- 12. Grundmann, M. The physics of semiconductors. an introduction including nanophysics and applications / M. Grundmann. Cham: Springer, 2021. xxxviii+890 p.
- Поклонский, Н.А. Статистическая физика полупроводников / Н.А. Поклонский, С.А. Вырко, С.Л. Поденок. – М.: КомКнига, 2005. – 264 с.
- Shockley, W. Electrons and holes in semiconductors: with applications to transistor electronics / W. Shockley. – New York: R.E. Krieger Pub. Co., 1976. – xxiv+558 p.
- Marshak, A.H. On the inappropriate use of the intrinsic level as a measure of the electrostatic potential in semiconductor devices / A.H. Marshak // IEEE Electron. Dev. Lett. – 1985. – Vol. 6, № 3. – P. 128–129.
- Duschl, R. Epitaxially grown Si/SiGe interband tunneling diodes with high room-temperature peakto-valley ratio / R. Duschl, O.G. Schmidt, K. Eberl // Appl. Phys. Lett. – 2000. – Vol. 76, № 7. – P. 879–881.
- 17. Franks, V.M. An alloy process for making high current density silicon tunnel diode junctions / V.M. Franks, K.F. Hulme, J.R. Morgan // Solid State Electron. 1965. Vol. 8, № 3. P. 343–344.

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ БАРЬЕРНЫХ СТРУКТУР SiC/Si И Pt₂Si/SiC/Si

Н. В. Полонский, М. В. Лобанок, П. И. Гайдук

Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, e-mail: Palonski.Mikita@yandex.by

Проведены сравнительные исследования вольт-амперных характеристик барьерных структур Pt₂Si/SiC/Si и SiC/n-Si, изготовленныхна высокоомном кремнии *n*-типа проводимости методом молекулярно-лучевой эпитаксии с последующими операциями осаждения слоев платины, термического отжига и формирования контактов. Получены обратные токи ~ 1.5×10^{-7} A и ~ 1.5×10^{-5} A соответственно для структур Pt₂Si/SiC/Si и SiC/n-Si. Из температурных зависимостей обратного тока определены значения величин потенциального барьера и барьера Шоттки в структурах SiC/Si и Pt₂Si/SiC/Si, которые составили 0.35 эВ и 0.685 эВ соответственно.

Ключевые слова: тонкие пленки; барьерные структуры, SiC/n-Si, Pt₂Si/SiC/Si, вольт-амперные характеристики, энергия активации.

COMPARATIVE STUDY OF BARRIER STRUCTURES SiC/Si AND Pt₂Si/SiC/Si

M. V. Palonski, M. V. Lobanok, P. I. Gaiduk

Department of Physical electronics and nanotechnology, Belarusian State University, Belarus Corresponding author: M. V. Palonski (Palonski.Mikita@yandex.by)

A comparative study of the current-voltage characteristics of Pt₂Si/SiC/Si and SiC/*n*-Si barrier structures fabricated on high-resistance *n*-type conductivity silicon by molecular beam epitaxial with subsequent operations of platinum layer deposition, thermal annealing and contact formation was performed. The reverse currents $\sim 1.5 \times 10^{-7}$ A and $\sim 1.5 \times 10^{-5}$ A were obtained for the Pt₂Si/SiC/Si and SiC/*n*-Si structures, respectively. The potential barrier and Schottky barrier values in the SiC/Si and Pt₂Si/SiC/Si structures, which were

0.35 eV and 0.685 eV, respectively, were determined from the temperature dependences of the reverse current.

Key words: thin films; barrier structures; SiC/n-Si; Pt₂Si/SiC/Si; current-voltage characteristics; activation energy.

