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Abstract
A priority queueing model with many types of requests and restricted processor sharing is considered. A novel discipline 
of requests admission and service is proposed. This discipline assumes restriction of the bandwidth (capacity) of the server 
and the number of requests that can receive service in the system at the same time. This discipline is some kind of realistic 
hybrid of the traditional discipline of service in a multi-server system and the discipline of the limited processor sharing. 
The requests of the highest priority can push out from the service the low priority requests. Therefore, the important problem 
is fitting of the number of requests that can receive service at the same time to the bandwidth of the server. This problem 
is solved via construction and analysis of a multi-dimensional Markov chain describing operation of the system under any 
fixed set of the system parameters.

Keywords Multi-server priority queueing model · Marked Markov arrival process · Processor sharing · Multi-dimensional 
Markov chains

1 Introduction

Queueing theory is a widely acknowledged mathematical 
tool for optimal solution of the task of a restricted resource 
distribution among the competing requests of users. The sim-
plest models assume that service to customers is provided 

in a certain order sequentially, one-by-one. More general 
models suggest a possibility of some kind of resource shar-
ing and simultaneous service of several requests at the same 
time. The two most popular disciplines for managing the 
simultaneous service of several requests are as follows: A—
Resource is divided into several parts (called as servers) and 
each request receiving service uses the assigned to him/her 
server. The service times of requests are independent. We 
call the system with such a discipline as a multi-server sys-
tem; B—Resource is jointly used by all requests and the ser-
vice rate is in inverse ratio to the number of requests receiv-
ing service. This discipline is called as processor sharing 
(PS). For surveys of the research related with this discipline 
and some its generalizations, see (Yashkov 1987; Yashkov 
and Yashkova 2007; Altman et al. 2006).

The overwhelming major ity of the existing 
research, starting from the pioneering works by A.K. 
Erlang, assumes discipline A. Queueing models of 
GI∕PH∕N∕K, BMAP∕PH∕N∕K types (in D.G. Kendall’s 
notation) with infinite or finite buffers, losses, retrials and 
their partial cases are investigated in enough full extend, 
especially in the case when service time has an exponential 
distribution. The models with an arbitrary (G) distribution 
of the service time are investigated only approximately or 
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asymptotically. In particular, certain bounds are obtained for 
some performance characteristics.

An advantage of the discipline A is relative easiness of its 
practical realization. E.g., in a call center, several operators 
can provide service to users using the separate workstations 
and communication channels. In information transmission 
systems, the physical resource, e.g., bandwidth of the chan-
nels, can be divided (using various technical schemes like 
frequency division, time division, code division multiplex-
ing, etc.) into logical channels (servers) each of which is 
assigned to service of a separate request. The evident disad-
vantage of discipline A is possible under-utilization of the 
resource. Situations occur when only a few logical channels 
are busy, while the rest are staying idle.

The PS discipline is free from this disadvantage. The 
resource (let us call it further as the bandwidth) is always 
fully used if there are requests for service. However, the 
essential two disadvantages of PS discipline, besides more 
difficult technical implementation related to the necessity of 
dynamic redistribution of the bandwidth, in many concrete 
applications are as follows: 

 (i) situations are possible when currently presenting in 
the system requests do not need in total the whole 
bandwidth. E.g., if five presenting users need trans-
mission of their information at rate 10 megabits per 
second (Mbps), they do not need to fully share the 
available bandwidth of 100 Mbps channel. They will 
use in total only 50 Mbps;

 (ii) there may exist some minimal requirement of the 
user to the bandwidth assigned to him/her. E.g., 
the users may require the bandwidth for video on-
demand transmission of HD content an MPEG2 
transport stream as 12 Mbps and do not agree to use 
the smaller bandwidth due to poor quality of service. 
Therefore, the number of simultaneously serviced 
users in 100 Mbps channel must be less than 9. Thus, 
the pure PS discipline that assumes that all arriving 
requests are accepted for service is not applicable for 
modeling the considered transmission process.

As a tool to overcome the disadvantage (ii), the discipline 
of limited PS (LPS) was offered in the literature. This dis-
cipline suggests that the number of users, which simultane-
ously use the bandwidth, is limited by some finite number, 
say N. This number is called sometimes as a multiprogram-
ming level, see, e.g., (Nair et al. 2010), or concurrency limit, 
see, e.g., (Gupta and Zhang 2022). For relevant references, 
see also, e.g., (Alencar et al. 2021; Telek and Van Houdt 
2018; Samouylov et al. 2016; Dudin et al. 2017; Masuyama 
and Takine 2003; Dudin et al. 2021; Ghosh and Banik 2017; 
Bocharov et al. 2007; Brugno et al. 2017, 2018; D’Arienzo 
et al. 2020; Kim et al. 2019).

