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The scattering theory for two crossing finite-length metallic single-walled carbon nanotubes ex-
posed to an electromagnetic field has been developed based on a synthesis of the quantum transport
formalism and classical electrodynamics. The model of the point contact has been developed to be
incorporated into Hallén and Pocklington equations for crossing carbon nanotubes. The influence
of the contact conductance and position as well as angle between the tube axes on the tube polar-
izability has been analyzed in the range of 1 GHz–10 THz. The physical mechanisms responsible
for the electromagnetic interaction between crossing tubes with zero and non-zero intertube contact
conductance are shown and discussed. The influence of the coupling between the tubes on the
localized plasmon resonance in them has been demonstrated.
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I. INTRODUCTION

Electromagnetic properties of both individual carbon
nanotubes (CNTs) and CNT-networks have been actively
studied during the past two decades1–8. The theory
of electromagnetic (EM) wave scattering has been de-
veloped for individual single-walled CNT (SWCNT)2–4,
SWCNT bundle9, multiwalled CNT10, curved CNT11,
SWCNT with mesoscopic insertion8, and SWCNT with
dielectric coating12. Many interesting electromagnetic
phenomena have been predicted and discovered in CNTs
including slowed-down surface waves1, antenna effect in
finite-length CNTs2–4, screening effect due to the strong
depolarizing field12, near-field enhancement13, Purcell
effect14, and specific thermal radiation15. The first an-
tenna resonance or, in other words, localised plasmon
resonance (LPR) in CNTs has been observed as a broad
peak in the conductivity spectra of CNT films16. Peak
frequency has been shown to vary from 3 to 10 THz when
the tube length decreases from 1 µm to 300 nm6. More-
over, the magnitude of the terahertz conductivity of CNT
films strongly depends on the CNT length demonstrating
relatively weak coupling between adjacent CNTs in their
conductive network in the terahertz range17.

Though the electromagnetic response has been re-
ported for periodic CNT array18–20 and bundles of
CNTs9, the in-depth analysis of the interaction between
even two non-parallel CNTs has not been done yet. Also,
the electromagnetic theory of CNT network taking into
account both electromagnetic interaction and intertube
transport between adjacent CNTs has not been devel-
oped yet. Note, that modeling of the coupling at the

nanoscale is quite complicated as it should take into ac-
count both the electromagnetic coupling and overlapping
of the wave functions21–23. Currently, only the mutual
impedance of two non-touching CNT antennas has been
studied2,24.

Recently, simple Waterman-Truell approach has been
successfully applied in Ref. 25 to describe conductiv-
ity spectrum of CNT film in the terahertz range. The
main approximation of this approach is the omission of
the intertube interaction. Justification of this simplifi-
cation has not been given yet due to a high complex-
ity of the problem. Let us point out the inconsistencies
between the experimental data and the theoretical de-
scription based on the Waterman-Truell approach in the
frequency range below the LPR peak: (i) frequency de-
pendence of the measured effective conductivity of the
CNT film is weaker than that predicted by the theory26;
(ii) concentration dependence of the effective conductiv-
ity follows power-law behavior with the exponent being
larger than unity27,28, whereas the Waterman-Truell ap-
proach predicts linear dependence; (iii) dielectric loss
tangent of CNT film appears to be much higher than
that obtained from the theory17. We believe that intro-
duction of the intertube electron transport into the model
of electromagnetic interaction between the CNTs can re-
duce inconsistencies between the experimental data and
the theoretical description.

Here, we present a scattering theory for two interact-
ing SWCNTs as a first step toward developing the the-
ory of CNT-networks. We formulate an electrodynamic
boundary-value problem for two crossing finite-length
carbon nanotubes exposed to an electromagnetic field.
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The problem is reduced to both Hallén and Pockling-
ton equations. The conductance of the contact between
CNTs is described by the quantum transport theory of
the mesoscopic structure. The intertube current is taken
into account by (i) a discontinuity of axial currents in
CNTs, and (ii) by an introduction of the extra charges
at the crossing points of the CNTs. The polarizabili-
ties of crossing CNTs are calculated and analyzed. The
influence of the tunneling and electromagnetic coupling
between the adjacent tubes on the localized plasmon res-
onance in the CNTs is shown. Our study provides a
justification of the applicability of Waterman-Truell ap-
proach for CNT network at and above the frequency of
the LPR. On the other hand, we demonstrate that the in-
tertube coupling cannot be excluded from consideration
in the frequency range below the LPR. This paper is a
continuation of our research on the synthesis of the elec-
trodynamics and the theory of electrical nano-circuits8.

II. THEORETICAL FRAMEWORK

A. Boundary-value problem

Let a system of two crossing finite-length single-wall
carbon nanotubes be located in a host medium with
permittivity ε (host relative permittivity is εh = ε/ε0,
ε0 = 8.85 × 10−12 F/m) (see Fig. 1). Let us designate
the CNTs by index m, m = 1, 2. The m-th tube is of
radius am, length Lm, and has axial surface conductivity
σm. The angle between the CNT axes is θ (θ ≤ π/2),
and the shortest distance between them is D + a1 + a2,
where D is a distance between the surfaces of the tubes
at the crossing point (D ≥ 0.25 nm, see Ref. 29).

FIG. 1. Geometry of two crossing CNTs of lengths L1 and L2.
Axes z and z2 coincide with the axes of the 1st and 2nd CNTs,
respectively. Also, r1 and r2 denote the distances between

CNT edges and the crossing point. Vectors E
(0)
± show the

direction of the incident fields taken for numerical calculations
in Sec. III.

Let us choose two cylindrical coordinate systems
(ρ, ϕ, z) and (ρ2, ϕ2, z2) so that the axes z and z2 coincide
with the axes of the 1st and 2nd CNTs, respectively (see
Fig. 1). The 1st CNT occupies the region z ∈ [0, L1]

and the intertube contact occurs at the point with coor-
dinate z = r1, 0 < r1 < L1. The 2nd CNT occupies the
region z2 ∈ [0, L2] and the intertube contact takes place
at z2 = L2 − r2, 0 < r2 < L2.

The system of the crossing CNTs is exposed to an inci-
dent electromagnetic field with the axial components on
the surface of the 1st and 2nd tubes being Eex

1z(z, t) =

E
(0)
1z (z)exp(−iωt) and Eex

2z2(z2, t) = E
(0)
2z2

(z2)exp(−iωt),
respectively. Here, ω is an angular frequency. Note also
that am ≪ λ, where λ is a wavelength of the incident
field. Furthermore, we shall consider the low frequency
range (< 10 THz) where only intraband electron tran-
sitions are allowed in the CNTs. As these transitions
contribute to the axial conductivity30, only the axial elec-
tric surface current density jm with polar symmetry are
excited in the m-th CNT; then j1(ϕ, z) = j1(z), and
j2(ϕ2, z2) = j2(z2).

