УДК 539.216.2; 535.37

<u>Живулько В. Д.¹</u>, Мудрый А. В.¹, Бородавченко О. М.¹, Павловский В. П.², Луценко Е. В.², Яблонский Г. П.², Якушев М. В.³

ОПТОЭЛЕКТРОННЫЕ СВОЙСТВА ПОГЛОЩАЮЩИХ СЛОЕВ Cu2ZnSnSe4 СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

¹Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь ²Институт физики им. Б. И. Степанова НАН Беларуси, Минск, Беларусь ³Институт физики металлов им. М. Н. Михеева УрО РАН, Екатеринбург, Россия

Исследована зависимость спектров фотолюминесценции тонких поликристаллических пленок прямозонных полупроводников Cu₂ZnSnSe₄ от температуры в диапазоне 4,2 – 78 К и плотности мощности непрерывного лазерного возбуждения на длине волны 532 нм (0,06 – 4 Вт/см²) и импульсного на длине волны 337,1 нм (1,4 – 17,4 кВт/см²). Обсуждаются механизмы излучательной рекомбинации неравновесных носителей заряда в пленках соединений Cu₂ZnSnSe₄ со структурой кестерита.

Поликристаллические тонкие пленки Cu₂ZnSnSe₄ (CZTSe) со структурой кестерита являются перспективным и востребованным полупроводниковым материалом для создания солнечных элементов [1]. В настоящее время достигнутый коэффициент полезного действия (к.п.д.) солнечных элементов, созданных на основе соединения CZTSe, составляет ~ 12,6 % [1]. Дальнейшее увеличение к.п.д. солнечных элементов может быть достигнуто при достоверном определении механизмов излучательной рекомбинации в этих прямозонных полупроводниках [2,3]. В настоящей работе приведены новые данные по определению оптических характеристик соединения CZTSe с использованием фотолюминесценции.

Исследования проводились на пленках CZTSe с толщиной ~ 2 мкм, сформированных на натрийсодержащих стеклянных подложках с предварительно осажденным контактным слоем Мо. Тонкие пленки CZTSe формировались с использованием метода магнетронного распыления металлических прекурсоров (Cu, Zn, Sn) и селенизации их наноразмерных слоев в диапазоне температур 300 – 550 °C [2]. Элементный состав тонких пленок CZTSe, определенный методом рентгеноспектрального локального микроанализа с энергетической дисперсией, показал дефицит меди по отношению к суммарному содержанию Zn и Sn на уровне [Cu]/([Zn]+[Sn]) ~ 0,83. Избыток цинка составил [Zn]/[Sn] ~ 1,17, а соотношение селена с металлами – [Se]/([Cu]+[Zn]+[Sn]) ~ 0,99. Измерение спектров фотолюминесценции (ФЛ) проводилось в диапазоне температур ~ 4,2 – 78 К по методикам, описанным ранее [4,5].

На рисунках 1a и 1b приведены ненормированные и нормированные спектры $\Phi \Pi$, соответственно, зарегистрированные при температуре жидкого гелия Т ~ 4,2 К при возбуждении лазерным излучением на длине волны ~ 532 нм в диапазоне плотностей мощности возбуждения ~ 0.06 - 4 Bt/cm². Как видно, в спектрах ФЛ присутствует широкая полоса, которая смещается в область высоких энергий с 0,886 эВ до 0,923 эВ, ее интенсивность увеличивается, и полуширина уменьшается с 95 мэВ до 90 мэВ с повышением плотности мощности возбуждения, рисунок 1а. При этом низкоэнергетический контур полосы становится более пологим, а высокоэнергетический практически не изменяется, рисунок 16. Такие оптические характеристики полосы позволяют отнести ее к излучательной рекомбинации электронов из зоны проводимости в «хвосты» акцепторных состояний вблизи валентной зоны [2]. Эксперименты показали, что зависимость интенсивности полосы близкраевой фотолюминесценции от плотности мощности лазерного излучения описывается выражением $I = P^k$, где коэффициент $k \approx 1,0$. Коэффициент *j*-shift, характеризующий высокоэнергетическое смещение полосы при изменении плотности мощности возбуждения на порядок лазерного излучения, составил $j \approx 15$ мэВ, что указывает на сильное влияние флуктуаций потенциала в кристаллической решетке CZTSe на энергетические уровни дефектов структуры, ответственных за появление

1 – 4,0 Вт/см²; 2 – 1,59 Вт/см²; 3 – 0,62 Вт/см²; 4 – 0,23 Вт/см²; 5 – 0,06 Вт/см² Рисунок 1 – Зависимость спектров фотолюминесценции тонкой пленки Cu₂ZnSnSe₄ от плотности мощности лазерного излучения

в спектрах полосы ФЛ. Такой механизм излучательной рекомбинации характерен для сильно легированных и сильно компенсированных прямозонных полупроводников *p*-типа проводимости [6]. Образование высокой концентрации собственных дефектов структуры акцепторного и донорного типа обусловлено отклонением состава соединения CZTSe от идеальной стехиометрии при осаждении тонких пленок.