введение

Гетероструктуры SiC/Si перспективны для изготовления высоковольтных полупроводниковых приборов, обладающих повышенной температурной, химической и радиационной стойкостью [1]. В частности, вертикальные диодные структуры SiC/Si можно использовать в качестве силовых выпрямляющих диодов, газовых датчиков в агрессивных средах и МЭМС-структурах [2–4]. Важным условием функционирования диодных структур на основе SiC является создание надежных контактов. Особый интерес вызывают барьерные контактыШоттки к слоям SiC на основе силицидов платины, которые вместе с хорошими выпрямляющими свойствами способны выдерживать жесткие условия эксплуатации [5]. В вертикальной диодной конфигурации барьер силицид/SiC включен последовательно с гетероструктурой SiC/Si, которая также может быть барьерной. Так, в работе [6] сообщалось, что гетеропереход SiC/n-Si является невыпрямляющим. В то же время в работе [7] авторы при исследовании вольт-амперных характеристик (BAX) структур SiC/n-Si сообщали о выпрямляющих свойствах. Поэтому для разработки вертикальных диодных структур на основе силицид/SiC/Si необходима информация об электрофизических свойствах не только структуры силицид/SiC, но и гетероперехода SiC/Si. В настоящем сообщении приведены результаты сравнительных исследований ВАХ структур SiC/Si и Pt₂Si/SiC/Si.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве исходных подложек использованы высокоомные пластины кремния птипа проводимости с ориентацией поверхности вдоль (111). Структура SiC/Si выращивалась методом молекулярно-лучевой эпитаксии. Толщина слоев SiC составляла 100 нм. Легирование *n*-типа проводимости слоев SiC определялось термозондом. Затем исходная структура разделялись на два образца. Все образцы перед нанесением металлов очищались в пятипроцентном растворе плавиковой кислоты.

На лицевую сторону (поверхность SiC) первого образца наносились слои Pt толщиной 23 нм. После этого проводился отжиг при 350 °C в инертной среде в течение 10 минут. Следующим этапом на лицевой стороне формировались контакты методом фотолитографии и селективного травления в растворе HF:HNO₃в пропорции 1:3. На заключительном этапе, на обратной стороне (поверхность Si) первого образца наносилась галлий-алюминиевая паста.

Для исследования электрофизических характеристик гетероперехода SiC/n-Si, на тыльную и обратную сторону второго образца наносились слои Al толщиной 30 нм. Следующем шагом проводился отжиг при 350 °C в окисляющей среде (O₂) в течение 10 минут. Затем формировались контакты методом фотолитографии и селективного травления в растворе HNO₃:H₂O:H₃PO₄ в пропорции 1:5:20.

Для измерений ВАХ при различных температурах прибор ИППП-1 был снабжен системой подогрева элементом Пельтье до температуры 100 °C.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рисунок 1. BAX структур Pt₂Si/SiC/Si и SiC/Si

Рисунок 2. Типичная ВАХ структур Pt₂Si/SiC/Si при различных температурах измерения. Вставка показывает зависимость обратного тока, деленного на температуру в квадрате, от температуры

На рис. 1 представле-BAX структур ны Pt₂Si/SiC/Si и SiC/n-Si, измеренные при комнатной температуре. Видно, что кривые ВАХ выпрямляющие для обоих типов структур. Данное поведение кривых устанавливает, что в структуре Pt₂Si/SiC/Si И SiC/n-Si есть область пространственного заряда. Можно также заметить, что значения обратных токов у структуры Pt₂SiC/SiC/Si приблизительно на два порядка меньше, чем у SiC/n-Si. Для более детального исследования потенциального барьера и барьера Шоттки, анализировались энергии активации обеих структур.

На рис. 2, 3 показаны типичные значение ВАХ структур $Pt_2Si/SiC/Si$ и SiC/n-Si при температурах от 18 до 70 °С. Линейные участки ВАХ были аппроксимированы с помощью формулы Родерика [8].

Температурные зависимости величин обратного тока (I) и параметра (I/T^2) (рис. 2, 3) демонстрируют существенные различия величины энергии активации обоих типов структур.

В случае Pt₂Si/SiC/Si величина энергии активации равняется высоте барьера Шоттки. В случае SiC/n-Si, значение энергии активации характеризует величину потенциального барьера на стороне Si. Из сравнительного анализа реизмерения зультатов параметров барьера Шоттки и потенциального барьера можно сделать вывод, что влияние барьера Шоттки на ВАХ структуры Pt₂Si/SiC/Si является преобладающим, тогда как вклад потенциального барьера контакта SiC/*n*-Si незначителен.

Рисунок 3. Типичная ВАХ гетероперехода SiC/n-Si при различных температурах измерения. Вставка показывает зависимость обратного тока от температуры

ЗАКЛЮЧЕНИЕ

Сформированы структуры Pt₂Si/SiC/Si и SiC/n-Si. Результаты вольт-амперных характеристик указывают на выпрямляющие свойства в сформированных структурах. В результате измерений структуры Pt₂Si/SiC/Si и SiC/Si Обратные токи при комнатной температуре у структур Pt₂Si/SiC/Si и SiC/n-Si были получены ~ 1.5×10^{-7} A и ~ 1.5×10^{-5} A соответственно. На основании температурной зависимости токов насыщения структур Pt₂Si/SiC/Si и SiC/Si были рассчитаны энергии активации. В случае Pt₂Si/SiC/Si значение энергии активации составляла ~0.685 эВ соответствующей барьеру Шоттки. Для структуры SiC/Si значение энергия активации составляла ~0.35 эВ, что соответствовало величине потенциального барьера на стороне Si.

