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Numerous applications of Mössbauer spectroscopy are related to a unique resolution of absorption
spectra of resonant radiation in crystals, when the nucleus absorbs a photon without a recoil. However, the
narrow nuclear linewidth renders efficient driving of the nuclei challenging, restricting precision
spectroscopy, nuclear inelastic scattering and nuclear quantum optics. Moreover, the need for dedicated
x-ray optics restricts access to only few isotopes, impeding precision spectroscopy of a wider class of
systems. Here, we put forward a novel Mössbauer source, which offers resonant photon flux for a large
variety of Mössbauer isotopes with strongly suppressed electronic background. It is based on relativistic
electrons moving through a crystal and emitting parametric Mössbauer radiation essentially unattenuated
by electronic absorption. As a result, a collimated beam of resonant photons is formed, without the need for
additional monochromatization. We envision the extension of high-precision Mössbauer spectroscopy to a
wide range of isotopes at accelerator facilities, also using dumped electron beams.
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I. INTRODUCTION

Traditional Mössbauer spectroscopy uses radioactive
sources, which provide essentially background-free near-
resonant γ radiation with a spectral width of the order of the
natural linewidth of the involved nuclear transitions [1–9].
Accelerator-based x-ray sources offer orders of magnitude
more resonant photon flux, but the short x-ray pulses
contain an intense off-resonant background, which strongly
exceeds the resonant component. As a result, Mössbauer
spectroscopy usually is performed in the time domain
[3,10], removing the “prompt” nonresonant background
via temporal gating of the detectors. This, for instance,
restricts the study of short-lived isotopes, for which the
gating leads to a severe loss of signal photons due to the fast
initial decay.
Alternatively, synchrotron Mössbauer sources (SMS)

[11–15] can be employed to monochromatize the synchro-
tron radiation to few natural linewidths using pure nuclear
Bragg reflexes, enabled by the suppression of electronic
reflections via particular crystal symmetries. In addition,
usually a specific Mössbauer isotope is targeted, requiring
dedicated x-ray optics such as monochromators to reduce

the off-resonant background component. Therefore, it is
challenging to make new Mössbauer isotopes accessible at
modern pulsed x-ray sources, which hinders the exploration
of new scientific applications of specific Mössbauer
nuclei [2,16].
An alternative scheme to generate x rays is parametric

x-ray radiation (PXR), based on relativistic electrons mov-
ing through a crystal [17–27]. In PXR, the electron self-field
diffracts on the crystallographic planes, which leads to the
generation of electromagnetic radiation. Its relative spectral
and angular widths are suppressed by the large electron
energy E, via the relativistic γ factor γ ¼ E=mec2, resulting
in quasimonochromatic and well collimated PXR radiation.
Moreover, it is possible to fix the electron angle of incidence
in such a way that one of the PXR peaks is in resonancewith
a nuclear Mössbauer transition, giving rise to parametric
Mössbauer radiation (PMR) [28].
However, conventional PXR schemes are limited in

intensity due to substantial x-ray absorption in the crystal
[28,29]. This can be understood by noting that the PXR
intensity depends on the crystal polarizability [17,19]. For
crystal diffraction, the polarizability is maximized near the
resonance frequencies, where also the absorption becomes
large. To overcome this issue, a particular geometry
featuring extremely asymmetric diffraction (EAD) was
suggested [30]. This geometry exploits a peculiar PXR
feature, namely, that the radiation is emitted under a large
angle relative to the electron velocity, which is in stark
contrast with other mechanisms generating radiation from
relativistic particles. In the EAD geometry, the electrons are
moving in a thin crystal layer parallel to the crystal-vacuum
interface in such a way that the emitted photons
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immediately exit the crystal without much absorption. This
effectively increases the intensity of the radiation by 2 orders
of magnitude with respect to the conventional transition
geometries. However, so far, EAD geometries have only
been studied related to the generation of spectrally broad x
rays, and not to spectrally narrow x rays as required for
applications in Mössbauer science. A priori, it is not clear
how an EAD-like condition could be applied to the
PMR case.
Here, we put forward a novel versatile source for

Mössbauer spectroscopy, which is based on PXR simulta-
neously satisfying the Mössbauer resonance condition to
effectively excite the nuclei and the EAD condition to
suppress absorption. In fact, we for the first time simulta-
neously combine a Mössbauer crystal with the EAD geom-
etry. This source offers narrow-band nuclear resonant photon
flux for a largevariety ofMössbauer crystals, including those
which do not offer a radioactive parent isotope. The
possibility to operate the source in a nondedicated way,
e.g., using dumped electron beams, opens perspectives for
new experimental approaches with Mössbauer nuclei in
particular for low-count rate or photon-hungry setups. We
furthermore show that for certain crystals, SMS-like sup-
pression of electronic scattering can simultaneously be met
within the crystal generating the Mössbauer radiation,
leading to the suppression of the off-resonant electronic
background radiation. In this case, our calculations predict
almost background-free emission of Mössbauer radiation,
paving the way to Mössbauer spectroscopy on short-lived
isotopes directly in the energy domain, without the need for
additional time gating or the development of dedicated
monochromatizers.
We illustrate our approach in the case of 121Sb, for which

our simulations predict essentially background-free emis-
sion. We further discuss two isotopes without the SMS
condition: 133Cs in order to illustrate the interplay between
the electron and nuclear components of the crystal polar-
izabilities, and 57Fe as the classical workhorse of Mössbauer
spectroscopy. The total linewidth of a PMR source is
∼5–20 Γ depending on the crystal. Finally, we analyze
45Scwhich is of interest due to an extremely narrow linewidth
∼10−15 eV.