We shall model CNTs as finite length hollow cylin-
ders with axial surface conductivity found from quan-
tum mechanical considerations in the tight-binding
approximation1. For a small radius (< 2 nm) metallic
CNT, the surface conductivity is given by1

σm(ω) =
2ie2υF

π2h̄am(ω + iν)
, (1)

where υF is the Fermi velocity for a CNT, υF ≃ 106

m/s; h̄ is the reduced Planck constant; e is the electron
charge; ν is the electron relaxation frequency; ν = τ−1,
where τ is the electron relaxation time. We shall neglect
the influence of the adjacent tube on the intrinsic tube
conductivity σm within the contact area, as this influence
is rather weak29.

We suppose that the axial current on each tube has a
polar symmetry even at the presence of intertube tunnel-
ing. Then the current on the 1st CNT satisfies the fol-
lowing boundary conditions at the contact point, z = r1

j1(r1 + 0)− j1(r1 − 0) = It/(2πa1) , (2)

∂j1
∂z

∣∣∣∣
z=r1−0

=
∂j1
∂z

∣∣∣∣
z=r1+0

, (3)

where It is an intertube tunneling current taken to be
directed from the 2nd to the 1st CNT (see Fig. 2(a)).
Condition (2) stems from the Kirchhoff’s law while con-
dition (3) expresses a continuity of the charge distribu-
tion at point z = r1 (the relation between the charge
and current densities is shown in Eq. (45)). The absence
of concentrated charges on the 1st CNT edges must be
ensured by the edge conditions for the current

j1(0) = j1(L1) = 0 . (4)

Similar boundary conditions are true for the current j2



3

on the 2nd CNT in the coordinate system (ρ2, ϕ2, z2)

j2(L2 − r2 + 0)− j2(L2 − r2 − 0) = −It/(2πa2) , (5)

∂j2
∂z2

∣∣∣∣
z2=L2−r2−0

=
∂j2
∂z2

∣∣∣∣
z2=L2−r2+0

, (6)

j2(0) = j2(L2) = 0 . (7)

Let us note that the current discontinuity in (2) and
(5) leads to the localization of charges −q and +q,
q = iω−1It, at the point of junction on the 1st and 2nd
CNTs, respectively. They are unphysical as their den-
sity is infinite. Those charges should be compensated in
our model by the charges induced by intertube current
It. Indeed, the intertube current It can be modeled as a
dipole with the charges +qt and −qt, where

qt = iω−1It . (8)

The charges +qt and −qt are distributed on the infinitely
thin rings of radius a1 and a2 on the surface of the 1st and
2nd CNTs, respectively, at the point of junction (see Fig.
2(a,b)). In this case, the infinite charge density due to
the current ”jump” in CNTs is compensated completely
by the charge density caused by the intertube current.

(c)

It It

+qt
(b)

2-nd CNT

I4= I3 - It

I2= I1+ItI1 I2

I3 I4

It

1-st CNT

I1 I2

I3 I4

(a)

-qt

I1 I2

I3 I4

q = i It 

zz = r
1

FIG. 2. (a) Scheme of two CNTs with the tunnel junction at
z = r1. It is a current through the junction. I1, I2, I3, and I4
are currents in CNTs on the opposite sides in respect to the
junction. For simplicity, tubes are shown to be parallel; in
general, they could be non-parallel. (b) Same as (a) except,
that the tunneling current element is replaced by the dipole
with the charges +qt and −qt, qt = iω−1It, on the CNT
surface at z = r1. (c) Same as (b) except, that the charges
+qt and −qt are replaced by the azimuthally symmetrical
homogenous axial current It having a jump at z = r1 from
It down to 0 in the 1st CNT and from 0 up to It in the 2nd
CNT, respectively.

We shall formulate the boundary value problem con-
cerning only the 1st CNT in the coordinate system
(ρ, ϕ, z); for the 2nd CNT, it can be done in the same
way in the system (ρ2, ϕ2, z2). The scattered electromag-
netic field induced by the current j1 can be expressed in
terms of the electric Hertz potential Π(r) = Π(ρ, z)ez
which satisfies the Helmholtz equation:

(∇2 + k2)Π = 0 , (9)

where ez is a unit vector along the z-axis, k =
√
εhω/c

is the wave number, and c is the speed of light in vac-
uum. The scattered fields have the following non-zero
components:

E(1)
ρ =

∂2Π

∂z∂ρ
, E(1)

z =
( ∂2

∂z2
+ k2

)
Π , H

(1)
ϕ = iεω

∂Π

∂ρ
.

(10)
Expressions (10) can be used to find the field scattered
by the 1st CNT on the surface of the 2nd CNT.

The boundary conditions for Eq. (9) for the 1st CNT
can be written as1

∂Π

∂ρ

∣∣∣∣
ρ=a1+0

− ∂Π

∂ρ

∣∣∣∣
ρ=a1−0

=
j1(z)

iωε
, z ∈ (0, L1) , (11)

∂Π

∂ρ

∣∣∣∣
ρ=a1+0

=
∂Π

∂ρ

∣∣∣∣
ρ=a1−0

, z ∈ (−∞, 0) ∪ (L1,+∞) , (12)

Π|ρ=a1+0 = Π|ρ=a1−0 , −∞ < z < +∞ . (13)

Let the electromagnetic field produced by the cur-
rent j2 be defined on the surface of the 1st tube as

E
(2)
1 (a1, ϕ, z). Since only azimuthally symmetric compo-

nent of this field contributes to the axial current in the
1st CNT, we assume that E

(2)
1z (ρ = a1, ϕ, z) = E

(2)
1z (ρ =

0, z) ≡ E
(2)
1z (z). Similarly, let E

(1t)
1z and E

(2t)
1z be z com-

ponents of the electric fields induced on the 1st CNT by
the charges +qt and −qt, respectively. The total axial
field on the surface of the 1st CNT is

Etot
z (a1, z) = E

(0)
1z (z) + E

(2)
1z (z) + E

(2t)
1z (z) + E

(1t)
1z (z)+(

∂2

∂z2
+ k2

)
Π(a1, z) , (14)

where the last term is the field scattered by the 1st CNT

(see E
(1)
z in Eqs. (10)).

Surface current density on the surface of the 1st CNT
in the local approximation satisfies the Ohm’s law:

j1(z) = σ1E
tot
z (a1, z) , (15)

Intertube current can be found as

It = Gd(U1 + U2) , (16)

where Gd is the two-terminal intertube conductance that
can be found from the four-terminal Landauer formalism
(see Appendix A); U1 (U2) is intertube voltage caused by
the current density j1 (j2) and charge +qt (−qt).
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It has been found from measurements31 that the con-
ductance of the intertube junction between metallic
CNTs is in the range of 0.04G0–0.13G0, where G0 =
e2/(πh̄). Theoretical calculations predict that Gd de-
pends on the: (i) crossing angle32,33, (ii) contact distance
and contact force29,34, (iii) interlinking bonds35, and (iv)
presence of physisorbed molecules36 or linker atoms37.
To obtain the unique solution of the boundary value

problem for two crossing CNTs, the boundary conditions
must be supplemented by radiation conditions38.