Contributions of our paper consist of the following.

• We propose a new, hybrid, discipline called as a restricted 
processor sharing. This discipline combines the positive 
features of disciplines A and B. As in both, A and LPS, 
disciplines, we suppose that the maximum number of 
requests that can receive the service at the same time is 
an integer number N, N < ∞. In A discipline, N cor-
responds to the number of servers. In LPS discipline, 
N corresponds to the concurrency limit. If an arriving 
request meets N requests in service, in this paper we 
assume that it is lost. The variants when such a request 
is queued into the infinite or finite buffer or will make 
the retrials are left for the future research based on the 
results of presented below analysis of the system with 
loss of requests. The derived expressions of the blocks 
of the generator of the multidimensional Markov chain 
describing behavior of the system can be used as the 
bricks for derivation of the form of the generator of the 
Markov chain that describes the dynamics of the system 
with buffers and retrials. The hybrid discipline assumes 
that a required amount of work (amount of information) 
and a required (nominal) rate of service are associated 
with each request. The total rate of service of all requests 
staying in the system is restricted by the parameter B 
called the bandwidth of the server. If the sum of nominal 
service rates of all requests staying in the system does 
not exceed the bandwidth, all requests receive service 
independently of each other with the nominal rate, as 
in discipline A. If the sum of nominal service rates of 
requests staying in the system exceeds the bandwidth, 
all requests receive service at the proportionally reduced 
rate, as in discipline LPS.

• We suggest that the requests are heterogeneous in respect 
to their importance and the required bandwidth and the 
nominal service. There is a finite number M types of 
requests. Different types of requests have different pri-
orities. One of the types of requests has a preemptive 
priority over requests of other types. Arrival of such a 
request when the number of requests obtaining service 
is equal to N implies the loss of one of the requests hav-
ing the lowest priority among presenting in the system, 
if any. To reduce probability of interruption of service of 
low priority requests, they are not accepted to the system 
when the number of requests receiving service is less 
than N but exceeds a certain threshold value. The con-
sidered model can have a wide field of applications. The 
particular case when there are only two types of requests 
well fits for modelling the system of cognitive radio. 
Type-1 requests are sent by the primary (licensed) users. 
Type-2 requests are sent by the cognitive (secondary) 
users. It is worth to note that the existing in the literature 
models, see, e.g., (El-Toukhy and Arslan 2019; Goel and 
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Kulshrestha 2022; Sun et al. 2014b, a; Lee et al. 2022), 
of cognitive radio systems are the special cases of our 
model with M = 2 and absence of possibility of service 
of requests with the reduced rate.

• While the overwhelming majority of more or less rel-
evant papers assume that flows of the requests are defined 
as the stationary Poisson arrival process, here we assume 
that the arriving heterogeneous flow is described by the 
Marked Markovian Arrival Process (MMAP) (see, e.g. 
(He 1996)). This allows to adequately account bursty 
nature (high variability and dependence of consecu-
tive inter-arrival times) which is the inherent feature of 
information flows in various modern telecommunica-
tion network, contact centers, etc, see, e.g., (Chen et al. 
2022) where the information about the real flows traces 
is presented. It is worth noting that the use of stationary 
Poisson arrival process as a model of real-life process 
usually implies too optimistic estimates of the system 
performance indicators.

The reminder of the paper is as follows. In Sect. 2, the con-
sidered mathematical model is described. The Markovian 
process describing behavior of the model under study is 
defined and analysed in Sect. 3. Expressions for computa-
tion the basic performance indicators of the system are given 
in Sect. 4. In Sect. 5, an numerical example is presented. 
Section 6 contains brief conclusion of the paper.

2  Mathematical model

We consider a queuing system with a restricted processor 
sharing discipline. The scheme of the system is shown in 
Fig. 1.

Incoming to the system requests are divided into M types. 
The arrival of requests is described by the MMAP, see (He 
1996). Arrival can occur only at the epochs of transitions of 
underlying Markov process denoted by vt, t ≥ 0. This pro-
cess is a continuous-time Markov chain having a finite state 
space {1,… ,W}. The rates of transitions of this Markov 
chain are determined by the irreducible generator D. The 
matrix D is split into M + 1 matrix summands Dr, m = 0,M ∶ 

D =
M∑

m=0

Dm. Elements of the matrix Dm determine the rates 

of transitions of the Markov chain vt, which are accompanied 

by the generation of the type m request, m = 1,M. Non-
diagonal entries in the matrix D0 determine the rate of transi-
tions of the Markov chain vt , which are not accompanied by 
the generation of a request. The modules of the negative 
diagonal elements of the matrix D0 determine the rate of the 
exit of the Markov chain vt from the corresponding states.

