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Abstract: En route to the total synthesis of (+)-Neopeltolide, we explored Lewis acid-assisted diastere-
oselective allylation of MOM-protected 3-hydroxylhexanal with β-(2,2-diethoxyethyl)-substituted
(allyl)tributylstannane. The hydrated form of scandium triflate was found to be essential for attain-
ing high 1,3-anti-diastereoselectivity (d.r. 94:6), while the use of anhydrous catalyst resulted in a
modest diastereocontrol (d.r. 76:24). The preferred 1,3-anti-selectivity in this transformation can be
rationalized in the framework of the Reetz chelate model of asymmetric induction. The 1,3-anti-
configuration of the product was confirmed by its conversion into the known C7-C16 building block
of (+)-Neopeltolide. We also report an improved protocol for the synthesis of β-(2,2-diethoxyethyl)-
substituted (allyl)tributylstannane, which can be utilized as a cost-efficient bipolar isoprenoid-type
C5-building block in the synthesis of natural compounds.

Keywords: Reetz–Keck-type allylation; stannylation; Lewis acids; organotin compounds; β-
oxyaldehydes; scandium triflate; chelation control; asymmetric synthesis; asymmetric induction

1. Introduction

Stereoselective allylation of carbonyl compounds allows to assemble a carbon–carbon
bond along with installation of a new stereocenter [1–4]. The produced homoallylic alcohols
provide multiple opportunities for the subsequent modifications and therefore are widely
used in the target-oriented synthesis of natural and bioactive compounds [2–5].

In the event of asymmetric induction, the transfer of chirality to the newly formed
stereocenters is typically enabled either by a chiral catalyst/reagent or a chiral substrate
itself. The latter case commonly occurs in the multistep synthesis of natural products and
could require fine tuning of the reaction parameters to attain a high level of stereocontrol.
In that sense, diastereoselective allylation of chiral α- and β-oxysubstituted aldehydes is
advantageous [4,6–14] since its stereochemical outcome can be usually [15] predicted in the
framework of Felkin-Ahn [16–21], Cornforth-Evans [16,17,22–24], or Cram [16,17,25–27]
and Reetz chelation [16,17,28–30] models. The Reetz model is valid in the case of stere-
oselective addition of allylstannanes to β-oxysubstituted aldehydes, where the high 1,3-
anti-selectivity is commonly achieved due to the formation of a chelate complex between a
Lewis acid catalyst and the aldehyde substrate [31,32]. On the other hand, the successful
chelation control takes place only for a limited set of known β-hydroxy-protecting groups
and Lewis acids [7–14,31–35]. Moreover, rather ordinary unsubstituted allylic organotin
reagents are commonly employed in these transformations, with only rare examples of
β-functionalized analogues [8,14,36–39]. The development of more complex allyl-transfer
reagents is appealing in view of their evidently high synthetic value [40–48].

During the implementation of our research programs devoted to the synthesis of natu-
ral and bioactive compounds from cyclopropanols [49–52] and cyclopropanol-derived build-
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ing blocks [53–56], we expected to develop a bifunctional allylation reagent A (Scheme 1)
based on metalation of easily available allyl bromide 1 [53]. The reagent A can act as a
synthetic equivalent of a bipolar isopentane synthon, as it was previously demonstrated
by the synthesis of retinoid compounds via the Barbier-type chemistry [53,56]. We en-
visioned that besides the assembly of polyene scaffolds, organometallic derivatives of 1,
especially its organotin derivative 2, could also be suitable for the stereoselective allyla-
tion of carbonyl compounds and therefore applied in the asymmetric synthesis of natural
products. Our preliminary tests revealed that organotin compound 2 [57], along with its
carboxymethyl analogue [54,55], are suitable for highly enantioselective Keck allylations.
However, the substrate-controlled stereoselective coupling of 2 with oxy-functionalized
aldehydes has not been examined. Moreover, we required to develop an expedient syn-
thetic protocol for the preparation of 2 in multigram amount. As a result of our endeavors,
here we report a convenient and cost-efficient procedure for multigram preparation of
2, and its application in the Lewis acid-mediated diastereoselective 1,3-anti-allylation of
(S)-3-(methoxymethyl)hexanal 3. The stereochemical outcome of the reaction was fur-
ther validated by the synthesis of known C7-C16 bulding block of (+)-Neopeltolide [55],
containing three stereocenters.
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2. Results and Discussion
2.1. Improved Protocol for the Preparation of Functionalized (Allyl)Tributylstannane 2