II. CALCULATION OF THE PMR SPECTRA

To calculate PXR and PMR, in the following we evaluate
the differential number of photons ∂Nωs=ð∂ω∂ΩÞ emitted
in the frequency interval (ω, ωþ dω) and in the solid angle
dΩ, following the approach in Refs. [17,18,31]. In short,
we solve the inhomogeneous Maxwell’s equations using a
Green’s function and the standard two-wave approximation
approach of dynamical diffraction theory [32]. Finally, we
use the such obtained electric field to calculate the energy-
and angular-resolved PXR and PMR photon flux, first for a
single electron, and then averaged over experimentally
relevant electron distributions.

A. Solution of Maxwell’s equations

We start the analysis from the inhomogeneous
Maxwell’s equations for the Fourier components of the
fields, which contain the source current jðr; tÞ generated
by a charged particle [17]. In the case of PXR, the charged
particle moves uniformly, i.e.,

rðtÞ ¼ r0 þ vt; ð1Þ

where r0 is the initial position at t ¼ 0. The displacement
field Dðr;ωÞ is related to the electric field Eðr;ωÞ through
the permittivity tensor ϵαβðr; r1;ωÞ, which is defined in the
whole space, but has different expressions inside the crystal
and outside, in vacuum. To facilitate the calculation, we
expand the permittivity inside the crystal in a series over the
reciprocal lattice vectors g.
After this, the Green’s function for Maxwell’s equations

is defined as

εαβγεγμν
∂2

∂xβ∂xμ Gνλðr; r0;ωÞ

−
ω2

c2

Z
dr1 ϵαβGβλðr1; r0;ωÞ ¼ δαλδðr − r0Þ; ð2Þ

where εαβγ and εγμν are Levi-Civita symbols. In the far-field
limit r ≫ r0, the Green’s function can be expressed

through the solution Eð−Þ
k0s of the homogeneous Maxwell’s

equations as

Gαβðr; r0;ωÞ ≈
eikr

4πr

X
s¼1;2

eðsÞα Eð−Þ�
k0βs ðr0;ωÞ; ð3Þ

where s is a polarization index. Then, this Green’s function is
used to determine the field generated by the current via

Eαðr;ωÞ ¼ iω
4π

c

Z
dr0Gαβðr; r0;ωÞ jβðr0;ωÞ: ð4Þ

Finally, this field is then used in the standard expression for
the energy density via the Poynting vector

Wnω ¼ cr2

4π2
jEðr; tÞj2 ð5Þ

of the scattered light. Here, n is the unit vector in the
observation direction. The result is

∂2Nn;ωs

∂ω∂Ω ¼ e20ω
4π2ℏc3

����
Z

Eð−Þ�
k0s ½rðtÞ;ω� · vðtÞeiωtdt

����2; ð6Þ

where k0 ¼ kr=r points in observation direction.
It is important to note that the solution Eð−Þ

ks of the
homogeneous Maxwell’s equations possesses an asymp-
totic behavior for large jrj as a plane wave and an ingoing
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spherical wave. In contrast, when an external electromag-

netic field EðþÞ
ks is diffracted or scattered on a crystal, it has

an asymptotic behavior of a plane wave and an outgoing
spherical wave. However, these two field configurations are
related to each other by the reciprocity theorem [33]

Eð−Þ
ks ¼ EðþÞ�

−ks . Thus, the actual problem is reduced to the

solution of the diffraction problem to find the field EðþÞ
ks , the

usage of the reciprocity theorem, and the subsequent
application of Eq. (6). For this reason, the actual vector
of the emitted photon k0 is related to the vector k of the
diffraction problem via k0 ¼ −k.

B. Solution of the diffraction problem

1. Two-wave approximation

In order to determine the electric field in Eq. (6), the
diffraction problem is solved within the two-wave approxi-
mation of the dynamical diffraction theory [32], which is
valid if only two strong electromagnetic waves are excited
in the crystal. The amplitudes of these waves satisfy a set of
homogeneous algebraic equations:

�
k2

k20
− 1 − χ0

�
Eks − csχ−gEkgs ¼ 0;

�
k2g
k20

− 1 − χ0

�
Ekgs − csχgEks ¼ 0; ð7Þ

where k0 ¼ ω=c, the incident wave EðþÞ
ks ¼ esEks and the

diffracted wave EðþÞ
kgs

¼ e1sEkgs. Here es and e1s are the unit

vectors of σ and π polarizations [32]. A nontrivial solution
of this linear homogeneous equation system exists, if the
corresponding determinant is vanishing. This condition
determines the dispersion relation, and its solutions ε1s and
ε2s fix the wave vectors

k1;2s ¼ k0n − k0ε1;2sN ð8Þ

of the diffracted waves. Having found the solutions of the
dispersion equation, one writes down Maxwell’s equations
in the crystal and in vacuum and exploits the continuity of
the fields at the crystal-vacuum interface. This fixes the
amplitudes of all waves. In particular, the electromagnetic
field responsible for the formation of PMR equals

EðþÞ
ks ¼ e1sEg1seikg·r−ik0zε1s ; ð9Þ

Eg1s ¼
csχg

αB þ χ0
: ð10Þ

We further find that the wave vector k0 corresponding to
the maximum PXR as well as PMR emission direction (see
Fig. 1) is determined as a solution of two equations: (a) the
Cherenkov radiation condition [18]

q0 ¼ Re q ¼ 1þ ðkþ gÞ · v
ω0

¼ 0 ð11Þ

for the diffracted wave and (b) minimal value for the
deviation from Wulff-Bragg’s condition [17–19]

jαBj ¼
jðkþ gÞ2 − k2j

jkj2 ¼ j2k · gþ g2j
jkj2 : ð12Þ

The latter condition describes the diffraction of an electron
self-field on the crystallographic planes with the reciprocal
lattice vector g ¼ ðgx; gy; gzÞ, where v is the electron
velocity and jkj ¼ ω0=c with ω0 the frequency of the
resonant Mössbauer transition. Note that due to the
reciprocity theorem the calculation of the radiation inten-
sity is based on the solutions of the Maxwell equations with
the reversed wave vector k ¼ −k0.