На рисунке 2*а* приведены полоса ФЛ и подгоночная кривая обработки ее контура по формулам, приведенным в Таблице 1 [3,5,6]. Данные Таблицы указывают на изменение численных значений коэффициентов γ_1 , γ_2 и γ при увеличении плотности мощности непрерывного лазерного излучения и перераспределении каналов излучательной рекомбинации носителей заряда. На рисунке 2*б* приведены спектры ФЛ, зарегистрированные при возбуждении импульсным лазером с длиной волны ~ 337 нм в диапазоне плотности мощности ~ 1,4 –17,4 кВт/см² (длительность импульса $\tau_{имп} = 8$ нс, частота повторения импульсов f = 525 Гц). При плотности мощности 1,4 кВт/см² спектральное положение полосы ФЛ составляет ~ 0,925 эВ, а при 17,4 кВт/см² ~ 0,914 эВ.

1 – 1,4 кВт/см²; 2 – 2,9 кВт/см²; 3 – 5,8 кВт/см²; 4 – 11,6 кВт/см²; 5 – 17,4 кВт/см² Рисунок 2 – Спектр фотолюминесценции и математическая обработка его контура для пленки Cu₂ZnSnSe₄ при плотности мощности возбуждения 4 Вт/см² (а). Зависимость спектров фотолюминесценции от плотности мощности при возбуждении импульсным лазером 337 нм (б)

Секция 4. Прикладные проблемы физики конденсированного состояния

Р, Вт/см ²	$I(hv) \approx A \left[1 + exp\left(-\frac{(hv - E_1)}{\gamma_1}\right) \right]^{-1} * \left(1 - \left[1 + exp\left(-\frac{(hv - E_2)}{\gamma_2}\right)\right]^{-1} \right)$		$I(hv) \approx exp\left[-rac{(hv-E_0)^2}{2\gamma^2} ight]$
	<i>ү</i> 1, мэВ	γ2, мэВ	γ, мэВ
4,0	$26 \pm 0,1$	$11 \pm 0,1$	$56 \pm 0,2$
1,59	$26 \pm 0,1$	$11 \pm 0,1$	$56 \pm 0,2$
0,62	$25\pm0,1$	$11 \pm 0,1$	55 ±0,2
0,23	$24\pm0,1$	$12 \pm 0,1$	$53 \pm 0,2$
0,06	$22 \pm 0,3$	$12 \pm 0,2$	$48\pm0,4$

Таблица 1 – Параметры γ_1 и γ_2 , характеризующие наклоны низкоэнергетического и высокоэнергетического контуров полосы фотолюминесценции, соответственно. Параметр γ характеризует среднюю глубину флуктуаций потенциала при различных уровнях лазерного возбуждения в соответствии с формулами [3,5,6].

Эти данные указывают на то, что не только флуктуации потенциала «хвостов» энергетических зон или локализованных энергетических уровней играют определяющую роль, но и уровень возбуждения значительно изменяет механизмы излучательной рекомбинации даже при криогенных температурах в соответствии с теорией [6], в отличие от данных работы [3]. Наиболее важным результатом данной работы является обнаружение высокоэнергетической полосы ~ 1,03 эВ, относящейся к близкраевой межзонной излучательной рекомбинации, при импульсном лазерном излучении, рисунок 26. Это указывает на возможность определения ширины запрещенной зоны E_g тонких пленок CZTSe в широком диапазоне температур ~ 4,2 – 300 K с использованием более интенсивного импульсного лазерного излучения.

Работа выполнена по проекту ГПНИ «Материаловедение, новые материалы и технологии», подпрограмма «Физика конденсированного состояния и создание новых функциональных материалов и технологий их получения», задание 1.4.4.

Список литературы

1. Solar cell efficiency tables (version 57) / M. Green [et al.] // Prog. Photovolt: Res. Appl. – 2020. – Vol. 29, Iss. 1. – P. 3–15.

2. Radiative recombination in Cu2ZnSnSe4 thin films with Cu deficiency and Zn excess / M. V. Yakushev [et al.] // J. Phys. D: Appl. Phys. – 2016. – Vol.48. – P. 475109-1–475109-7.

3. Photoluminescence studies in epitaxial CSTSe thin films / J. Sendler [et al.] // J. Appl. Phys. – 2016. – Vol. 120. – P. 125701-1–125701-7.

4. Photoluminescence, stimulated and laser emission in CuInSe2 crystals / I. E. Svitsiankou [et al.] // Appl. Phys. Lett. – 2021. – Vol. 118. – P. 212103-1–212103-5.

5. Radiative recombination at ion-induced defects in Cu(In,Ga)Se2 alloy thin films / O. M. Borodavchenko // Semiconductors. -2021. - Vol. 55, No. 2. -P. 168-174.

6. Леванюк, А. П. Краевая люминесценция прямозонных полупроводников / А. П. Леванюк, В. В. Осипов // УФН. – 1981. – Том 133, Вып. 3. – С. 427–477.