Multistep synthesis commonly requires substantial quantity of starting materials
at the initial stages. Therefore, a facile and cost-efficient access to large quantities of 2
was of primary importance. Using the advantages of cyclopropanol chemistry [58,59],
allyl bromide 1 was readily prepared in multigram amounts and 94% overall yield from
cheap and easily available ethyl 3,3-diethoxypropionate (4) via the consequent Kulinkovich
cyclopropanation [60], mesylation, and MgBr2-mediated cyclopropyl-allyl rearrangement
steps (Scheme 2) [53,61–63]. The reaction sequence was flawlessly performed in a single run
starting from 20 g of ester 4 (see the experimental part). No purification was required for
the cyclopropane intermediates 5 and 6, which were obtained in nearly quantitative yields.

The previously reported method [57] for the preparation of organotin compound 2 via
Barbier-type coupling of 1 and Bu3SnCl was found impractical for multigram preparation.
Following the previously reported approach, organotin compound 2 was obtained in a
moderate 66% yield due to accompanying homo-coupling of 1 leading to 7. The purity of
2 was also unsatisfactory because of the contaminant inorganic salts. Incompatibility of
acid-sensitive 2 with silica gel made its chromatographic purification impossible [57].
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Therefore, we tested an alternative procedure of halogen substitution in 1 with Bu3SnLi
(Scheme 2) [14]. To our delight, the new approach delivered the target organotin compound
2 in affordable 78% yield and noticeably better purity. According to 1H NMR analysis, the
content of homo-coupled product 7 was reduced to 8 mol.%, along with the presence of
15 mol.% of (Bu3Sn)2 dimer. These impurities do not interfere the reactivity of 2 and can be
removed after the performing the allylation reaction. The same transformation was also
convenient for multigram preparation (up to 7 g in a single run, see the experimental part).
Hence, high yields and utilization of cheap chemicals have provided a convenient, scalable,
and cost-effective access to 1 and 2 in the sufficient amounts.

2.2. Diastereoselective Allylation of Aldehyde 3 with (Allyl)Tributylstannane 2

While examining the potential routes towards the synthesis of (+)-Neopeltolide and
its analogues [64–66], we attempted to perform the stereoselective allylation of MOM-
protected 3-hydroxylhexanal 3 with (allyl)tributylstannane 2. The aldehyde 3 (ee > 99%)
was prepared by following the known procedure [55] (see the Supplementary Materials).
Initially, we planned to apply the venerable Keck asymmetric allylation, by using a cat-
alytic system based on titanium tetraisopropoxide and a chiral BINOL ligand [57,67–69].
Although being a well-developed approach, the Keck reaction has several restrictions, such
as allylation of unsaturated or sterically hindered aldehydes [46,67–70]. Moreover, the
presence of multiple oxygen-containing functionalities in both 2 and 3 could interfere the
reaction outcome due to the highly oxophilic nature of the titanium catalyst. In our hands,
allylation of 3 with 2 by following the Keck reaction protocol has led to only trace amounts
of the desired homoallylic alcohol 8 (Scheme 3) after an exhausting search for the optimal
reaction conditions and even in the presence of trifluoroacetic acid [67,69] or B(OMe)3 [71]
as activating additives (Table 1, entry 1).
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Table 1. Allylation of aldehyde 3 with allylstannane 2 promoted by Lewis acids. a