2. EAD geometry

Next, we consider the EAD geometry case [30,31], see
Fig. 1, in which electrons are moving parallel to the crystal-
vacuum interface (parallel to the x-y plane) and emit
radiation under a large angle to the crystal surface. In this
geometry, the angle ψ0 between g⊥ and the electron
velocity v we adjust in such a way that the frequency of
the emitted radiation is coincident with the resonance
frequency of the Mössbauer isotope.
Solving Eqs. (11) and (12) under the condition

kg · N ¼ ðkþ gÞ · N ¼ 0, which specifies the EAD geom-
etry, we find that the maximum of the x-ray emission is in
the direction

k0 ¼ −k ¼ ðgx þ ω0=v; gy; gzÞ: ð13Þ

The z component causes the generated radiation to immedi-
ately leave the crystal, such that absorption within the
crystal is greatly reduced. The resonance condition

k2 ¼ ðω0=cÞ2 ¼ k20 ð14Þ

yields

cos ψ0 ¼ −
v
k0c

k20γ
−2 þ g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − g2z

p : ð15Þ

C. Integration over the trajectory of a single electron

Next, we insert the solution of the diffraction problem for
the electric field into Eq. (6). The integration over the
particle trajectory in Eq. (6) for the linear motion of
constant velocity yields
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∂2Nn;ωs

∂ω∂Ω ¼ e20ω
4π2ℏc5

X
s¼σ;π

ðe1s · vÞ2

× jEg1sLgð1 − e−iL=LgÞj2e−2k0jε001sz0j; ð16Þ

where Lg ¼ 1=ðk0qÞ is the coherence length and
q ¼ 1þ ðkg · vÞ=ω0 − ε1svz=c.

D. Integration over emission angles

In order to fix a coordinate system and to determine the
direction of the x-ray emission, we for the moment consider
an ideal case, in which the electron velocity does not have
any component in the transverse direction and the mini-
mum of Bragg’s condition Eq. (12) is reached, i.e.,
αB ¼ γ−2. We align the x axis parallel to the electron
velocity, and the z axis along the normal N to the crystal
surface. In this geometry, the incident electron beam, as
well as the diffracted wave with vector kg ¼ kþ g, both
propagate along the crystal surface [31], such that
kg · N ¼ 0. For a given Bragg reflex, we denote the
projection of the corresponding reciprocal lattice vector
g onto the x-y plane by g⊥.

The remaining task is to determine the deviations from
the Cherenkov radiation condition q0 ¼ Re q ¼ 0 and the
deviation αB from the Bragg’s diffraction condition for
nonideal particle velocities. For this, we consider electrons
with velocities deviating from the ideal velocity v0 ¼ vex.
We parametrize these deviations via v ¼ vðcos θeex þ θeÞ,
with θe ¼ ð0; θey; θezÞ and θ2e ¼ θ2ey þ θ2ez. Analogously,
the wave vector of the emitted radiation k ¼
k0ðsin θ cosϕ; sin θ sinϕ; cos θÞ will acquire deviations
from its ideal direction k0. In order to determine these
deviations, we expand the angular dependence in a Taylor
series around the ideal direction θ0 and ϕ0 up to second
order, i.e., k ¼ k0 þ u1 þ u2; k2 ¼ k20; k0 · u1 ¼ 0. As a
result of the deviations from the ideal directions, the
quantities q0 and αB will exhibit corresponding variations

q0 ¼ ðθ − θ0Þ cos θ0 cos ϕ0 − ðϕ − ϕ0Þ sin θ0 sin ϕ0;

ð17Þ

αB ¼ −fγ−2 þ ½θez − ðθ − θ0Þ sin θ0�2
þ ½θey þ ðϕ − ϕ0Þ sin θ0 cos ϕ0

þ ðθ − θ0Þ cos θ0 sin ϕ0�2g: ð18Þ

FIG. 1. Schematic setup for the generation of PMR in the EAD geometry. The electron beam moves uniformly with velocity v in the x
direction. The crystal surface lies in the x-y plane. g is the reciprocal crystal lattice vector. PMR will be mainly emitted in the direction
given by the vector k0 ¼ −k ¼ −k0ðsin θ0 cos ϕ0; sin θ0 sinϕ0; cos θ0Þ, and thus rapidly leaves the crystal without significant
electronic absorption. kg ¼ kþ g and θB is the Bragg angle. The energy of the PXR is tuned using the angle ψ0 between the electron
velocity and the projection g⊥ of g on the crystal surface.