The mean intensity �m, m = 1,M, of arrival of requests 
of type m is given by �m = �Dm�, where � is a row vector of 
invariant probabilities of the process vt. This vector is 
defined as the unique solution of the system of linear alge-
braic equations �D = � with the normalization condition 
�� = 1. Here � is a column vector of a proper size, consisting 
of 1s, and � is a row vector consisting of 0s. The notation 
m = 1,M means that the parameter m admits values 1,… ,M. 

The total intensity of requests � is defined as � =
M∑

m=1

�m.

We interpret the service of requests as the transfer of a 
certain amount of information. The bandwidth of the server 
defined as the maximum number of megabits that can be 
transmitted per unit of time is denoted as B. We assume 
that the bandwidth of the server is used by all requests. 
The maximum possible number of simultaneously served 
requests is limited by the parameter N. It is assumed that 
the amount of information to be transmitted to serve a single 
request of type m has an exponential distribution with rate 
�m, m = 1,M. The value of �−1

m
 represents the average data 

volume of a request of type m, m = 1,M. We assume that 
requests of different types require the different service inten-
sity. Denote by 𝛽m the bitrate desired for requests of type m 
(nominal bitrate). Therefore, the nominal service time of 
a request of type m is (𝛽m𝛼m)−1. Accordingly, the nominal 
service intensity �m of a request of type m is calculated as 
𝛽m = 𝛽m𝛼m, m = 1,M. The desired bitrate (nominal service 
intensity) is provided to any request when there is no short-
age of bandwidth of the server, i.e. the sum of the desired 
bitrates of all requests, which receive service, does not 
exceed the bandwidth of the server. Otherwise, the bitrates 
provided to all requests are correspondingly reduced.

We assume that requests have different priorities. 
Requests of the first type have the highest priority, ..., 
requests of the type M have the lowest priority. This means 
the following. First of all, we will assume that requests of 
type m, m = 2,M, are not accepted into the system if the 
number of already serviced requests is equal to or exceeds 
the parameter N1. This means that N − N1 places are reserved 
specifically for servicing requests of the first type. If a type 
1 request arrives when the number of requests receiving ser-
vice is equal to N or the request of type m, m = 2,M, arrives 
when the number of requests receiving service is not less 
than N1 and there are requests with a lower priority on the 
service, then the arriving request displaces one of the ser-
viced requests with the lowest priority and starts the service. 
The displaced request is lost.Fig. 1  System structure
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3  The process describing dynamics 
of the system

Let nt, nt = 0,N, be the number of requests on service, and 
s
(m)
t  be the number of requests of type m receiving service at 

moment t such as s(m)t = 0, nt,
M∑

m=1

s
(m)
t = nt. Because the 

bandwidth sharing discipline is applied, the actual service 
intensity of the request is equal to its nominal service rate 
only if the used at time t bandwidth, which is defined as 
M∑
k=1

s
(k)
t 𝛽k, is less than the bandwidth B of the server. Other-

wise, the service rate of type m request is cut and equals to 
B

M∑
k=1

s
(k)
t 𝛽k

𝛽m, m = 1,M.

It is obvious that the (M + 2)-dimensional random process

where

completely describes the behavior of the considered queu-
ing system and is a regular continuous-time Markov chain.

Since this Markov chain is irreducible and has a finite 
state space, it is known that the limits

exist for any values of the system parameters. They are 
called as the stationary probabilities of the system states or 
steady-state probabilities.

To simplify analysis of the multi-dimensional Markov 
chain, it is useful to combine the set of states of the process 
�t having the value n of the component nt, into so called 
level n, n = 0,N. For certainty, we number the states, which 
belong to the level n, in the lexicographic order of the com-
ponent vt and the reverse lexicographic order of the com-
ponents of the M-dimensional process �t = (s

(1)
t ,… , s

(M)
t ).

In accordance with this enumeration, we combine the 
stationary probabilities of the states that belong to the level 
n into the row vectors �n, n = 0,N. These vectors satisfy 
the system of linear algebraic equations (balance equations)

where A is the infinitesimal generator of the Markov chain 
�t and the normalization condition:

�t = {nt, vt, s
(1)
t ,… , s

(M)
t }, t ≥ 0,

nt = 0,N, vt = 1,W, s
(m)
t = 0, nt,

M∑
m=1

s
(m)
t = nt,

p(n, v, s(1),… , s(M)) =

lim
t→∞

P{nt = n, vt = v, s
(1)
t = s(1),… , s

(M)
t = s(M)}

(1)(�0, �1,… , �N)A = �,

(�0, �1,… , �N)� = 1.