Entry Lewis Acid Solvent Time, h T, ◦C Conv. % b d.r.
anti/syn b

1 Ti((S)-BINOL)2 CH2Cl2 120 −20 trace –
2 TiCl4 CH2Cl2 1 −78 – c –
3 SnCl4 CH2Cl2 1 −78 – c –
4 TiCl(Oi-Pr)3 CH2Cl2 15 −20 no reaction
5 Cp2TiCl2 CH2Cl2 15 −20 no reaction
6 MgBr2·Et2O d CH2Cl2 5 −78 72 76:24
7 ZnCl2·Et2O d CH2Cl2 15 −20 100 60:40
8 ZrCl4 d CH2Cl2 1 −60 78 73:27
9 Sc(OTf)3, old batch CH2Cl2 4 −25 65 84:16

10 Sc(OTf)3, old batch toluene 4 −25 86 88:12
11 In(OTf)3 toluene 5 −70 48 75:25
12 Y(OTf)3 toluene 2 −20 45 55:45
13 Hf(OTf)4 toluene 4 +20 28 65:35
14 Sc(OTf)3, fresh batch toluene 5 −70 60 76:24 e

15 Sc(OTf)3 + H2O toluene 2 −25 65 83:14
16 Sc(OTf)3 + 2H2O toluene 4 −25 72 88:12
17 Sc(OTf)3 + 2H2O toluene/Et2O 4 −70 78 91:9
18 Sc(OTf)3 + 2H2O toluene/Et2O 12 −70 92 (72) f 94:6

a Unless indicated otherwise, the optimization reactions (entries 1–17) were performed on 0.1–0.3 mmol scale
with 1.5 equiv. of Lewis Acid and 2.5 equiv. of allyl stannane 2. b Conversion of aldehyde 3 into alcohol 8 and d.r.
ratios were determined by 1H NMR. c Complex mixture of products. d The reaction was performed with 3 equiv.
of a Lewis acid. e The use of Sc(OTf)3 pre-dried in vacuum at heating afforded the same d.r. f The reaction was
performed with 11.5 mmol of aldehyde 3 and 1.7 equiv. of 2 in the presence of 1.1 equiv. of the hydrated Sc(OTf)3.
Isolated yield of anti-8 is given in parentheses.

On the other hand, the presence of a β-hydroxy-substituted stereocenter in aldehyde 3
ensured an alternative opportunity to carry out the diastereoselective chelation-controlled
1,3-anti-allylation [16,17,28–32]. However, in this case, the ratio of diastereoisomers substan-
tially depends on the choice of protective group as well as Lewis acid [32]. Typically, benzyl
or p-methoxybenzyl ethers are used [7–13,31,32]. However, these protecting groups were
unsuitable according to our planned synthetic route towards (+)-Neopeltolide. Therefore,
while keeping the MOM-protection in 3 intact, we began to investigate the effect of various
Lewis acids, available at our laboratory (Table 1).

First, we tried to carry out the reaction with TiCl4, which is known as an effective
catalyst for the chelation-controlled Reetz-Keck-type allylation [28–32]. Unfortunately, a
complex mixture of products was formed (Table 1, entry 2). Tin(IV) chloride behaved
similarly (entry 3), while the less reactive titanium catalysts failed to furnish any products
at all (entries 4 and 5). Magnesium bromide as another prominent catalyst [31,32] delivered
the desired homoallylic alcohol 8, albeit with moderate diastereoselectivity (entry 6). The
ratio of diastereomers was determined by 1H NMR analysis of the crude reaction mixture,
by integration of signals at δ 2.98 (d, J = 2.9 Hz) and 3.09 (d, J = 2.1 Hz) ppm, which
correspond to hydroxyl protons of anti- and syn-8, respectively. Analogously to MgBr2,
zinc and zirconium(IV) chlorides also produced 8 with unsatisfactory diasteroisomeric
ratios (entries 7 and 8).