SKOROMNIK, FERANCHUK, EVERS, and KEITEL PHYS. REV. ACCEL. BEAMS 25, 040704 (2022)

040704-4



The integration over the x-ray emission angles with
respect to ϕ is performed in the following manner. First, we
apply a variable change ϕ − ϕ0 → q0. Second, we exploit
the fact that the distribution function is sharply peaked near
ϕ ¼ ϕ0, which allows us to extend the integration range
from ½−ϕ0; 2π − ϕ0� to the interval ð−∞;∞Þ. Third, since
the imaginary part of q is much smaller than its real part, we
can simplify its evaluation by using the value ϕ for the
maximum of the intensity. This intensity maximum is
located at q0 ¼ 0, which fixes the relation between θ and
ϕ. Thus, we substitute ϕ − ϕ0 ¼ ðθ − θ0Þ cot θ0 cot ϕ0 in
the imaginary part of q. Finally, we perform the integration
with the help of the residue theorem yielding Eq. (19).
In addition, it is important to note that the electron

velocity spread in the transversal y direction, which is
typically [34] much larger than the corresponding spread in
the z direction, does not influence the emitted number of
photons. This is due to the independence of the photon
distribution function of the initial position y0 of the electron
for the case of the EAD geometry.

III. DISTRIBUTION OF EMITTED PHOTONS

The integration over the particle trajectory and over the
x-ray spherical emission angle ϕ yields the spectral-angular
distribution of the emitted photons

∂2N
∂ω∂θ ¼ e20

4πℏcω
1

j sin ϕ0j
X
s¼σ;π

�
jEg1sj2

�
v · e1s
c

�
2

×
1 − e−2k0Lq

00
s

q00s
e−2k0jz0ε

00
1s j
�
; ð19Þ

where L is the crystal length, z0 is the electron initial
coordinate, and

Eg1s ¼
csχg

αB þ χ0
ð20Þ

is the amplitude of the diffracted wave. The index s
sums over the σ and π polarizations, with cσ ¼ 1 and
cπ ¼ cos 2θB, and polarization vectors

e1σ ¼ k × g=jk × gj; ð21Þ

e1π ¼ kg × e1σ=jkg × e1σj: ð22Þ

Finally, q00s ¼ jθezε001sj, where θez characterizes the z com-
ponent of the electron velocity, and ε1s

00 is the imaginary
part of the solution of the dispersion equation [31] for the
fields in a crystal

ε1s ¼ −
χ0

2 cos θ0
þ c2sχgχ−g
2ðαB þ χ0Þ cos θ0

: ð23Þ

This expression contains two key quantities, which
determine PMR and PXR, namely, the dielectric

susceptibilities χ0ðωÞ ¼ χ0eðω0Þ þ χ0nðωÞ and χgðωÞ ¼
χgeðω0Þ þ χgnðωÞ. They each comprise an electronic (χ0e,
χge) and a nuclear (χ0n, χgn) contribution. The nuclear part,

χgnðωÞ ¼ −
4πc3

ω2
0

SðgÞ
V

ηe−WLM

ω0ð1þ αcÞ
Γ=2

ðω − ω0Þ þ iΓ=2
; ð24Þ

has a resonance character [1,35] and is responsible for the
PMR. Here, SðgÞ is the structure factor, e−WLM the Lamb-
Mössbauer factor (see the Appendix A), V the volume of the
unit cell, αc the coefficient of the internal conversion, Γ the
natural linewidth of the transition and η the isotopic
abundance.
The PMR becomes observable, if the parameter

ξ ¼
���� χnðω0Þ
χeðω0Þ

���� > 1: ð25Þ

By using the definition of the polarizabilities this parameter
can be approximately presented as

ξ ¼ α−1me

ω0ð1þ αcÞZ
; ð26Þ

which can be used as a rough estimation of the excess of
PMR over its electronic counterpart for various crystals,
when nonforbidden reflexes are considered (with α being
the fine structure constant).

IV. AVERAGING OVER THE ELECTRON BEAM
PARAMETERS, MULTIPLE ELECTRON

SCATTERING AND CRYSTAL MOSAICITY

The velocity distribution of experimentally available
electron beams is characterized via the emittance ϵy;z ¼
ΔaΔθey;z, with Δa the transversal and Δθey;z the angular
spreads. As a result, we need to average the spectral-
angular emission distribution obtained for a single electron
over the parameters of the entire electron beam. This is
achieved by convolving the emission distribution with the
electron angular distribution θey, θez and the initial z0
coordinate distribution. We consider Gaussian distribution
functions for the electron beam parameters given by

Gðθez; θey; z0Þ ¼ CFðθez; θey; z0Þ;

F ¼ e
−ðθez−θ0eÞ2

θ2sþΔθ2ez e
−

θ2ey

θ2sþΔθ2ey e−
ðz0−a0Þ2

Δa2 : ð27Þ

The constant C is a normalization constant, chosen such
that the total intensity corresponds to the single electron
case, i.e.,

R
dθezdθeydz0Gðθez; θey; z0Þ ¼ 1. The angle θ0e

is the mean incidence angle of the electron beam on the
crystal. The angle θ2s ¼ ðEc=EÞ2ðL=LRÞ characterizes
multiple electron scattering [36], with Ec ≈ 21 MeV, L
the crystal length and LR the radiation length. For Fe, the
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latter is LFe
R ¼ 1.757 cm [37], for CsF LCsF

R ¼ 2.227 cm
[37], for InSb LInSb

R ¼ 3.701 cm [37] and for Sc2O3

LSc2O3

R ¼ 5.310 cm [37].
In addition, we perform the averaging over the beam

transversal spread. For this we consider that the beam
divergence is not constant along the crystal length, but is
given by

σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2 þ ϵ2

s2

Δa2

s
; −L=2 ≤ s ≤ L=2 ð28Þ

instead. Here Δa is the transversal spread in the focus
center. Therefore, in the actual calculation we vary Δa in
Eq. (27) from σð−L=2Þ to σðL=2Þ in R − 1 steps and
average the resulting spectra over the resulting values, i.e.,
∂Nx=∂x ¼ 1=R

P
R−1
i¼0 ∂Ni

x=∂x. Therefore, in all figures
above the given value Δa corresponds to the value in
the center of the focus of the beam.
The effect of crystal mosaicity influences the PMR

spectrum in exactly the same way as the multiple electron
scattering [17]. Consequently, we suppose that the mean
square of the angles that determine the spread of crystal
planes orientations is smaller than the angle θs—the
multiple electron scattering angle.