B. Pocklington type equation

Let us now present a system of Pocklington type equa-
tions with the exact kernels for two crossing CNTs. The
solution of Helmholtz equation (9) with boundary condi-
tions (11) - (13) is sought as a single-layer potential for
the field scattered by the current j1:

Π(ρ, z) =
ia1
εω

∫ L1

0

j1(z
′)G(ρ, z − z′)dz′ , (17)

where

G(ρ, z) =

∫ 2π

0

exp
(
ik
√
a21 + ρ2 − 2ρa1 cosϕ+ z2

)
4π
√
a21 + ρ2 − 2ρa1 cosϕ+ z2

dϕ .

(18)
Substitution of (17) into (14) allows one to obtain Pock-
lington integro-differential equation for the 1st CNT.
Let us first find a scalar potential φ = −∂Π/∂z from

(17). Replacing ∂G/∂z → −∂G/∂z′, integrating by
parts, and taking into account (2) and (3), we arrive at

φ(ρ, z) = − ia1
εω

[j1(0)G(ρ, z)− j1(L1)G(ρ, z − L1)]−

ia1
εω

(∫ r1−0

0

+

∫ L1

r1+0

∂j1(z
′)

∂z′
G(ρ, z − z′)dz′

)
−

ia1
εω

(j1(r1 + 0)− j1(r1 − 0))G(ρ, z − r1) . (19)

Because of the edge conditions (4), the terms with j1(0)
and j1(L1) equal zero in (19). The last term in (19),
comprising j1(r1 + 0) − j1(r1 − 0), determines the field
produced by the charge −q, q = iω−1It, which appears
due the current discontinuity at z = r1 according to (2).
This term is equal in magnitude but opposite in sign to
the potential φt produced by the the charge +qt on the
1st CNT:

φt(ρ, z) =
iIt

2πεω
G(ρ, z − r1) . (20)

The axial electric field E
(1t)
z produced by the charge +qt

is E
(1t)
z (ρ, z) = −∂φt(ρ, z)/∂z. The intertube voltages

U1 can be found as follows

U1 = φ(a1+D, r1)+φt(a1+D, r1)−φ(a1, r1)−φt(a1, r1) .
(21)

Intertube voltage U2 produced by the current j2 and
charge −qt can be found in a way analogous to (19)-(21).
The axial field produced simultaneously by the current
j1 and charge qt is

∂2Π

∂z2
+ k2Π+ E(1t)

z =
ia1
εω

(∫ r1−0

0

+

∫ L1

r1+0

dz′×

[
∂j1(z

′)

∂z′
∂G(ρ, z − z′)

∂z
+ k2j1(z

′)G(ρ, z − z′)

])
. (22)

After substitution of (22) into (14) at ρ = a1 and tak-
ing into account (15), we arrive at the Pocklington type
equation for the 1st CNT

j1(z)

σ1
= E

(0)
1z (z) + E

(2)
1z (z) + E

(2t)
1z (z)+

ia1
εω

(∫ r1−0

0

+

∫ L1

r1+0

∂j1(z
′)

∂z′
∂G(a1, z − z′)

∂z
dz′

)
+

ia1
εω

∫ L1

0

k2j1(z
′)G(a1, z − z′)dz′ . (23)

The field E
(2)
1z + E

(2t)
z produced by the current j2 and

charge −qt can be found by analogy to (22). Equation
(23) must be supplemented by Eq. (16), Pocklington
type equation (B1) for the 2nd CNT (see Appendix B),
and boundary conditions (2)-(7). In solving the system
of the resulting equations (23) and (B1), we used suit-
ably smooth sub-domain basis functions for the current
expansion, though the application of pulse functions is
also possible39.

C. Hallén type equation

Toward an efficient numerical solution at lower fre-
quencies, we formulated the scattering problem using
the Hallén type equations. Let us note that the forth
and fifth terms in (14) tend to infinity at z → r1, that
leads to difficulties in a numerical solution of Hallén type
equation describing the boundary value problem. Let us
also notice that the sum of the the forth and fifth terms
in (14) is finite. To avoid infinite terms in (14), we re-
place in our task the charges +qt and −qt by the follow-
ing surface current densities j1a(ρ = a1, z) ≡ j1a(z) and
j2a(ρ2 = a2, z2) ≡ j2a(z2) on the surface of infinite-length
cylinders which coincide with the 1st and 2nd CNTs, re-
spectively (see Fig. 2(b,c)),

j1a(z) =

{
It/(2πa1), z ∈ (−∞, r1)

0, z ∈ (r1,+∞)
, (24)

j2a(z2) =

{
0, z2 ∈ (−∞, L2 − r2)

It/(2πa2), z2 ∈ (L2 − r2,+∞)
. (25)

This replacement is justified for electrically small sys-
tem of CNTs (L1 + L2 ≪ λ) as the current densities
j1a and j2a produce the same scalar field potentials as
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charges +qt and −qt, respectively (see Appendix C). As
discussed in Appendix C, there is some arbitrariness in
choosing the currents j1a,2a. Then, the total axial field on
the surface of the 1st CNT (z ∈ [0, L1]) can be expressed
as

Etot
z (a1, z) ∼= E

(0)
1z (z) + Ẽ

(2)
1z (z) +

(
∂2

∂z2
+ k2

)
Π̃(a1, z) ,

(26)

where Ẽ
(2)
1z (z) is an electric field produced by j2 + j2a,

Π̃ is a Hertz potential of the field produced by the cur-
rent density j1 + j1a; Π̃ satisfies Helmholtz equation and
boundary conditions

∂Π̃

∂ρ

∣∣∣∣∣
ρ=a1+0

− ∂Π̃

∂ρ

∣∣∣∣∣
ρ=a1−0

=

1

iωε

{
j1 + j1a, z ∈ [0, L1]

j1a, z ∈ (−∞, 0) ∪ (L1,+∞)
, (27)

Π̃
∣∣∣
ρ=a1+0

= Π̃
∣∣∣
ρ=a1−0

, −∞ < z < +∞ . (28)

Taking into account the relation between the electric
potential φ and Hertz potential Π̃, φ = −∂Π̃/∂z, one can
obtain the intertube voltage

U1 ≈ ∂

∂z

[
Π̃(a1, z)− Π̃(a1 +D, z)

]∣∣∣∣
z=r1

. (29)

The second component of the intertube voltage U2 can
be found in the same way from the field induced by j2
and j2a.
Thus, the impact of the tunneling current on the cur-

rent in the tubes could be taken into account by means
of the boundary conditions (2) and (5) and introduction
of the extra currents (24) and (25).