While testing different metal triflates (entries 9–13), we found that allylation of 3
occurred with promising yield and diastereoslectivity in the presence of scandium(III)
triflate [72–75]. The reaction mediated by Sc(OTf)3 was especially successful in toluene
as solvent (entry 10), while triflates of indium, ytterbium, and hafnium were noticeably
less efficient (entries 11–13). During these preliminary tests we also noticed that the
stereochemical outcome of the reaction with Sc(OTf)3 and the reactivity of the catalyst were
strongly depended on the catalyst batch. While the allylation with an old reagent did not
occur at −70 ◦C and required higher temperature (−25 ◦C), a fresh sample of commercial
Sc(OTf)3, as well as the catalyst dried in vacuum at heating, were much more reactive and
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delivered the target alcohol 8 already at −70 ◦C but with noticeably lower 76:24 d.r. (entry
10 vs. 14).

We surmised that the difference in reactivity between the batches can be explained
by hydration of the old reagent with atmospheric moisture since Sc(OTf)3 is hygroscopic
and eventually forms octahydrate upon storage. Indeed, powder X-ray diffraction (PXRD)
analysis of the old and new reagent confirmed our hypothesis and showed that the old
reagent contained Sc(OTf)3·8H2O as the main phase (Figure 1).
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Figure 1. (a) Powder X-ray diffraction (PXRD) patterns calculated for Sc(OTf)3·8H2O from the
corresponding single-crystal X-ray diffraction data. Crystallographic data are available from the
Cambridge Structural Database (CSD 415177). (b) PXRD pattern of commercially available anhydrous
Sc(OTf)3. The main phase corresponds to Sc(OTf)3·xH2O (x < 8) [76]. Slight hydration occurred
since the sample was exposed to atmospheric moisture during the measurement. (c) PXRD patterns
of the hydrated reagent, which contains Sc(OTf)3·8H2O as the main phase and trace amount of
Sc(OTf)3·xH2O phase.

To our delight, controlled addition of water to the anhydrous Sc(OTf)3 allowed to pre-
pare a catalyst with reproducible performance (see the experimental part), similar to those
of the old batches (entries 15 and 16). The best outcome and the highest diastereoselectivity
was observed when 2 equiv. of water was added. Moreover, we found that addition
of diethyl ether as a co-solvent to toluene (ca. 20% v/v) allows to decrease the reaction
temperature to −70 ◦C and therefore further improve the diastereoselectivity (up to 91:9,
entry 17). Finally, anti-alcohol 8 was prepared in 72% isolated yield and with excellent 94:6
diastereomeric purity in a preparative reaction run starting from 11.5 mmol of aldehyde
3 (entry 18). It is important to note that at least 1.1 equiv. of hydrated Sc(OTf)3 must
be used to attain high yields, probably due to the presence of several oxygen-containing
functionalities in 8 and formation of a stable chelate complex with scandium.

Our results indicate that controlled hydration of Sc(OTf)3 can be considered as a tool
to attenuate the reactivity of Sc(OTf)3 in allylation of carbonyl compounds, and perhaps
in other transformations mediated by the same Lewis acid. Scandium(III) triflate has
multiple catalytic uses in organic synthesis and can operate even in aqueous media [72–75].
However, the influence of small amounts of water on the catalytic performance of Sc(OTf)3,
especially in stereoselective transformations, has been only scarcely reported, to the best of
our knowledge [77–79].

The preferred 1,3-anti-selectivity in this transformation can be rationalized in the frame-
work of the Reetz chelate model [16,17,28–32]. We assume that the reaction could proceed
through the formation of six-membered chelate intermediates I and II (Scheme 4) [9].
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Scheme 4. The proposed stereochemical model explaining the preferred 1,3-anti-selectivity.