БЛАГОДАРНОСТИ

Исследования выполнены в рамках проекта T22-030 Белорусского республиканского фонда фундаментальных исследований (№ ГР 20221052), а также, частично, проекта государственной программы научных исследований Фотоника и электроника для инноваций (проект 3.1.2, № ГР 20212702).

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail/ G. Ferro // Critical Reviews in Solid State and Materials Sciences. 2015. №76. p. 40-56.
- Chung, G.S. Electrical characterization of Au/3C-SiC/n-Si/Al Schottky junction / G.S.Chung, K.S.Kim, F.Yakuphanoglu// Journal of Alloys and Compounds. – 2010. – vol.507. – p.508-512.
- Bourenane, K. Electrical properties of Schottky diode Pt/SiC and Pt/porous SiC performed on highly resistive p-type 6H-SiC / K. Bourenane, A. Keffous, G. Nezza. //Vacuum. - vol. 81. - № 5. -p. 663-668.
- Shenoy, P.Vertical Schottky Barrier Diodes on 3C-SiC Grown on Si / P.Shenoy, A.Moki, B. J.Baliga, D.Alok, K.Wongchotigul, M.Spencer //IEEE International Elecctr on Devices Meeting. – 1994. – p.

- Shenai, K. Optimum semiconductors for high-power electronics / K. Shenai, R. S. Scott, B. J.Baliga//IEEE Transactions on Electron Devices. - №36 – vol.9– p 1811-1823.
- 6. Carrier transport mechanisms of p-SiC/n-Si hetero-junctions/ Su J. [el al.] // Solid State Sciences . 2014. V.13. p. 434-437
- 7. Effects of interface state charges on the electrical properties of Si/SiC heterojunctions / Liang J. [et al.] // Appl. Phys. Lett. 2014. V. 105, № 151607. —p.1—3.
- 8. Rhoderick E.H., Williams R.H. Metal-Semiconductor Contacts. Oxford: Clarendon Press. 1988.

ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРНЫХ СТРУКТУР НА ОСНОВЕ НАНОМЕТРОВЫХ ПОЛИКРИСТАЛЛИЧЕСКИХ СЛОЕВ SiGe ПОСЛЕ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ ОБРАБОТКИ

С. Л. Прокопьев, В. А. Зайков

Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, e-mail: prokopyev@bsu.by

Методами измерения вольтамперных характеристик обнаружено, что после воздействия импульсов длительностью 80 нс лазерного излучения на длине волны 0,69 мкм с плотностью энергии 0,82–1,4 Дж/см² на поликристаллические слои Si/SiGe толщиной 230–270 нм, наблюдается увеличение силы прямого тока в указанных слоях.

Ключевые слова: поликристаллические слои Si/SiGe; импульсное лазерное облучение; вольтамперные характеристики; барьерная структура.

ELECTROPHYSICAL CHARACTERISTICS OF POLY-SIGE BASED DEVICE STRUCTURES AFTER PULSED LASER IRRADIATION

S. L. Prakopyeu, V. A. Zaikov

Belarusian State University, Nezavisimosti av. 4, 220030 Minsk, Belarus Corresponding author: S. L. Prakopyeu (prokopyev@bsu.by)

Using methods of current-voltage characteristics measurement, it was found the current increase in the polycrystalline 200–300 nm thick SiGe layers after pulsed laser irradiation (80 ns pulse duration at a wavelength of 0.69 μ m) and an energy density of 0.82–1.4 J/cm².

Key words: polycrystalline Si/SiGe layers; pulsed laser annealing; current-voltage characteristics, barrier structure.

введение

Разработка полупроводниковых приборных структур для применения в качестве фотоприемных структур в ИК-области является актуальной в настоящее время [1]. В частности, ведется поиск новых подходов к формированию таких структур на основе элементов IV группы [2]. С другой стороны отметим, что импульсное воздействие на полупроводниковые структуры используется для контролируемого изменения их электрофизических свойств [3]. В данной работе представлены результаты электрофизических исследований воздействия наносекундного лазерного излучения на поликристаллические слои SiGe.