V. RESULTS

A. Analytical estimates

Prior to discussing the realistic experimental situation,
when an electron beam is characterized by an emittance we
present here simple analytical formulas for the determi-
nation of the total number of photons of PMR emitted in the
linewidth. For this we employ the well-known formulas of
PXR [19], which were experimentally verified [21]. The
number of emitted PXR photons based on the kinematic
theory of diffraction can be estimated via a simple formula,

NPXR ¼ αjχgj2k0Lg; ð29Þ

where Lg is a coherence length. In the general case, when
an electron is moving under an arbitrary angle with respect
to the crystal surface the coherence length is given by an
absorption length of the emitted photons. However, in the
EAD geometry the coherence length is bounded by the
crystal length L, Lg ≃ L, if the crystal length L ≤ 1 cm. For
these crystal lengths the multiple electron scattering still
does not withdraw electrons from the layer with a thickness
of ∼Labs.
In addition, according to Ref. [19] the spectral width of

the PXR peak is determined by the parameter

Δω ≈ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχ0j þ γ−2

q
: ð30Þ

Consequently, the photon density ρPXR of PXR is approx-
imately given by NPXR=Δω.
Under the assumption that the frequency of the PXR

peak coincides with the frequency of the resonant transition
of the Mössbauer nuclei in a crystal, the number of photons
which will be emitted in the spectral interval Γ per second,
i.e., the number of PMR photons per second, from the beam
of electrons with a current J equals

NPMR ≈
J
e0

ρPXRΓ ¼ α
J
e0

jχgj2k0Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχ0j þ γ−2

p Γ
ω0

; ð31Þ

which provides a theoretical maximum for the emitted
number of PMR photons. All averaging over parameters of
the electron beam, as well as the inclusion of multiple
electron scattering and temperature effects will reduce this
number.

B. Numerical analysis

Coming back to a realistic situation, for our numerical
analysis, we choose electron beam parameters from the
MAMI [21,24] experimental facility, where the experi-
ments with PXR have been performed [21,22,24] (see
Appendix B). We further consider the possibility to focus
the electron beams to smaller electron beam diameters Δa,
while keeping the emittance constant. Note that secondary
processes and sample heating are discussed in Appendix C.
We investigated the emission from four crystals with

cubic lattices. The first two are without the SMS condition:
the α-iron crystal, enriched to 90% in the resonant
Mössbauer isotope 57

26Fe and the CsF crystal, which con-
tains 133

55 Cs. The last two crystals—the InSb and Sc2O3

crystals contain the resonant isotopes 121
51 Sb and 45

21Sc
respectively. The InSb is especially interesting since the
two constituent atoms have similar charges, which allows
one to specify a Bragg reflection for which the structure
factors of Sb and In have equal magnitude but opposite
sign, like in the SMS case. This significantly lowers PXR
and provides a handle to achieve essentially background-
free PMR. An analogous situation happens in the Sc2O3

case. The parameters used in the numerical simulation are
summarized in Appendix D.
Figure 2 shows our main results, i.e., the emission

spectra as a function of the dimensionless frequency x,
measured in Γ=2. The parameters for the simulations of the
spectra are provided in Appendixes B and D. Qualitatively,
as expected from Eqs. (11) and (12), we find that the peak
of the emission occurs at frequencies where the Cherenkov
radiation condition is exactly fulfilled, i.e., q0 ¼ 0 and the
maximum of the amplitude of the diffracted wave is
reached (jαB þ χ00j is minimal). The asymmetry of the
distribution is caused by the fact that the contribution of the
nuclear polarizability to χ00 changes its sign when ω crosses
the nuclear resonance frequency ω0.
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Quantitatively, for electron beams narrow in the trans-
versal z direction (Δa ¼ 1.9 × 10−4 cm for MAMI), our
analysis predicts that the number of photons that are
emitted in the spectral interval Γ (Δx ¼ 2 in Fig. 2) near
the maximum of the distribution is NFe

MAMI ¼ 14 s−1. For
the CsF crystal, the corresponding number of photons is
lower, NCsF

MAMI ¼ 1 cps. The reason is that the value of the ξ
parameter is smaller in this case. Finally, in the case of the
InSb and Sc2O3 crystals, one obtains NInSb

MAMI ¼ 0.5 s−1 and
NSc2O3

MAMI ¼ 2.5 × 10−9 s−1 respectively.
It should be noted that in many cases the samples to be

studied are superradiantly broadened (for example, spectral
widths of 60 Γ have been reported in [38]). Such samples
would benefit from the larger spectral width of the sources
and in this case the number of resonant photons per second
would be at least 10 times larger.
As expected, for InSb we find that the electronic

component is strongly suppressed due to the choice of
the (222) reflection, when the structure factors of In and Sb
are of an opposite sign. As a result, the PMR paves the way

for an essentially background-free direct spectroscopy of
Sb in the energy domain.
We pay attention to the fact that the radiation formation in

the EAD geometry happens in crystal layers of thickness
∼Δa. Consequently, for the radiation to be formed the crystal
thickness should be larger than this value.