Intermediate II is less preferred than I, since n-propyl substituent and MOM-protecting
group are both occupy axial positions in the former. Moreover, the reaction of I with allyl-
stannane 2 leading to anti-alcohol 8 should proceed faster since the reagent 2 approaches
from the least hindered side of the carbonyl group, as shown on Scheme 4. On the contrary,
in complex II, both sides of the carbonyl group are sterically shielded with axial n-propyl
and MOM substituents, which should result in higher activation barrier for the reaction of
II with 2 in comparison with those of I. Although a mechanistic rationale for the improved
d.r. in the case of hydrated catalyst is not fully clear, aqua ligands coordinated to scandium
should introduce additional steric hindrances thus further enhancing the difference in
reactivity between I and II and shifting the equilibrium towards the less sterically hindered
intermediate I.

Having alcohol anti-8 in hand, we confirmed its stereochemical configuration by
conversion into the known C7–C16 building block of (+)-Neopeltolide (Scheme 5) [55].
Thus, cyclization of 8 in the presence of catalytic amount of p-toluenesulfonic acid (p-
TsOH) and subsequent mild hydrolysis led to the formation of lactol 9. Oxidation of
9 with pyridinium chlorochromate (PCC) followed by base-catalyzed isomerization of
the double bond yielded unsaturated lactone 10. Hydrogenation of 10 resulted in the
formation of saturated lactone 11 as a single diastereoisomer and in a quantitative yield.
Reduction of 11 with LiAlH4 afforded diol 12. To confirm 1,3-anti configuration of the
stereocenters, diol 12 was transformed into the corresponding acetonide 13. The values of
chemical shifts in 13C NMR spectrum of 13 indicated the 1,3-anti-configuration of hydroxyl
groups (Scheme 5), according to a known configuration assignment method [80,81]. The
selective TBS-protection of the primary hydroxyl group in compound 12 and the subsequent
methylation of the secondary hydroxyl produced ether 14 in 92% yield over two steps.
Treatment of 14 with catalytic amount of pyridinium p-toluenesulfonate (PPTS) in methanol
and subsequent Swern oxidation furnished aldehyde 15 in 92% yield as a final C7–C16

building block of (+)-Neopeltolide.
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acetone/H2O (3:1), reflux, 12 h (80%); (c) PCC, CH2Cl2, r.t., 8 h (87%); (d) Et3N, THF, reflux, 5 h (86%); (e) 10% Pd/C, H2 in
i-PrOH, H-Cube (25 ◦C, 5 bar) (100%); (f) LiAlH4, Et2O, r.t., 25 min (100%); (g) TBSCl, imidazole, CH2Cl2, r.t., 1.5 h (96%); (h)
NaH, MeI, Bu4NI, THF, r.t., 14 h (96%); (i) PPTS, MeOH, r.t.,15 h (98%); (j) (COCl)2, DMSO, CH2Cl2, Et3N, −78 ◦C to 0 ◦C
(94%); (k) pTsOH·H2O, MeOH, reflux, 2 h; (l) pTsOH·H2O, 2,2-dimethoxypropane, r.t., 24 h (55% for 2 steps). Preparation
of intermediate compounds 16–19 (structures not shown here for the reasons of space) is described in the Section 3.

3. Experimental Section
3.1. General Experimental Methods

Solvents were used as obtained from commercial sources without any further purifi-
cation or dried if required over 4 Å molecular sieves. Chemicals were purchased from
Sigma-Aldrich (St. Louis, MO, USA), Fluorochem (London, UK) and Alfa Aesar (Ward Hill,
MA, USA) and used as received unless other indicated. (S)-3-(Methoxymethoxy)hexanal
(3) (ee > 99%) was prepared as described before [55] (see also the Supplementary Materi-
als). Silica gel 40–100 µm was used for column chromatography; silica gel 60F254 plates
were used for TLC. 1H-NMR (400 MHz), 13C-NMR (100.6 MHz) spectra were recorded
on Avance III spectrometer (Bruker, Billerica, MA, USA). Chemical shifts are given in δ