For solving this system, it is necessary to obtain the genera-
tor A. On this way, the most difficult particular problem is to 
describe the transition intensities of the components of the 
M-dimensional process �t which determines the current num-
ber of each type requests in the system. To compute these 
intensities, first we need to formally define the process of a 
request service when the system is not overcrowded and the 
request permanently receives the nominal required service 
rate. Analyzing various scenarios, one can make sure that 
service time of such a request has so-called the generalized 
phase-type (GPH) distribution, see (Dudin et al. 2016). Such 
a distribution is the generalization of the well-known in the 
literature phase-type distribution (see (Neuts 1981)) to the 
case of service of heterogeneous requests. The basic idea of 
the GPH distribution is to avoid the monitoring of the type 
of each request during its service. It is achieved via the use 
of different probability vectors for installing the initial state 
of the underlying process of service of requests of differ-
ent types and the common sub-generator for description of 
transitions of the underlying process of service within its 
state space. For more details about the GPH distribution and 
examples of its applications, see (Dudin et al. 2016).

As an underlying process st, t ≥ 0, of service of an arbi-
trary request we call the continuous-time Markov chain 
defined as follows. The state space of this chain is the set 
of integers {1,… ,M}. The initial state of the chain st at the 
epoch of a request service beginning is randomly chosen 
with the probabilities defined as the components of the prob-
ability vector �m given by

if this the request is of type m. The rates of transition of the 
Markov chain st to the absorbing state are determined by the 
column vector −�� where the sub-generator � is defined by 
formula � = −diag{�m, m = 1,M}, where diag{…} means 
a diagonal matrix having the diagonal elements specified in 
parenthesis.

Having defined the service time distribution of a single 
request, we can describe the intensity of transitions of the 
multidimensional process �t. For this purpose, we extend the 
approach going back to the paper (Ramaswami and Lucan-
toni 1985). We use the following notation. Conditional that 
all n requests staying in the system receive service at a nomi-
nal (not reduced) rate, let

• the matrix Pn(�m) define the transition probabilities of the 
process �t at the service beginning epoch of a new type m 
request, n = 0,N − 1, m = 1,M;

• the matrix Ln(�), n = 1,N, � = (�1, �2,… , �M ) define the 
transition intensities of the process �t when one of the 
requests finishes service;

�m = (0,… , 0
⏟⏟⏟

m−1

, 1, 0,… , 0
⏟⏟⏟

M−m

), m = 1,M,
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• Tn =

(
n +M − 1

M − 1

)
=

(n+M−1)!

n!(M−1)!
, n = 1,N;

• E(n)
m
, m = 2,M, if n = N1,N, and m = 1 if n = N, be the 

square matrices of size Tn whose elements determine 
the transition probabilities of the process �t at epochs 
of type m request arrival, m = 2,M, when n, n = N1,N, 
requests receive service, or a request of the type 1 
arrives when N requests are in service, and the arriv-
ing request tries to displace from the service a request 
with a lower priority. Only one element in each row 
of the matrix E(n)

m
 is different from zero and equals to 

1. To define which entry is equal to 1, we note that 
each row and column of the matrix E(n)

m
 correspond to 

the certain state {s1, s2,… , sM} of the process �t, t ≥ 0. 
Recall that all states of the process �t, t ≥ 0, are num-
bered in the reverse lexicographic order of the entries 
s
(1)
t , … , s

(M)
t  . For example, the first row and column of 

the matrix E(n)
m

 correspond to the state of {n, 0, 0,… , 0} , 
the second row and column correspond to the state of 
{n − 1, 1, 0,… , 0},… , the last row and column corre-
spond to the state of {0, 0, 0,… , n}. In the row of the 
matrix E(n)

m
 corresponding to the state {s1, s2,… , sM} , 

element 1 is placed in the column corresponding to 
the same state {s1, s2,… , sM} only if sl = 0 for all 
l, M ≥ l > m. In this case, the arrived request of type m 
is lost, since there are no requests of a lower priority in 
the system. If sl > 0 for some l, M ≥ l > m and m∗ is the 
maximum of such values l,  then element 1 is placed in 
the column corresponding to the state 

 In this case, a type m∗ request has the lowest priority, and 
an arriving type m request displaces any type m∗ request, 
which leaves the system (is lost).

A more detailed description of these matrices and the algo-
rithms elaborated to calculate them are presented, for exam-
ple, in (Kim et al. 2013) and (Kim et al. 2021).

