда и, следовательно, низкое быстродействие ТПТ, высокую фоточувствительность. Сравнительный анализ электрофизических свойств IGZO и других материалов, используемых при формировании ТПТ, приведен в таблице 1.

Таблица 1

Сравнение свойств InGaZnO и других материалов, используемых в качестве активного слоя в						ого слоя в ТПТ
	Материал	α-IGZO	α-Si	poly-Si	органические	ZnO
					полупроводники	
	Подвижность при полевом эффекте, см ² /В	3-35	0,5-1	30-300	0,1	20-50
	Температура формирования, °С	<200°C	~350°C	450°C	<150°C	~300°C
	Коэффициент пропус- кания, %	>80%	<20%	<20%	>80%	>80%
	Однородность на больших площадях	Хорошая	Хорошая	Плохая	Хорошая	Плохая
	Тип подложки	Стекло,	Стекло	Кварц	Стекло,	Стекло,
		пластик,			пластик	пластик
		бумага				

Как видно из таблицы 1, IGZO обладает комплексом преимуществ перед Si из-за высокой прозрачности, а также более низкими температурами осаждения на различные типы подложек, включая гибкие. Кроме того, это позволяет эффективно использовать технологию R2R (roll-to-roll, с рулона-на-рулон). Относительно более простой метод осаждения — распыление IGZO-мишени в газовой среде при варьировании параметров процесса позволяет прецизионно контролировать электрооптические свойства получаемого материала. Основное преимущество IGZO перед органическими полупроводниками — стабильность свойств и зна-

чительно более высокая подвижность носителей заряда при полевом эффекте [3, 4]. Таким образом, баланс требуемых свойств, присущих IGZO, делает его перспективным материалом оптоэлектроники, фотоники и дисплейной техники.

Изготовление тестовых структур

На стеклянных подложках размером 60,0x48,0x1,1 мм были сформированы массивы тонкоплёночных транзисторных тестовых структур, отличающихся толщиной активного слоя (IGZO), шириной и длиной затвора. На рисунке 1. представлен внешний вид таких ТПТ с различными значениями ширины канала w: w_1 =100 мкм; w_2 =200 мкм; w_3 =400 мкм; w_4 =600 мкм; w_5 =800 мкм.

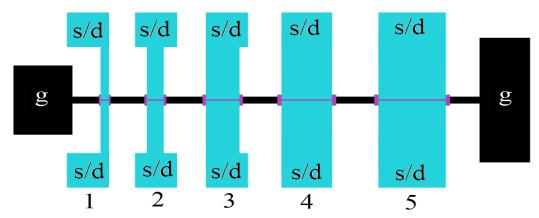


Рисунок 1 — Тестовая структура ТПТ (g-область затвора, s/d — область исток/стока) с ширинами каналов: w_1 =100 мкм; w_2 =200 мкм; w_3 =400 мкм; w_4 =600 мкм; w_5 =800 мкм.

Формирование тестовых структур происходило в несколько этапов: вначале на стеклянную подложку методом плазмохимического осаждения из газовой фазы (ПХО) наносили буферный слой Si_3N_4 толщиной 100 нм. Далее формировали затвор из Мо толщиной 200 нм методом магнетронного осаждения. Затворный диэлектрик SiO_2 толщиной 100 нм формировали ПХО методом. Активный слой IGZO с толщинами 75 и 150 нм нанесён магнетронным распылением при расходе Ar 50 sccm и O_2 10 sccm. Сток/истоковые области толщиной 200 нм получены методом магнетронного напыления. Пассивирующий слой SiO_2 толщиной 500 нм сформирован при помощи ПХО. Вскрытие контактных окон производили с помощью «сухого» реактивного ионного травления.

1. Экспериментальные результаты

На рисунке 2 представлены типичные вольт-амперные характеристики тестовых структур.

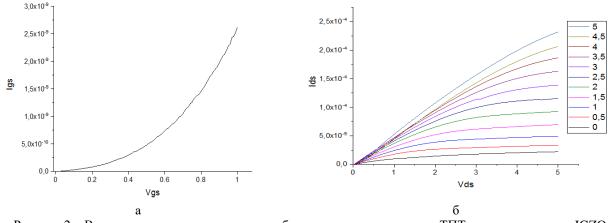


Рисунок 2 — Вольт-амперные характеристики образцов тестовых структур ТПТ с активным слоем IGZO: a — сток-затворная характеристика; б — стоковые характеристики при различных напряжениях на затворе.

Секция 4. Прикладные проблемы физики конденсированного состояния

Подвижность материала IGZO определяли при помощи четырёхзондового холловского метода на установке Ecopia Hall Effect Measurement Systems HMS-5000. Типичные значения подвижности носителей в активном слое для образцов тестовых структур ТПТ составляли $4-5~{\rm cm}^2/{\rm B}$ с.

Заключение

Методом магнетронного плазмохимического осаждения на стеклянную подложку полупроводникового соединения InGaZnO сформированы тонкопленочные транзисторные структуры. Экспериментально исследованы их BAX и основные электрофизические характеристики. Показана возможность существенного улучшения достигнутых параметров за счет оптимизации технологии формирования исследуемых структур.

Благодарность

Работа выполнена в рамках задания 1.4 ГНПИ «Материаловедение, новые материалы и технологии». Выражаем также благодарность сотрудникам ОАО "ИНТЕГРАЛ" за предоставленную возможность использования контрольно-измерительного оборудования при исследовании ВАХ тестовых образцов.

Список литературы

- 1. Hosono H., et al. Transparent Amorphous Oxide Semiconductors for High Performance TIIT, SID'07, Dig., 2007. pp.1830.
- 2. Nomura K., et al. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors. Applied Physics Letters, 95, 013502, 2009.
- 3. Suresh A. and Muth J. F. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters, 92(3):033502, 2008.
- 4. Kamiya T., Nomura K., and Hosono H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials. Vol. 11, no. 4, Aug. 2010. P. 044305.