value with CHCl3 (δ = 7.26 ppm) and CDCl3 (δ = 77.0 ppm) as internal standards for
1H-NMR and 13C-NMR spectra, respectively. FT-IR spectra were recorded on a Bruker
Tensor 27 FT spectrometer. Only selected characteristic IR absorption bands are given.
Specific rotations were measured by using an Anton Paar MCP 500 polarimeter. HRMS data
were obtained on a HPLC/Q-TOF G6540A Mass Spectrometer (Agilent, Santa Clara, CA,
USA) using AJS ESI method in positive ion detection modes or a LTQ Orbitrap Discovery
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using electrospray ionization
(ESI). Powder X-ray diffraction (PXRD) patterns for the samples of Sc(OTf)3 were recorded
with an EMPYREAN diffractometer (PANalytical, Netherlands) using Cu-Kα radiation
(Ni-filter) at 296 K with area detector 2θ range of ca. 0◦–40◦. Samples of Sc(OTf)3 were not
protected from atmospheric moisture during the measurements. Crystallographic data for
Sc(OTf)3·8H2O are available from the Cambridge Structural Database (CSD 415177) [82].

3.2. Preparation of 4,4-Diethoxy-2-methylenebutyl Bromide (1)
3.2.1. 1-(2,2-Diethoxyethyl)cyclopropan-1-ol (5)

A solution of EtMgBr (1.6 M in THF, 200 mL, 320 mmol) was added dropwise over
a period of 7 h to a solution of ethyl 3,3-diethoxypropionate (4) (20.0 g, 105 mmol) and
titanium(IV) isopropoxide (6.0 mL, 20 mmol, 20 mol%) in THF (90 mL) under stirring and
external cooling (water bath, 20 ◦C). The reaction mixture was additionally stirred at r.t. for
12 h, at which time the solvent was removed under reduced pressure and the residue was
dissolved in CH2Cl2 (300 mL). The flask was placed in an ice-water bath and a saturated
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aqueous solution of NH4Cl (38 mL) was added by small portions at vigorous stirring. The
mixture was additionally stirred at r.t. for 20 min and filtered. The precipitate was washed
with CH2Cl2 (3× 150 mL), and the combined organic phases were washed with a saturated
aqueous solution of NaCl (150 mL) and dried over Na2SO4. The solvent was removed
under reduced pressure to afford cyclopropanol 5 (18.3 g, 100%) as a yellowish oil. The
obtained compound was used directly in the next step; additional purification was not
required. Rf = 0.55 (PE:EtOAc, 4:1). 1H NMR (400 MHz, CDCl3): δ = 4.80 (t, J = 5.8 Hz,
1H), 3.77–3.68 (m, 2H), 3.59 (br.s, 1H), 3.62–3.51 (m, 2H), 1.89 (d, J = 5.8 Hz, 2H), 1.23
(t, J = 7.1 Hz, 6H), 0.78–0.73 (m, 2H), 0.47–0.42 (m, 2H). 13C NMR (100.6 MHz, CDCl3):
δ = 102.97, 61.74 (2C), 53.13, 40.91, 15.30 (2C), 12.40 (2C). Spectral data are in agreement
with previously reported [83].

3.2.2. 1-(2,2-Diethoxyethyl)cyclopropyl Methanesulfonate (6)