To take into consideration the receiving of reduced ser-
vice rate when the sum of the required by all requests pre-
senting in the system bandwidth is greater than the band-
width of the server B, we need more notation, namely:

• �n = Ln(�̂)�, n = 1,N, where 

• �n n = 1,N, are the column vectors of dimension Tn , 
whose elements (�n)i are defined as 

{s1,… , sm−1, sm + 1, sm+1,… ,

sm∗−1, sm∗ − 1, 0,… , 0}.

�̂ = (𝛽1, 𝛽2,… , 𝛽M);

(�n)i =

{
1, if (�n)i ≤ B,
B

(�n)i
, otherwise ;

• �n n = 1,N, are the column vectors of dimension Tn , 
whose elements (�n)i are defined as 

• diag{�n} is a diagonal matrix with the diagonal ele-
ments given by the entries of the vector �n.

Now we are prepared to present the generator A. Since 
requests enter the system and depart only one at a time, 
it is clear that the matrix A has the block-tridiagonal 
structure:

The diagonal elements of the diagonal blocks An,n, n = 0,N, 
are negative and their modules determine the intensity of the 
Markov chain �t departure from the corresponding states. 
The non-diagonal elements of these blocks are non-nega-
tive and determine the transition intensities of the Markov 
chain inside the level n. The elements of the matrices 
An,n−1, n = 1,N, and An,n+1, n = 0,N − 1, are non-negative 
and determine the transition rates of �t from level n to the 
levels n − 1 and n + 1 , respectively.

Theorem 1 The explicit form of the blocks An,n� , n, n
� = 0,N, 

max{n − 1, 0} ≤ n� ≤ n + 1, is as follows:

where IW is an identity matrix of size W, ⊗ and ⊕ denote 
symbols of Kronecker product and sum of matrices, see, for 
example, (Graham 2018).

(�n)i =

{
0, if (�n)i > B,

1, otherwise ,

A =

⎛
⎜⎜⎜⎜⎜⎝

A0,0 A0,1 O … O O

A1,0 A1,1 A1,2 … O O

O A2,1 A2,2 … O O

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

O O O … AN,N−1 AN,N

⎞
⎟⎟⎟⎟⎟⎠

.

A0,0 =D0,

An,n =D0 ⊕ diag{−diag{�n}Ln(�)�},

n =1,N1 − 1,

An,n =D0 ⊕ diag{−diag{�n}Ln(�)�}

+

M∑
m=2

Dm ⊗ E(n)
m
, n = N1,N − 1,

AN,N =D0 ⊕ diag{−diag{�N}LN(�)�}

+

M∑
m=1

Dm ⊗ E(N)
m

,

An,n+1 =

M∑
m=1

Dm ⊗ Pn(�m), n = 0,N1 − 1,

An,n+1 =D1 ⊗ Pn(�1), n = N1,N − 1,

An,n−1 =IW ⊗ diag{�n}Ln(�), n = 1,N,
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The proof of Theorem 1 is carried out by means of analysis 
of a Markov chain transitions during an infinitesimal interval 
and is omitted here. Note that the use of the vector �n allows 
to take into account a decrease of the service rate in case of a 
shortage of bandwidth.

Chains with a block-tridiagonal structure of the generator 
are called in the literature as the Level Dependent Quasi-Birth-
and-Death processes. The size of system (1) can be large. For 
solution of such systems, it is recommended to exploit the 
sparse structure of the generator A. E.g., the algorithm from 
(Baumann and Sandmann 2010) can be used.

4  Performance characteristics

Once the vectors �n, n = 0,N, are calculated, they can be used 
for computing the values of versatile performance indicators 
of the analyzed queuing system. Formulas for computation of 
some performance indicators are presented below.

The mean number of requests in the system is

The rate of the output flow of requests that successfully 
received service is equal to

The proof of this formula evidently follows from the formula 
of total probability and equivalent form of formula (1)

Row vectors �n, n = 0,N, define stationary probabilities of 
the states of the Markov chain �t such as the number nt of 
the requests in the system is equal to n and the components 
of the column vectors An,n−1� define the rates of successful 
service completions during the stay of the Markov chain �t 
in these states.

The rate of the output flow of type-m requests that received 
service is equal to

where �m = �m�m, m = 1,M.

The mean number of type-m requests in the system is

Ncustomers =

N∑
n=1

n�n�.

(1)𝜇out =

N∑
n=1

�n(IW ⊗ diag{�n}Ln(�))�.

�out =

N∑
n=1

�nAn,n−1�.