The solution of Helmholtz equation for Π̃ with bound-
ary conditions (27) - (28), taking into account (24), is
sought as a single-layer potential

Π̃(ρ, z) =
ia1
εω

(∫ L1

0

j1(z
′)G(ρ, z − z′)dz′+

It
2πa1

∫ r1

−∞
G(ρ, z − z′)dz′

)
, (30)

where j1(z) and It are the unknown surface current den-
sity and the intertube tunnel current to be found.
The potential Π̃(a1, z) can be expressed from (26) as

follows

Π̃(a1, z) =

∫ L1

0

Etot
z (a1, z)e

ik|z−z′|dz′ − Φ(z) , (31)

where

Φ(z) =

∫ L1

0

(
E

(0)
1z (z) + Ẽ

(2)
1z (z)

)
eik|z−z′|dz′+{

C1e
ikz + C2e

−ikz, z ∈ (0, r1)

D1e
ikz +D2e

−ikz, z ∈ (r1, L1)
(32)

with C1,2 and D1,2 being unknown constants to be de-
termined from the edge conditions (2)-(4).

After substitution of (31) into (30) at ρ = a1, and
taking into account (15), we arrive at the Hallén equation
for the 1st CNT∫ L1

0

[
σ−1
1 eik|z−z′| +

2a1k

εω
G(a1, z − z′)

]
j1(z

′)dz′ +

kIt
πεω

∫ r1

−∞
G(a1, z − z′)dz′ = Φ(z) . (33)

Let us notice that the form of the Hallén equation (33)
depends on the choice of the current j1a. Equation (33)
must be supplemented by Eq. (16) and Hallén equation
(B2) for the 2nd CNT (see Appendix B).

The integrals in (33) and (B2) can be handled by a
quadrature formula, thereby transforming (33) and (B2)
into matrix equations. As the current varies significantly
near the crossing point, the discretization step along the
z axis should be comparable with tube diameter in the
vicinity of this point. The matrix equations can be solved
numerically to find the current density in the CNTs and
intertube current It. In solving numerically the Hallén-
type integral equations by the collocation method we ar-
rive at a matrix that is close to degenerate at low frequen-
cies. This leads to instability of the numerical matrix
inversion in the quasistatic regime.

We compared the results given by Hallén and Pockling-
ton equations and found a good agreement within the er-
ror of numerical computations (< 1%) for data presented
in Fig. 6. We also found that the Pocklington equation
gives a stable solution in a wide frequency range (> 1
MHz), whereas Hallén equation produces stable results
only at high frequencies (> 50 GHz) for the parameters
of the crossing tubes same as in Fig. 7. Results presented
below in Sec. III have been obtained at high frequencies
using Hallén equation (Figs. 3-5,9,10) and at low fre-
quencies using Pocklington equation (Figs. 6-8).

D. Superposition of CNT currents and
introduction of the equivalent RC-circuit

Consider two crossed CNTs exposed to the incident
arbitrary-oriented electromagnetic field with electric field
magnitude E(0). Let the current densities j1,2 and inter-
tube current It be known from the solution of Eqs. (33),
(B2) and (16). As follows from (33) and (B2), the current
densities j1,2 can be divided into two parts

j1(z) = j
(e)
1 (z) + j

(c)
1 (z) , j2(z2) = j

(e)
2 (z2) + j

(c)
2 (z2) ,

(34)

where the terms j
(e)
1,2 satisfy (33), (B2) and (2)-(4) with

It = 0; the terms j
(c)
1,2 satisfy the same equations but with

E
(0)
1z (z) = E

(0)
2z2

(z2) = 0 and It ̸= 0. The current densities

j
(e)
1,2(z) describe the CNT responses to the external field

when Gd = 0. The current densities j
(c)
1,2(z) describe the
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transport of the charges passing between the CNTs due
to the tunneling current It.

Since j
(e)
1,2 ∝ E(0) and j

(c)
1,2 ∝ It, the current densities

j1,2 in (34) can be represented through normalized cur-

rent densities j
(e,c)
1n,2n as follows

j1(z) = j
(e)
1n (z)E(0) + j

(c)
1n (z)It , (35)

j2(z2) = j
(e)
2n (z2)E

(0) + j
(c)
2n (z2)It . (36)

Then the intertube voltage U1+U2 produced by the cur-
rents j1 and j2 can be divided into two components

U1 + U2 = PE(0) −KIt, (37)

where P and K are the proportionality coefficients. The
term PE(0) in (37) is a voltage produced by the cur-

rents j
(e)
1,2, it can be considered as the external voltage

applied to the intertube contact. The term −KIt in (37)

is a voltage produced by the currents j
(c)
1,2; it can be inter-

preted as the depolarizing voltage induced by the charges
transferred between the tubes.
Our numerical calculations show that the frequency

dependencies of the coefficients K and P can be approx-
imated with high accuracy in the range below the fre-
quencies of the LPR and electron relaxation frequency ν
in the 1st and 2nd CNTs as follows:

K(ω) ≈ K
′
+ iω−1K

′′
, (38)

P (ω) ≈ P
′
+ iωP

′′
, (39)

where K
′
, K

′′
, P

′
, and P

′′
are real positive values. Note

that Im(P ) ≪ Re(P ) and Im(K) ≫ Re(K). For realistic
values of Gd, the inequality G−1

d ≫ Re(K) is true.
After substitution of (38) and (39) into (37) and sub-

stitution of (37) into (16), one can express the current It
from (16) as follows:

It ≈
(P

′
+ iωP

′′
)E(0)

G−1
d +K ′ + iω−1K ′′ . (40)

Equation (40) is true in the frequency range below the
LPR peak. It can be considered as an expression for the
current in the equivalent RC-circuit (or RC-filter) com-
posed of a resistor with the resistance R = G−1

d + K ′

and a capacitor with the capacitance C = 1/K
′′
; fre-

quency dependent voltage U0 = (P
′
+ iωP

′′
)E(0) is ap-

plied to this RC-circuit. The circuit has a cutoff fre-
quency fc = (2πRC)−1 defining two response regimes:
(i) at f ≪ fc, the capacitor has sufficient time to charge
up, so that the current It is strongly suppressed by the
capacity voltage; hereafter, this regime will be called a
regime of the high-transparency of the intertube junc-
tion; (ii) at f ≫ fc, the capacitor has insufficient time to
charge up, so that the current It is determined mainly by
the external voltage U0; this regime will be referred as a
regime of the low-transparency of the intertube junction.
Both regimes will be considered in Sec. III B.