C. Absorption spectra with a PXR source

To illustrate the capabilities of a PXR source, in Fig. 3
we simulate the spectroscopy of α-iron with our source. We
find that a well-resolved spectrum with good contrast can
be achieved. The absorption spectrum is computed as

NðωsÞ ¼ Ne

Z �
IðωÞ þ Ið−ωÞ

2
− IB

�
× e−k0DjImχ0ðω−ωsÞjdω; ð32Þ

where IB is the electronic part of the intensity, IðωÞ¼
R ∂2N=

ð∂ω∂θÞGðθez;θey;z0Þdθezdθeydz0dθ and χ0ðω − ωsÞ in-
cludes both the electronic and the nuclear polarizabilities.

FIG. 2. The number of emitted x-ray photons per second as a function of the dimensionless frequency x ¼ ðω − ω0Þ=ðΓ=2Þ. The
results are averaged over the electron beam parameter distributions, for different transversal widths and divergences of the electron
beam, keeping the emittance constant. The figure compares the emission from the (011) reflex of α iron (top left), the (312) reflex of
Sc2O3 (top right), and the (111) reflex of CsF (bottom left). The bottom right panel shows pure PMR emission from the (222) reflection
of the InSb crystal. For all panels, we assume an angular spread in the y direction of 10−3 rad. The crystal lengths are chosen as
L ¼ 0.5 cm. Electron parameters are chosen according to the MAMI facility, with energy E ¼ 1000 MeV, vertical emittance ϵ ¼
1.9 × 10−7 cm rad, and electron current is j ¼ 100 μA.
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HereNe is thenumber of electrons per second. InEq. (32),we
consider that the electronic background contribution is
removed from the detection signal via a temporal gating,
which is possible since the nuclear emission proceeds on a
much slower timescale governed by the lifetime of the nuclei.

D. Direction and divergence of the x-ray emission

Finally, we would like to briefly discuss the direction and
divergence of the x-ray emission. Table I summarizes the
angles characterizing the vector k which determines the
x-ray emission direction. The actual emission is happening
in the direction k0 ¼ −k. Possible values for the angles ϕ0,
ψ0 range from −π to π, and values for the angle θ0 range
from 0 to π. In the angular distribution of the emitted
radiation two qualitatively different scales can be observed.
A narrower first scale arises from the Cherenkov radiation
condition. It is satisfied exactly at q0 ¼ 0. In this case, the
angular width is defined through the coherent length Lg and
the width of q0 ∼ ðk0LgÞ−1 ∼ 10−8. The second direction,
which is perpendicular to q0 is characterized via a variable
p0. This variable is associated to the maximum of the

diffracted wave, and is of the order p0 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffijImχ0j

p
∼ 10−3.

Consequently, the PMR is concentrated around the direc-
tion given by the vector k00 ¼ −k0 ¼ ðgx þ ω0=v; gy; gzÞ.
Due to the finite crystal size ∼1 mm, the beam of PMR

seen by the detector has at least a width given by the crystal
size, projected onto the plane defined by the vector normal
to the detector. The beam divergence of order ΔΩ ≈ 10−3 ×
10−8 rad2 is defined via the angular divergence of the
emitted gamma quanta (≃γ−1). Therefore, the target and
detector should ideally be comparable or larger than the
crystal size.
In addition, the angle ψ0 is defined with respect to the

central velocity v0 of the electron beam and the divergence
with respect to this direction is taken into account by the
distribution function Eq. (27) and the corresponding
averaging with it.

VI. CONCLUSION

In summary, we have suggested a versatile x-ray source
for Mössbauer spectroscopy, based on parametric
Mössbauer radiation (PMR) emitted by relativistic elec-
trons passing through a crystal. It complements currently
existing Mössbauer radiation sources due to its different
qualitative properties: first, the possibility to obtain colli-
mated photon beams without the need of x-ray optics and
preliminary monochromatization of the radiation; second,
this type of source is universal and can be realized for a
large variety of Mössbauer crystals, including those with
forbidden Bragg reflexes, thus leading to almost back-
ground free Mössbauer radiation; third, the direct conver-
sion of electrons into resonant x-ray radiation using a cm-
scale crystal invites nondedicated parasitic operation. Since
our setup combining PMR with the EAD geometry
operates in a thin slice of the crystal near its surface only,
stacking multiple subsequent crystals could allow one to
make use of thicker electron beams, or to operate multiple
PXR sources in parallel from a single electron beam. Taken
together, these complementary properties open perspec-
tives for new experimental approaches with Mössbauer
nuclei, in particular also for long-term, low-count rate or
photon-hungry studies.
Finally, the characteristics of PMR depend only on the

mass of the charged particles through the relativistic factor
γ−1 ¼ m0c2=E. As a result, PMR-like sources as proposed
here cannot only be based on electrons, but also on
relativistic protons. However, to reach the same values
of γ, significantly larger particle energies are required.
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FIG. 3. Simulation of an absorption spectrum obtained with the
PMR source. As a target, a nonenriched (η ¼ 0.02) α-iron crystal
of thickness D ¼ 5 μm is assumed. The contrast is determined
via the ratio of the electron and the nuclear contributions into the
crystal polarizability near the resonance frequency and in the case
of α-iron ∼20. Other parameters are as in Fig. 2, with
Δa ¼ 1.9 × 10−4 cm. The electronic “background” is supposed
to be removed via temporal gating to obtain the results.

TABLE I. The angles θ0, ϕ0 of a spherical coordinate system
together with the angle ψ0, which determine the direction of
emission and the orientation of the crystal with respect to the
particle velocity (see Fig. 1).