𝜇out
m

=

N∑
n=1

�n(IW ⊗ diag{�n}Ln(�m))�,

(2)Ncustomers
m

=

N∑
n=1

�n(IW ⊗ Ln(�m))�, m = 1,M.

The proof of this formula is similar to the proof of formula 
(1). It evidently follows from the formula of total probability 
with account of the fact that the multiplier (IW ⊗ Ln(�m))� 
selects only the components of the vector �n, which account 
the number of requests of type m,  and these requests’ depar-
ture rate is equal to 1. As the result, the sum in the right hand 
side of (2) defines the mean number of type-m requests in 
the system.

The probability of an arbitrary request loss at its arrival 
moment is

where Ẽ(n)
m

 is the diagonal matrix having the same diagonal 
elements as the matrix E(n)

m
.

The probability of an arbitrary type 1 request loss is

The probability of an arbitrary type m request loss upon 
arrival is

The probability that at an arbitrary moment there will be a 
shortage of a bandwidth is equal to

The probability that all requests at an arbitrary moment 
receive the required service rate is equal to

Let the square matrix E(n)

m,l
 where l = 2,M, n = N , if m = 1 

and l = m + 1,M, n = N1,N if m = 2,M − 1 of size Tn define 
the transition probabilities of the process �t, t ≥ 0, during 
the moment at which type m request arrives to the system 
and displaces a type l request when the number of requests 
receiving service is n. Definition of this matrix is similar to 
definition of the matrix E(n)

m
 given above. In each row of this 

matrix only one element can be equal not to zero but to 1. 
We use the mentioned in definition of the matrix E(n)

m
 fact 

that each row and column of the matrix is E(n)

m,l
 correspond to 

a certain state {s1, s2,… , sM} of the process �t. In the row of 
the matrix E(n)

m,l
 that corresponds to the state {s1, s2,… , sM} , 

element 1 is placed in the column that corresponds to the 
state {s1,… , sm−1, sm + 1, sm+1,… , sl−1, sl − 1, 0,… , 0} only 

Parrival−loss =𝜆−1
( N∑

n=N1

M∑
m=2

�n(Dm ⊗ Ẽ(n)
m
)�

+ �N(D1 ⊗ Ẽ
(N)

1
)�

)

Parrival−loss
1

=𝜆−1
1
�N(D1 ⊗ Ẽ

(N)

1
)�.

Parrival−loss
m

= 𝜆−1
m

N∑
n=N1

�n(Dm ⊗ Ẽ(n)
m
)�, m = 2,M.

Psharing =

N∑
n=1

�n(IW ⊗ diag{�n})�.

Pno−sharing = 1 − Psharing.
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if sm = 0 for all m, M ≥ m > l, and sl > 0. If this condition is 
not fulfilled, all entries of this row are null.

The intensity �(m)
force−out

, m = 2,M, of displacement of type 
m requests is calculated as

The probability Ppush−loss of an arbitrary request loss due to 
displacement is equal to

The probability Ppush−loss
m  of an arbitrary request of type 

m, m = 2,M, loss due to displacement is

The probability Ppush−loss

1,m
 of an arbitrary request of type 

m, m = 2,M, loss due to displacement by type 1 request is 
equal to

The probability Ppush−loss

l,m
 that an arr iving type-

l, l = 2,M − 1, customer pushes out an arbitrary request of 
type m, m = l + 1,M, is equal to

The loss probability Ploss of an arbitrary request is

5  Numerical example

Let us assume that there are three types of requests ( M = 3 ). 
A size of a request is measured in Megabits (Mb). The size 
of a type m request has the exponential distribution with the 
rate �m, m = 1, 3. We set �1 = 0.025. Thus, the average size 
of a type 1 customer is 40 Mb. The nominal bitrate 𝛽1 of type 
1 request is 20 Mb per second. Correspondingly, the service 
rate of type 1 customer in the case of absence of the deficit 
of bandwidth is �1 = 0.5. For requests of type 2 and type 

𝜆push−out
m

=

m−1∑
l=2

N∑
n=N1

�n(Dl ⊗ E
(n)

l,m
)�

+ �N(D1 ⊗ E
(N)

1,m
)�, m = 2,M.

Ppush−loss =

M∑
m=2

�
push−out
m

�
.

Ppush−loss
m

=
�
push−out
m

�m
.

P
push−loss

1,m
=

�N(D1 ⊗ E
(N)

1,m
)�

𝜆m
.

P
push−loss

l,m
=

N∑
n=N1

�n(Dl ⊗ E
(n)

l,m
)�

𝜆m
.

Ploss = Ppush−loss + Parrival−loss = 1 −
�out

�
.