E. Electromagnetic parameters of CNTs

Let dm = dmem be a dipole moment of the m-th CNT,
where em is a unit vector along the m-th CNT, m = 1, 2,
and let E(0) be a vector of the incident field. Let us define
a polarizability tensor α̂ of the system of the crossing
CNTs as follows

d1 + d2 = α̂E(0) . (41)

Then

α̂ = α11e1⊗e1+α12e1⊗e2+α21e2⊗e1+α22e2⊗e2 , (42)

where αmn (m,n = 1, 2) are parameters that relate the
magnitude of dipole moments and projections of the in-
cident field on the CNT axesd1

d2

 =

α11 α12

α21 α22

E(0) · e1
E(0) · e2

 . (43)

Once we know the surface current density, we can cal-
culate the magnitude of the dipole moments ofm-th CNT
in the long-wavelength regime (L1 + L2 ≪ λ)

dm =
2πiam

ω

∫ Lm

0

jm(z)dz , m = 1, 2 . (44)

For further analysis, we shall consider a symmetric ge-
ometry providing excitation of similar currents in both
tubes, i.e. L1 = L2 = L, σ1 = σ2, r1 = r2 = r < L/2,

E
(0)
1z = ±E

(0)
2z2

. Then α11 = α22, α12 = α21, and

d1 = ±d2. We shall refer to the value α1z = d1/E
(0)
1z =

α11 ±α12 as the polarizability of the 1st CNT that takes

place at E
(0)
1z = ±E

(0)
2z2

.
The surface charge density on the 1st CNT can be

found from the continuity equation as

ρc1(z) = − i

ω

∂j1(z)

∂z
, z ∈ (0, L1) . (45)

The power Pcn dissipated in the crossed CNTs by the
currents j1 and j2 can be found as follows12:

Pcn = π
∑

m=1,2

amRe
(
σ−1
m

) ∫ Lm

0

|jm(z)|2 dz . (46)

The dissipated power Pc caused by the tunneling cur-
rent It can be obtained as40:

Pc =
|It|2

2Gd
. (47)

The power Pc is dissipated within a distance of the or-
der of the electronic mean free path from the intertube
junction.
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FIG. 3. Frequency dependence of (a) the real and (b) imag-
inary parts of the polarizability of the 1st CNT at different

distances r = 0.1, 0.25L and different incident fields E
(0)
+ and

E
(0)
− ; θ = 45◦. There is no current between the tubes, i.e.

Gd = 0. The polarizability of single CNT is shown by solid
line.

III. NUMERICAL RESULTS AND DISCUSSION

In our calculations, we consider two identical zigzag
(15,0) CNTs of length L = 1 µm crossing as shown in
Fig. 1 at angle θ ≤ 90◦ and r ≤ L/2. For calculation of
the tube conductivity, we shall use an electron relaxation
time of τ = 100 fs27.
We shall consider two orientations of the incident field,

as shown in Fig. 1: (i) E
(0)
1z = E

(0)
2z2

= 3× 104 V/m (elec-

tric field E
(0)
+ ) and (ii) E

(0)
1z = −E

(0)
2z2

= 3 × 104 V/m

(electric field E
(0)
− ). Here, we neglect the variation of

the incident field within the CNT system, as the long-
wavelength regime is valid (λ ≫ L). Because of the mir-
ror symmetry of the problem geometry and the symmetry
of the incident field, the current and charge densities in
the tubes have the following symmetry j1(z) = j2(L−z2),
ρc1(z) = −ρc2(L− z2) if z = z2; here the current density
j1,2 and charge density ρc1,c2 on the 1st and 2nd CNTs
are considered in coordinate systems with axises z and
z2, respectively, as shown in Fig. 1. Then, the polariz-
abily is the same for these tubes, and we shall present
the parameters α1z, j1 and ρc1 only for the 1st CNT. For
comparison, we shall also reproduce data for a single 1
µm long zigzag (15,0) CNT.

A. Crossing CNTs with zero intertube conductance

Let us first assume that there is only electromag-
netic interaction between the tubes; the intertube cur-
rent equals zero (Gd = 0). Figure 3 shows the frequency
dependences of the real and imaginary parts of the po-
larizability α1z in the range 0.1–10 THz for the 1st CNT

at different positions of the crossing point r and different

orientations of the incident field, E
(0)
± . For comparison,

the polarizability of a single CNT is presented in Fig. 3
by solid line. All the spectra in Fig. 3(b) contain a broad
peak at ≈ 2.5 THz due to the first antenna (or localized
plazmon) resonance in finite-length CNT4.
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FIG. 4. Distribution of (a,b) the surface current density, (c,d)
charge-density, (e,f) radial and (g,h) axial fields on the surface
of the 1st CNT and single CNT at 1 THz; Gd = 0, θ = 45◦,
and r = 0.1L.

As shown in Fig. 3(b), the electromagnetic interaction
between the tubes leads (i) to a red shift of the LPR peak

from 2.53 THz to 2.26 THz for the incident field E
(0)
+ and

(ii) to the blue shift of this peak from 2.53 THz to 2.69

THz for the incident field E
(0)
− .

Physical mechanism of the electromagnetic interaction
is clear from Fig. 4 where the current density, charge den-
sity, as well as radial and axial fields on the CNT surface
are shown for the single tube and for the 1st CNT for dif-

ferent polarizations of the incident field, E
(0)
± , and f = 1

THz. Due to the polarization effect, there is high den-
sity charge distribution along the CNT (see Fig. 4(c,d)).

For the external field E
(0)
+ , the unlike charges are concen-

trated on the 1st and 2nd tubes near the crossing point.
Attraction between these charges leads to a sharp peak in
the total charge distribution at z/L = 0.1 (Fig. 4(c,d)).
This results in the enhancement of the total field in the
intertube gap (see a sharp peak at z/L = 0.1 in the ra-
dial field distribution of the 1st CNT in Fig. 4(e,f)). The
energy of the Coulomb interaction of unlike charges near
the crossing point is negative resulting in the red shift
of the LPR peak in comparison with the LPR peak of a
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single CNT (see Fig. 3(b)). This shift increases with the
charge density near the crossing point. Since the charge
density is maximal at minimal values of r, the LPR peak
shift is larger for smaller values of r. This tendency is

demonstrated in Fig. 3 (compare the spectra for E
(0)
+ at

r = 0.1L and r = 0.25L).
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FIG. 5. Frequency dependence of the polarizability α1z of the
1st CNTs for various (a,b) angles between CNTs θ = 3◦, 45◦,
D = 0.34 nm and (c,d) distances D ∈ {0.34, 25, 100} nm,
θ = 45◦; r = 100 nm; Gd = 0. The polarizability of a single

CNT is shown by the dotted line. The external field is E
(0)
+ .