Crystal θ0 ϕ0 ψ0

α-iron 107.468 −162.532 107.468
CsF 91.46 −177.94 91.55
InSb 95.91 −171.62 96.28
Sc2O3 101.762 −161.292 103.039
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APPENDIX A: DEBYE-WALLER AND
LAMB-MÖSSBAUER FACTORS

The effects of lattice vibrations on the crystal polar-
izabilities due to the temperature are determined via the
Debye-Waller factor e−WDW ¼ expf−1=2Zðkg − kÞg for the
electronic part and via the Lamb-Mössbauer factor
e−WLM ¼ expf−1=2½ZðkgÞ þ ZðkÞ�g for the nuclear one
[35]. For an isotropic crystal with a cubic lattice these
factors can be estimated via the formula

ZðkÞ ¼ 3ℏ2jkj2
8MkBΘD

�
1þ 2π2

3

�
T
ΘD

�
2
�
; ðA1Þ

which is valid for temperatures much smaller than the
Debye temperature ΘD. Here, where kB is the Boltzmann
constant andM is the mass of the resonant isotope. In order
to observe the Mössbauer effect the crystal temperature
should be smaller than the Debye temperature ΘD. The
effect of crystal heating due to the electron beam propa-
gation and secondary processes lead to restrictions for the
PMR generation which are discussed in Appendix C. These
restrictions are strongest for the CsF crystal.
For α-iron the Debye temperature ΘFe

D ¼ 470 K,
for CsF ΘCsF

D ¼ 109 K, for InSb ΘInSb
D ¼ 163 K and for

Sc2O3 ΘSc2O3

D ¼ 476 K.

APPENDIX B: ELECTRON BEAM PARAMETERS

Regarding the electron beam parameters, we have
investigated the MAMI [21,22,24] accelerator facility with
electron beam energy 1000 MeV. The MAMI facility
provides electron beams with natural vertical emittance ϵ ¼
1.9 × 10−7 cm × rad with an electron current j ¼ 0.2 μA.
Under these conditions the spectrum of PXR was repeat-
edly studied experimentally [21,22,24]. For all simulations,
the angular spread in the horizontal y direction Δθey was
taken to be 10−3 rad.

APPENDIX C: SECONDARY PROCESSES AND
CRYSTAL HEATING

When an electron beam propagates inside a crystal in
addition to PMR there appear many secondary processes
such as bremsstrahlung and excitations of atoms of a
crystal. Bremsstrahlung is mainly emitted in a small cone
around an electron velocity for the case of ultrarelativistic
particles. Since PMR is directed under the large angle θB to
the electron velocity the bremsstrahlung radiation does not
contribute to the background of PMR (please see Fig. 1).
However, the bremsstrahlung quanta will be scattered on
the atoms of the medium inside the channel of an accel-
erator, which can lead to parasitic background. Moreover
the inelastic processes lead to the crystal heating. Let us
estimate these two effects on the example of 57

26Fe.

The energy losses of electrons with the energy
E ¼ 1 GeV propagating in a medium according to
Ref. [39] are given by

1

ρ

ΔE
Δz

¼ 1.879
MeV

cm−2 × g
: ðC1Þ

The density of iron equals ρ ¼ 7.874 g=cm3. This yields
the energy loss per unit length

ΔE
Δz

¼ 1.48 × 107
eV
cm

¼ 2.37 × 10−12
J
cm

: ðC2Þ

Let us take the crystal length of L ¼ 0.5 cm and the
MAMI electron current of 100 μA. This current corre-
sponds to N ¼ 6.25 × 1014 electrons per second. As a
result, for these parameters we get the total power loss

ΔW ¼ ΔE
Δz

LN ≈ 740
J
s
: ðC3Þ

For this reason, the experiment for the observation of
PMR will require cooling of the crystal, similar to high-
heat-load x-ray crystal optics (see, e.g., [40]).
Now let us estimate the number of secondary particles

that are produced due to bremsstrahlung that appeared from
our electron beam propagating in the crystal. The power
losses of the electron to produce bremsstrahlung are of the
same order of magnitude as the power losses for inelastic
processes [41] and for the MAMI parameters (for the Fe
crystal) are

ΔWrad ≈
EZ

1600me
ΔW ≈ 1.5 × 1023 eV=s: ðC4Þ

If the electron energy ∼1 GeV then the average energy
of bremsstrahlung quanta is ∼500 MeV. As a result, the
number of bremsstrahlung quanta is

Nrad ¼ 3 × 1014 quanta=s: ðC5Þ

As was already discussed the bremsstrahlung quanta are
emitted mainly in the direction of the particle velocity in the
ultrarelativistic case. Therefore, they are not emitted in the
direction of PMR (please see Fig. 1). However, these
bremsstrahlung quanta will be scattered on atoms of the
medium, which is located inside the channel of a synchro-
tron. This will lead to the creation of background electrons
that can influence the detection of PMR. Let us estimate
this background.
The scattering cross section of a photon by an electron is

σ ≈ 2πr20 and is weakly dependent on the energy of a
photon (here r0 ¼ e20=me is the classical electron radius). If
we consider that the channel of an accelerator is filled with
a gas under high vacuum of the pressure of 1 pBar then the
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characteristic concentration of electrons is n ∼ 3.87×
1011 cm−3. Here we took the average charge of molecules
of gases in the air to be ∼14.4. As a result, we estimate the
number of secondary electrons per unit length per second as