3, �2 =
1

75
, 𝛽2 = 15 Mbps, �2 = 0.2, and �3 =

1

100
, 𝛽3 = 10 

Mbps, �3 = 0.1.

We assume that the arrival flow of requests is the MMAP 
defined by matrices

The average total arrival intensity of customers is 
� = 3.90335, the average arrival intensities of type m 
requests are �1 = 1.12506 , �2 = 1.95346 , �3 = 0.824833 . 
The coefficient of variation of inter-arrival times is 1.52387, 
the coefficients of variation of type m requests inter-arrival 
times are 2.32208, 1.13619, and 1.50726 correspondingly. 
The coefficient of correlation of two consecutive inter-
arrival times is 0.159857, the coefficients of correlation of 
two consecutive inter-arrival times of type m requests are 
0.236901, 0.0466208, and 0.128633, correspondingly.

We fix that the maximum number of requests that can 
obtain service at the same time as N = 50.

In this numerical example, we intend to investigate the 
impact of the bandwidth of server B and the parameter N1, 
which defines the acceptance of lower priority requests, 
on the main performance measures of the system. For this 
purpose, we vary the bandwidth B in the range [50, 300] 
with the step 50, and the parameter N1 over interval [1,50] 
with step 1. The computations were implemented on PC 
with Intel Core i7-8700 CPU and 16 GB RAM, Wolfram 
Mathematica 12.1. The run time is about 80 minutes for 300 
different pairs (B,N1) or 16 seconds per one pair on average.

Figure  2 shows the dependence of the average total 
number Nrequests of requests and the mean number 
N

requests
m , m = 1, 3, of type m requests in the system on the 

parameters N1 and B.
As it is seen from Fig. 2, in the considered case the aver-

age total number Nrequests of requests decreases with the 
increase of the bandwidth of the server B and increases with 
the increase of the parameter N1. Under the fixed N1 the 
decrease of Nrequests with the increase in bandwidth B stems 
from the fact that with growth of B the service rates increase 
and, therefore, the requests faster depart from the system. 
Under the fixed B,  the increase of Nrequests with the increase 
in N1 occurs due to the fact that increasing of N1 leads to 
more tolerant acceptance policy. More requests are admitted 
to the system what potentially can lead to the decrease of 
the service rates due to the lack of server’s bandwidth. The 
number Nrequests

1
 of type 1 requests in the system behaves 

the same way as the total number Nrequests of requests in the 
system. The mean numbers Nrequests

2
 and Nrequests

3
 of type 2 

and type 3 requests also increase with the increase in N1 , but 
behave not monotonically with the growth in bandwidth B. 

D0 =

(
−30 0

0 − 3

)
, D1 =

(
14.88 0.72

0.018 0.606

)
,

D2 =

(
6.36 0.72

0.036 1.74

)
, D3 =

(
7.2 0.12

0 0.6

)
.
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This behavior can be explained as follows. Firstly, when B 
is small, many type 2 and type 3 requests are rejected at the 
arrival moment. With the growth in B,  service rates increase 
and more requests are accepted to the system what leads to 
the growth in Nrequests

2
 and Nrequests

3
 . However, with the fur-

ther growth in B the server becomes less overcrowded what 
obviously leads to the decrease in the mean number of type 
2 and type 3 requests in the system.

Figure  3 illustrates the influence of the param-
eters N1 and B on the loss probabilities Parrival−loss and 
Parrival−loss
m

, m = 1, 3.

As it is seen from Fig. 3, with the growth of the band-
width B the loss probability of any type request decreases 
because the larger bandwidth implies the bigger average 
service rates and requests faster leave the server freeing up 
place for arriving requests. The increase in N1 implies the 
decrease in the loss probability of Parrival−loss, Parrival−loss

2
, and 

Parrival−loss
3

, and decrease in the loss probability of Parrival−loss
1

. 
The decrease in the loss probability of Parrival−loss

1
 despite 

the preemptive priority over type 2 and type 3 requests 
can be explained as follows. When N1 increases, evidently 
more such requests are accepted to the system. The server 
becomes more loaded and due to sharing the speed of ser-
vice of type 1 requests decreases, and the situation when an 
arriving type 1 request meets N type 1 requests obtaining 
service occurs more often.

The dependence of the probability Pno−sharing that all 
requests at an arbitrary moment obtain required service rate 

on the parameters N1 and B is presented in Fig. 4. This figure 
confirms that the probability Pno−sharing is large when B is 
large and N1 is small. Correspondingly, this probability is 
small when B is small and N1 is large.