For the incident field E
(0)
− , the like charges are accumu-

lated on the 1st and 2nd tubes near the crossing point.
Repulsion between these charges leads to a dip in the
total charge distribution at z/L = 0.1 (see Fig. 4(c,d)).
The radial field produced by the charge on each tube be-
comes weak at the crossing point (see Fig. 4(e,f)). Since
the energy of the Coulomb interaction between the like
charges near the crossing point has positive sign, the blue
shift of the LPR peak occurs in this case (see Fig. 3(b)).
The blue shift is typically smaller than the red one, as the
charge variation near the crossing point due to the inter-

tube interaction is smaller for the incident field E
(0)
− than

for E
(0)
+ . Thus, the electromagnetic interaction can shift

the LPR peak to higher or lower frequencies depending
on the direction of the incident field.
The existence of two plasmon modes has been reported

for a metallic nanoparticle dimer41–44. It has been shown
that such a dimer supports a bonding plasmon at lower
frequencies and an anti-bonding plasmon at higher fre-
quencies. Bonding (anti-bonding) plasmon occurs when
both particles are polarized in the same (opposite) di-

rections. For the crossing CNTs, the incident fields E
(0)
+

and E
(0)
− lead to the excitation of the collective plasmon

modes corresponding to the bonding and anti-bonding
plasmon modes, respectively.
Figure 5 shows the imaginary part of the polarizability

α1z of the 1st CNT at different angles θ and distances D

between CNTs for the incident field E
(0)
+ . For compar-

ison, the spectrum of a single CNT is presented by a
dotted line. One can see from Fig. 5 that the red shift
of the LPR peak is not strong in comparison with the
peak width, and it becomes weaker if the angle θ and
distance D increase. The larger the distance D and an-
gle θ the weaker is the interaction between the charges at
the crossing point and consequently, the smaller the shift
of the LPR peak. For example, as shown in Fig. 5(b),
the electromagnetic interaction between the tubes leads
to the peak shift from 1.85 THz to 2.21 THz due to an-
gle variation from 3◦ to 45◦. Figure 5(c,d) demonstrates
that the maximal red shift of the LPR peak occurs at
minimal value of D = 0.34 nm, and it vanishes when the
distance D exceeds 100 nm.

Thus, the electromagnetic coupling of the crossing
CNTs occurs by means of the Coulomb interaction of the
charges located near the crossing point. This interaction
is rather weak resulting in a slight variation of the tube
polarizability. Since the intertube voltage is maximal for

the incident field E
(0)
+ , in the next section, we shall con-

sider only this case taking into account intertube electron
transport.

B. Crossing CNTs with non-zero intertube
transport

Figure 6 shows the frequency dependence of the polar-
izabilities of a single CNT and the 1st CNT for various
intertube conductances. The spectrum of the imaginary
part of the polarizability Im(α1z) has two peaks: broad
gigahertz peak located in the range 1–700 GHz and LPR
peak appearing in the terahertz range 1–4 THz. The
center frequency of the gigahertz peak increases with in-
creasing the intertube conductance Gd, whereas the LPR
peak at 2.3 THz practically does not depend on the value
of Gd. Additionally, due to the intertube tunneling cur-
rent, the imaginary part of the polarizability increases
drastically (by a factor 10 or even 100) below 1 THz,
whereas the real part of the polarizability increases by a
factor of about 2.1. It should be noticed that two cross-
ing tubes do not behave as a single longer tube, however
their response is qualitatively similar to that of a CNT
with a short low-conductive section8.

For deeper understanding of the mechanism of the elec-
tromagnetic interaction of two crossing CNTs, we repre-
sented in Fig. 7 the spectra of the power Pcn dissipated
by the currents j1,2 and power Pc dissipated by the in-
tertube current Id for the case of Gd = 0.1G0. As shown
in Fig. 7, the inequality Pc > Pcn is true below 0.4 THz
thus explaining the high value of Im(α1z) in this range.
Moreover, the charge transfer between the tubes leads to
a reduction of the depolarizing field along the tubes re-
sulting in an increase of the value Pcn (compare Pcn at
Gd = 0.1G0 and Gd = 0 below 0.4 THz in Fig. 7).

Below the LPR peak (f < 2 THz), the crossing CNTs
can be considered as a capacitor. The intertube current
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FIG. 6. Frequency dependence of (a) the real and (b) imag-
inary parts of the polarizability of the 1st CNT for vari-
ous intertube conductances Gd ∈ {0, 0.01, 0.1}G0; θ = 45◦;
r = L/10. The polarizability of a single CNT is shown by
solid line.

can be described by Eq. (40) for RC-circuit (see Sec.
IID). The cutoff frequency fc of the RC-circuit corre-
sponds to the frequency of the gigahertz peak in Fig.
6(b). Let us indicate three regimes of the intertube tun-
neling for the case of Gd = 0.1G0:

(i) Regime of the high-transparency of the intertube
junction, f < 30 GHz. At low frequencies (f ≪ fc,
fc = 0.1 THz), the incident field oscillates quite slowly,
so that the charge carriers have enough time to pass
through the intertube junction and be redistributed be-
tween the tubes. For this regime, the approximate equal-
ity Re[α1z(f)] ≈ Re[α1z(0)] is true. Figure 8 demon-
strates the distributions of the current density j1 and
charge density ρc1 along the 1st CNT at 20 GHz. Cur-

rent density components j
(e,c)
1 obtained in accordance

with (34) and corresponding charge densities ρ
(e,c)
c1 =

−iω−1∂j
(e,c)
1 /∂z are shown in Fig. 8. The charge with

the density ρ
(e)
c1 oscillates along the 1st CNT and creates

”external” field in the gap between the tubes, while the
charge passing between the tubes spreads along the 1st

CNT with the density ρ
(c)
c1 and creates the ”depolariz-

ing” field in the gap. Distribution of the charge density

ρ
(c)
c1 is almost homogenous along the tube except near the

tube edges and crossing point (see Fig. 8(c,d)). Due to
the strong depolarization effect, resulting charge density

ρc1 = ρ
(c)
c1 + ρ

(e)
c1 at the crossing point is small (see Fig.

8(c,d)), the intertube votage is low, and the intertube
current is suppressed.

(ii) Intermediate regime, f ∈ (30, 500)GHz. The de-
polarizing field in the gap between the tubes decreases

as frequency increases. Though the current j
(c)
1 becomes

smaller, it is still comparable with j
(e)
1 , and the intertube

current Id reaches its maximum at f ≈ fc.
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FIG. 7. Frequency dependencies of the dissipated powers Pcn,
Pc, and Pcn + Pc at Gd = 0.1G0 and dissipated power Pcn at
Gd = 0; θ = 45◦; r = L/10.
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Gd = 0.1G0; θ = 45◦; r = L/10.

(iii) Regime of the low-transparency of the intertube
junction, f > 500 GHz. At high frequencies (f ≫ fc),
the incident field oscillates quite quickly, so that small
amount of charge can be transferred between the tubes
during the period of the field oscillations. In this range,
the value of Re[α1z] is close to that for Gd = 0 (see Fig.
6(a)). The total field in the gap between the tubes is

determined mainly by the charge density ρ
(e)
c1 , so that

the magnitude of intertube voltage and, consequently,
the dissipated power in the gap Pc practically do not
depend on frequency in the range between the gigahertz
and terahertz peaks (see Fig. 7). However the charge

density ρ
(c)
c1 and current density j

(c)
1 still should be taken

into account, as they contributes significantly into the
values of Im(α1z) and Pc in the range below 1 THz.