ΔNe

ΔL
≈ Nradnσ ≈ 0.058 electrons=ðs × cmÞ: ðC6Þ

Therefore if the characteristic length ΔL ∼ 100 cm we
obtain the number of secondary electrons per sec-
ond Ne ¼ 6 electrons=s.
If we consider that the secondary electrons are isotropi-

cally distributed then in the small cone with the solid angle
of 10−6 in which the PMR impulse is concentrated end up
∼6 × 10−6 electrons=s, which is smaller than the number of
photons in the PMR impulse.
Another secondary process, which we need to take into

account is the nuclear recoil due to the collision with the
electrons of a beam. This process can lead to the destruction
of the crystal. To estimate its contribution we consider that
the momentum transfer to the nucleus is determined by the
average angle of the multiple electron scattering θs. The
change of the momentum of the electron before and after
the collision is given via Eθs. Here we supposed an
absolutely elastic collision and ultrarelativistic electrons
jPej ∼ E. Consequently, the bunch of Ne electrons per
second exhibits the momentum change

ΔPe

Δt
≈ EθsNe: ðC7Þ

We now consider that this momentum is uniformly
transferred to the nuclei of the crystal in the region of
the volume ðLθsÞ2 × L where the electrons propagate.
Consequently, we can write the following expression for
the change in momentum ΔPnuc of a single nucleus:

ρnucθ
2
sL3ΔPnuc ≈ EθsNeΔt; ðC8Þ

where ρnuc is the number of nuclei in the unit volume of the
crystal.
The energy of the nucleus of a mass M during the time

interval Δt is expressed accordingly:

ΔEnuc ≈
ðΔPnucÞ2

2M
≈

E2

2Mθ2s

ðNeΔtÞ2
L6ρ2nuc

: ðC9Þ

As a result for the crystal 57
26Fe and for the MAMI

experimental conditions we find the final estimation for the
temperature increase of the crystal due to nuclear recoil,

ΔT½K� ≈ 3.1ðΔt½s�Þ2; ðC10Þ

which becomes comparable with the Debye temperature
during the time Δt ≈ 12 s. We also mention that the
realistic time interval will be larger since the provided

estimation does not take into account the thermal conduc-
tivity of the crystal.
We want to stress here that the proposed experimental

conditions for the observation of PMR are coincident with
the conditions under which the PXR was experimentally
observed [21,22,24]. Since in the PXR experiments the
crystal was not destroyed we consider that the crystal will
not be destroyed in the proposed experiment for the
observation of the PMR.

APPENDIX D: CRYSTAL PARAMETERS

We choose the most intense reflection for the α-iron
crystal, namely, the (011) reflection. For this reflection we
employ the following parameters, taken from the x-ray
database [42]:

ℏωB ¼ 14.41 keV; k0 ¼ 7.35 × 108 cm−1;

χ00e ¼ −0.15 × 10−4; χ000e ¼ 0.69 × 10−6;

χ0ge ¼ −0.10 × 10−4; χ00ge ¼ 0.67 × 10−6: ðD1Þ

The α-iron crystal has cubic crystalline structure with
interplanes distance d ¼ 2.87 × 10−8 cm. In addition, we
assume it to be enriched to 90% (the isotopic abundance
η ¼ 0.9) with the resonant Mössbauer isotope 57

26Fe, which
has the natural decay width Γ ¼ 4.66 × 10−12 keV. The
coefficient of internal conversion αC ¼ 8.56 and the struc-
ture factor SðgÞ ¼ 2 for 57

26Fe.
For CsF, we employ the (111) reflection with the

parameters [42]

ℏωB ¼ 80.997 keV; k0 ¼ 4.10 × 109 cm−1;

χ00e ¼ −0.25 × 10−6; χ000e ¼ 0.42 × 10−8;

χ0ge ¼ −0.15 × 10−6; χ00ge ¼ 0.39 × 10−8: ðD2Þ

The CsF crystal has a cubic crystalline structure with
interplanar distance d ¼ 6.008 × 10−8 cm. The natural
decay width of the 133

55 Cs isotope is Γ ¼ 72.77×
10−12 keV, the internal conversion coefficient αC ¼ 1.72,
the structure factor SðgÞ ¼ 4 and isotopic abundance η ¼ 1.
For InSb, we employ the (222) reflection with the

parameters [42]

ℏωB ¼ 37.133 keV; k0 ¼ 1.88 × 109 cm−1;

χ00e ¼ −0.15 × 10−5; χ000e ¼ 0.72 × 10−7;

χ0ge ¼ 0.17 × 10−7; χ00ge ¼ −0.46 × 10−8: ðD3Þ

The InSb crystal has cubic crystalline structure with
interplanar distance d ¼ 6.4789 × 10−8 cm. The isotope
121
51 Sb has a natural decay width Γ ¼ 0.13 × 10−6 eV, the
internal conversion coefficient αC ¼ 11.11. The structure
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factors are SðgÞ ¼ −4 for 121
51 Sb and SðgÞ ¼ 4 for 49In. The

isotopic abundance η ¼ 0.5725.
For Sc2O3, we employ the (312) reflection with the

parameters [42]

ℏωB ¼ 12.40 keV; k0 ¼ 6.28 × 108 cm−1;

χ00e ¼ −0.10 × 10−4; χ000e ¼ 0.22 × 10−6;

χ0ge ¼ 0.67 × 10−7; χ00ge ¼ 0.22 × 10−7: ðD4Þ

The Sc2O3 crystal has cubic crystalline structure with
interplanar distance d ¼ 9.21 × 10−8 cm. The isotope 45

21Sc
has a natural decay width Γ ¼ 1.4 × 10−15 eV, the internal
conversion coefficient αC ¼ 400. The structure factors are
SðgÞ ¼ 3.415 for 45

21Sc and SðgÞ ¼ −10.566 for 8O. The
isotopic abundance η ¼ 1.
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