These observations, as well as some of dependencies 
given by Figs. 5, 6, 7 are obvious. However, the behavior of 
some curves, e.g., figures for Ppush−loss

3
 on Fig. 5 and Ppush−loss

2,3
 

on Fig. 6 is quite involved due to complexity of the model. 
Usefulness of the presented figure consists of giving the 
exact value of the important performance measures for any 
fixed values of B and N1. In particular, this allows to solve 
various optimization problems.

Let us now introduce the cost criterion defined as

and consider the problem of maximization of this criterion 
via the proper choice of the parameters B and N1.

Here Am is the profit earned by service of one type m 
request;

Bm is the charge for loss upon arrival of one type m 
request;

Cm is the charge for loss of one type m request due to 
pushing out;

E(B,N1) =

M∑
m=1

(Am�
out
m

− �mBmP
arrival−loss
m

)

−

M∑
m=2

�mCmP
push−loss
m

−DB

Fig. 2  Dependence of the mean numbers of requests Nrequests and Nrequests
m , m = 1, 3, on the parameters N1 and B 
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D is the payment per unit time for using one unit of 
bandwidth.

Let the introduced costs be defined by A1 = 10, A2 = 5, 
A3 = 3, B1 = 4, B2 = 2, B3 = 1, C2 = 20, C3 = 5, D = 0.05.

The shape of the function E(B,N1) is presented on 
Fig. 8. The optimal value of the cost criterion E(B,N1) 
is equal to 7.82733,   the optimal values of the band-
width B and the threshold N1 are equal to 200 and 27,   
correspondingly.

6  Conclusion

In this paper, we introduced and analyzed a novel discipline 
of simultaneous service of multiple requests. This discipline 
looks to be realistic for application in real world systems. 
It assumes restriction on the bandwidth of the server and 
the number of requests that can receive service at the same 
time. When the number of requests presenting in the system 
is relatively small, each of them receives a permanent share 
of the bandwidth and their service processes are mutually 
independent, like service in the standard multi-server queue-
ing system. However, when the sum of the bandwidths of the 
requests admitted to the system exceeds the bandwidth of the 
server, service to requests is provided at the proportionally 
reduced rates. Requests are heterogeneous with respect to 
requirements to the service rates and have different priori-
ties. One of the types of requests has a preemptive prior-
ity over the requests of all other types and no restriction in 
admission until the number of requests presenting in the 
system reaches the maximum admissible value. The rest of 
types of requests have more strict restriction in admission 
and preemptive priorities over each other.

Analysis of the model is performed under realistic sug-
gestion about correlation and possible high variability of 
inter-arrival times. This is achieved via the assumption 
that the arrivals occur according to the MMAP process 
which is essentially more general arrival process than the 

Fig. 3  Dependence of the probabilities Parrival−loss and Parrival−loss
m

, m = 1, 3, on the parameters N1 and B 

Fig. 4  Dependence of the probability Pno−sharing on the parameters N1 
and B 
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superposition of the stationary Poisson processes. Feasibil-
ity of the proposed method of analysis is illustrated by the 
numerical example. In particular, the results of solution of 
the problem of computation of the optimal values of the 
bandwidth of the server and the number of requests that can 
receive service simultaneously are presented. Due to appli-
cation of the technique going back to works by D. Lucantoni 
and W. Ramaswami, it is possible to implement computa-
tions not only for relatively small number of requests receiv-
ing service at the same time.

The considered model suggests loss of requests arriving 
when the number of requests under service has the maxi-
mum value. The presented analysis is planned to be extended 
to the scenarios when storing of such requests in an infinite 

or finite buffer or repeated attempts to enter the service are 
possible. In these scenarios, operation of the system can be 
described by the Markov chain 𝜁t of the form 𝜁t = {it, 𝜁t} 
where it is the number of requests in the buffer of orbit and �t 
is the Markov chain analysed in this paper. If the states of the 
chain 𝜁t will be enumerated in the direct lexicographic order 
and the levels of the chain will be defined by the fixed values 
of the component it, then the blocks An,n′ of the generator of 
the Markov chain �t analysed in this paper will be properly 
used as the sub-blocks of the blocks of the generator of the 
Markov chain 𝜁t

The case of assigning not equal shares to competing 
flows of requests, see, e.g., (Chen et al. 2022), can be con-
sidered as well. The problem of application of the obtained 

Fig. 5  Dependence of Ppush−loss and Ppush−loss
m , m = 2, 3 on the parameters N1 and B 

Fig. 6  Dependence of Ppush−loss

1,3
 and Ppush−loss

2,3
 on the parameters N1 and B 
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results to analysis of supply systems, see, e.g., (Falco et al. 
2017), (Gaeta and Rarità 2013) can be considered.
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