Localized plasmon resonance in the CNTs manifests it-
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self as a broad peak in the conductivity spectra of CNT
films and composites16,27,46. Based on the data on the
LPR peak at 2.3 THz in Fig. 6, we may conclude that (i)
the magnitude of this peak does not depend on whether
tubes are isolated or form a conductive network; (ii) the
high frequency side of this peak practically does not de-
pend on the intertube coupling (though, it depends on
the electron relaxation time in the CNTs and on the type
of the distribution function over the CNT length); (iii)
the low-frequency side of the peak strongly depends on
the intertube interaction. The latter leads to the peak
broadening in the direction of the lower frequencies. Also,
above conclusions (i) and (ii) justify application of the
homogenization theory of non-interacting nanoparticles
to describe the effective permittivity of CNT-based com-
posites and films at and above LPR frequency. Thus,
the Waterman-Truell formula adapted for CNT-based
media25 gives a good approximation for the estimation
of the effective parameters of CNT-based media in the
terahertz and infrared ranges.
It should be noted that the conductivity peak reported

at 3 THz for thin CNT films in Ref. 45 was associated
with plasmonic excitations due to reflections of the plas-
mon wave at the CNT intersections. Here, we have shown
that such a reflection is impossible. The reasons are (i)
the very week electromagnetic interaction between CNTs
(see Figs. 3 and 5), and (ii) negligibly small modification
of the intrinsic electron transport in the CNT near the
crossing point34,36.
Though the intertube conductance Gd depends on the

angle θ between the crossing tubes32,33, we shall not take
this into account in our further consideration. Figures
9(a,b) show the spectra of the imaginary part of the po-
larizability of the 1st CNT at different angles θ and dif-
ferent distances r; the intertube conductance is assumed
to be the same (Gd = 0.1G0). As shown in Fig. 9, the
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FIG. 10. Frequency dependence of the imaginary part of the
polarizability of a single CNT and the 1st CNTs for various
tube lengths, L = 250 nm and L = 1000 nm; r = 0.1L,
θ = 45◦; Gd = 0.1G0.

angle between the tubes slightly affects the tube polariz-
ability, whereas distance r impacts significantly the value
of Im(α1z). Below the LPR peak, the energy dissipation
in the CNTs is higher for smaller distance r. This oc-
curs due to the following reasons: (i) the charge density
is maximal near the CNT edges resulting in the high-
est intertube voltage and current; (ii) the total size of
the CNT system is larger at smaller r causing smaller
depolarizing field and, consequently, the higher current
density excited in the CNTs.

Figure 10 shows the spectra of the imaginary part of
the polarizability of a single CNT and the 1st CNT for
various tube lengths L = 250 nm and L = 1 µm and con-
stant values of r/L = 0.1, θ, and Gd. As shown in Fig.
10, the polarizability peaks are blue shifted with decreas-
ing tube lengths. The influence of the intertube coupling
is strong in the quasi-static regime of the electromagnetic
interaction, i.e. below the localized plasmon resonance.
The intertube current and its impact depend not only on
the conductivity of the intertube junction, but also on
the intertube voltage. The voltage, in turn, is caused by
depolarization effects and, consequently, it strongly de-
pends on the frequency, tube length, and relative position
of the intertube junction. Thus, the intertube coupling
is determined by the finite-size effect in the CNTs.

IV. CONCLUSION

Electromagnetic boundary-value problem of two cross-
ing finite-length SWCNTs has been formulated taking
into account the electromagnetic coupling and intertube
charge transport. The problem has been reduced to
Pocklington and Hallén-type equations with respect to
the current density in CNTs and intertube current. The
intertube current has been taken into account by (i) a
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discontinuity of the axial currents in the CNTs, and (ii)
by an introduction of the extra charges at the crossing
points of the CNTs. To incorporate the field of extra
charges into the Hallen-type equation, they have been
replaced by semi-infinite currents.
The current in the CNTs can be divided into two com-

ponents; one of them describes the charge oscillations
within the tubes, and the other – describes the oscillation
of the charge passing between the tubes. The intertube
current is shown to behave like the current in an equiv-
alent RC-circuit. The cutoff frequency of the RC-circuit
separates the regimes of high and low transparency of the
intertube junction.
The electromagnetic interaction between the crossing

tubes occurs due to the interaction of the charges concen-
trated near the crossing point; these charges create strong
radial scattered field which can be hundreds fold higher
than the incident field resulting in the field enhancement
in the gap between the tubes. Electromagnetic interac-
tion of the CNTs with zero intertube conductance shifts
slightly the LPR peak to the lower or higher frequencies
depending on the direction of the incident field. Due to
the intertube current, the charge is redistributed between
the tubes resulting in a weakening of the depolarizing
field in the CNTs and in appearance of the depolariz-
ing field in the gap between the CNTs. The intertube
current leads to a significant energy dissipation near the
crossing point of the CNTs at low frequencies resulting
in manifold increase of the total energy dissipation. The
intertube coupling practically does not change the mag-
nitude and frequency of the LPR peak, but modifies its
low-frequency side. Due to a weak intertube coupling
at and above the LPR peak, the Waterman-Truell for-
mula is a good approximation for the description of the
effective permittivity of CNT-networks.
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Appendix A: Application of the four-terminal
Landauer formula to the junction of the crossing

CNTs

Junction between two crossing CNTs can be modeled
as a four-terminal mesoscopic system. Each short sec-

2-nd CNT
3

4

2I3
I2

I1 I4

1 Leads

Reservoirs

1-st CNT

FIG. 11. Schematic illustration of two crossing CNTs decom-
posed following the Landauer-Büttiker concept of quantum
transport. CNT junction (black circle) has four terminals
connected by leads to reservoirs.

tion of the tubes near the junction plays a role of a lead
connecting the junction to the rest of the tube which is
considered as a reservoir (see Fig. 11). Let the electro-
chemical potentials of the n-reservoirs (m,n = 1, 2..4) be
µn, and the current in the n-lead be In. The relation
between µn and In in the case of multichannel leads can
be expressed by the four-terminal Landauer formula47,48:

In =
e

h

(Nn −Rnn)µn −
∑
m ̸=n

Tnmµm

 . (A1)

where Nn is a number of conductive channels in the nth
lead, Nn = 2 for metallic undoped SWCNT49. Also in
A1, Tnm is a total transmission function for carriers in-
cident in the mth lead to be scattered by junction into
the lead n; Rnn is a total reflection function for carriers
incident in the nth lead to be reflected into the the same
lead, thus

Tnm =

Nn∑
i=1

Nm∑
j=1

Tnm,ij , Rnn =

Nn∑
i=1

Nn∑
j=1

Rnn,ij , (A2)

where Tnm,ij is a probability for carriers incident in the
channel j of the mth lead to be transmitted into the
channel i of the nth lead ; Rnn,ij is a probability for
carriers incident in the jth channel of the nth lead to be
reflected into the ith channel of the same lead.

If the electrochemical potentials µi is the same in all
reservoirs, the currents must vanish in the leads, i.e. In =
0. In this case, (A1) is transformed into the following
expressions:

Rnn +
∑
m ̸=n

Tnm = Nn, . (A3)

Carrier transmission coefficients between two of the four
terminals Tnm can be found from ab initio quantum-
mechanical calculations34,36,37.

Let us now determine the relation between Tnm and
two-terminal intertube conductance value Gd used in
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formula (9). For simplicity, we consider the case when
the external magnetic field is absent. Due to the time-
reversal invariance and the symmetry of the lead posi-
tions with respect to the junction, we can write the fol-
lowing relations for intertube transmission coefficients:
T13 = T31 = T24 = T42 and T14 = T41 = T23 = T32, and
for intratube transmission coefficients: T12 = T21 and
T34 = T43

47,48.
Let us next assume that four arbitrary electrochemical

potentials µn are applied to four terminals of the junc-
tion. Using (A3) and relations between intratube and
intertube transmission coefficients introduced above, we
can rewrite equations (A1) in the following way:

I1 =
e

h
(T12∆µ12 + T13∆µ13 + T14∆µ14)

I2 = − e

h
(T12∆µ12 − T23∆µ23 − T24∆µ24)

I3 =
e

h
(T34∆µ34 + T31∆µ31 + T32∆µ32)

I4 = − e

h
(T34∆µ34 − T41∆µ41 − T42∆µ42) .

(A4)

where ∆µnm = µn − µm, n,m = 1, 2...4. The first term
in each equation of (A4) corresponds to the intratube
transport, while other two terms are responsible for the
intertube tunneling.
After adding the first equation to the second one and

the third equation to the fourth one in (A4), we obtain:

It = I1 + I2 = −(I3 + I4) =
e

h
(T13 + T14)(∆µ13 +∆µ24),

(A5)
where It is the total intertube current.
As mentioned in section III, due to the depolarization

effect, the total axial field in CNT is much lower than
the radial field determining the intertube voltage. This
means that for short length leads (about several nanome-
ters) we can accept that µ3 = µ4, µ1 = µ2 and, conse-
quently, ∆µ13 = ∆µ24 = eU , where U is the intertube
voltage. Then Eq. (A5) is transformed into (16) with
the following intertube conductance

Gd =
2e2

h
(T13 + T14) . (A6)

Appendix B: Pocklington and Hallén type equations
for the 2nd CNT

Following Sec. II B, Pocklington type equation can be
formulated for the 2nd CNT in the coordinate system
(ρ2, ϕ2, z2)

j2(z2)

σ2
= E

(0)
2z (z) + E

(1)
2z (z) + E

(1t)
2z (z)+

ia2
εω

(∫ L−r2−0

0

+

∫ L2

L−r2+0

∂j2(z
′)

∂z′
∂G(a2, z2 − z′)

∂z
dz′

)
+

ia2
εω

∫ L2

0

k2j2(z
′)G(a2, z2 − z′)dz′ , (B1)

where E
(1)
2z and E

(1t)
2z are axial components of an electric

field produced by the current j1 and charge +qt, respec-
tively, on the surface of the 2nd CNT.

Following Secs. II A and IIC, Hallén type equation can
be formulated for the 2nd CNT in the coordinate system
(ρ2, ϕ2, z2)∫ L2

0

[
1

σ2
eik|z2−z′

2| +
2a2k

εω
G(a2, z2 − z′2)

]
j2(z

′
2)dz

′
2 +

kIt
πεω

∫ ∞

L2−r2

G(a2, z2 − z′2)dz
′
2 = Φ2(z2) , (B2)

where

Φ2(z2) =

∫ L2

0

(
E

(0)
2z (z2) + Ẽ

(1)
2z (z2)

)
eik|z2−z′

2|dz′2+{
C ′

1e
ikz2 + C ′

2e
−ikz2 , z2 ∈ (0, L2 − r2)

D′
1e

ikz2 +D′
2e

−ikz2 , z2 ∈ (L2 − r2, L2)
.

(B3)

Here C ′
1,2 and D′

1,2 are unknown constants to be deter-

mined from the edge conditions (5)-(7); and Ẽ
(1)
2z is an

axial field produced by the currents j1 and j1a on the
surface of the 2nd CNT.

Appendix C: Electric field potential of the
semi-infinite current

Let us consider the axial current on the surface of
infinite-length cylinders which extending the 1st CNT

j1a(z) =
1

2πa1

{
I1, z ∈ (−∞, r1)

I2, z ∈ (r1,+∞)
, (C1)

where I1,2 are constant values. Herzt potential of the
field produced by the current j1a can be expressed as
follows

Πt(ρ, z) =
i

2πεω

∫ ∞

−∞
j1a(z)G(ρ, z − z′)dz′ , (C2)

where G(ρ, z − z′) is a Green function defined by (18).
The electric potential at point (ρ, z) can be calculated as

φt = −∂Πt(ρ, z)

∂z
= − i

2πεω

[
I1

∫ r1

−∞

∂G(ρ, z − z′)

∂z
dz′+

I2

∫ ∞

r1

∂G(ρ, z − z′)

∂z
dz′
]
. (C3)

Due to the symmetry of the integrals in (C3) with respect
to the replacement ∂/∂z → −∂/∂z′, the electric potential
can be calculated as

φt(ρ, z) =
i(I1 − I2)

2πεω
G(ρ, z − r1) (C4)

The value of φt in (C4) coincides with an electrical po-
tential of the field produced by the charge qt = iIt/ω =
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i(I1 − I2)/ω distributed uniformly on an infinitely thin
ring of a radius a1 at z = r1. The difference between
the z-component of the electric field ∂2Πt/∂z

2 + k2Πt

produced by the current j1a and the z-component of the
field −∂φt/∂z produced by the charge +qt equals k2Πt,
and it can be neglected on the surfaces of the CNTs when
(kL1,2)

2 ≪ 1. Then, the electric field produced by the
charge +qt can be replaced by the field produced by the
currents j1a. This replacement is justified if the field
produced by the currents j1a on the CNT surface can be

considered longitudinal with a high accuracy. Though
the choice of the values I1,2 is limited only by an equal-
ity I1 − I2 = It, it is reasonable to choose them to be
close to zero in order to guarantee the longitudinal char-
acter of the field Πt in the vicinity of the CNTs. For
simplicity we choose I1 = It and I2 = 0 for j1a in (24).
Thus, the electric field produced by the charges +qt and
qt in the CNTs can be replaced by the field produced by
the currents j1a and j2a, respectively, as shown in Fig.
2(b,c).
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