A solution of methanesulfonyl chloride (16.0 mL, 205 mmol) in anhydrous diethyl
ether (100 mL) was added dropwise over a period of 10 min to a cooled (ice bath, 0 ◦C)
solution of cyclopropanol 5 (18.3 g, 105 mmol) and N,N-diisopropylethylamine (48.0 mL,
275 mmol) in anhydrous diethyl ether (200 mL). The reaction mixture was stirred for 2 h and
during this time gradually warmed to room temperature. A saturated solution of NaHCO3
(200 mL) was added, and the mixture was stirred for 1 h. The organic layer was separated,
the aqueous layer was extracted with diethyl ether (3 × 150 mL), and the combined organic
extracts were dried over Na2SO4. The solvent was removed under reduced pressure to
afford the crude mesylate 6 (26.5 g, 100%) as a pale-orange oil, which was used in the next
step without purification. Rf = 0.55 (PE:EtOAc, 4:1). 1H NMR (400 MHz, CDCl3): δ = 4.80
(t, J = 5.4 Hz, 1H), 3.72–3.62 (m, 2H), 3.59–3.49 (m, 2H), 3.00 (s, 3H), 2.14 (d, J = 5.4 Hz,
2H), 1.27–1.22 (m, 2H), 1.20 (t, J = 7.1 Hz, 6H), 0.84–0.78 (m, 2H). 13C NMR (100.6 MHz,
CDCl3): δ = 100.90, 63.79, 62.06 (2C), 40.34, 39.84, 15.26 (2C), 11.57 (2C). Spectral data are in
agreement with previously reported [84].

3.2.3. 4,4-Diethoxy-2-methylenebutyl Bromide (1)

A solution of 1,2-dibromoethane (19.0 mL, 220 mmol) in anhydrous diethyl ether
(50 mL) was added slowly in a dropwise manner to magnesium turnings (4.8 g, 200 mmol)
in anhydrous diethyl ether (100 mL). The reaction mixture was additionally stirred until
the complete dissolution of magnesium occurred. Then, a solution of the crude mesylate 6
(26.5 g, 105 mmol) in anhydrous diethyl ether (120 mL) was added dropwise over 15 min
at room temperature to the obtained solution of MgBr2 and the resulting mixture was
vigorously stirred for 2 h. Afterwards, water (200 mL) was cautiously added by small
portions at external cooling (ice-water bath, 0 ◦C). The organic layer was separated, and
the aqueous layer was extracted with diethyl ether (3 × 100 mL). The combined organic
phases were washed with saturated NaHCO3 solution (150 mL) and dried over Na2SO4.
The solvent was removed under reduced pressure, and allyl bromide 1 was purified by
using a short chromatographic column (SiO2, eluent PE:EtOAc, 50:1). Yellowish oil (23.4 g,
94%). Rf = 0.63 (PE:EtOAc, 10:1). 1H NMR (400 MHz, CDCl3): δ = 5.25 (br.s, 1H), 5.06 (br.s,
1H), 4.62 (t, J = 5.6 Hz, 1H), 4.04 (br.s, 2H), 3.70–3.61 (m, 2H), 3.55–3.45 (m, 2H), 2.53 (d,
J = 5.6 Hz, 2H), 1.19 (t, J = 7.1 Hz, 6H). 13C NMR (100.6 MHz, CDCl3): δ = 141.38, 117.82,
101.84, 61.32 (2C), 37.50, 37.37, 15.21 (2C). Spectral data are in agreement with previously
reported [53].

3.3. Preparation of Tributyl(4,4-diethoxy-2-methylenebutyl)stannane (2)

A solution of naphthalene (0.16 g, 1.25 mmol) in THF (2 mL) was added to lithium
chipping (0.60 g, 86 mmol) in THF (48 mL) under inert atmosphere (argon). The mixture
turned green and was stirred at room temperature for 1 h. Then, tributyltin chloride
(6.50 mL, 24.0 mmol) was added dropwise, and the mixture was stirred at room temperature
for 12 h. The resulting dark-green solution of Bu3SnLi was transferred into another reaction
vessel and cooled to −78 ◦C (acetone-dry ice bath). A solution of allylbromide 1 (4.74 g,
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20.0 mmol) in THF (40 mL) was added dropwise and the resulting reaction mixture was
stirred at −78 ◦C for 1 h. The reaction was quenched by addition of saturated aqueous
solution of NH4Cl (150 mL) and stirred while warming to room temperature for 1h. The
organic layer was separated, the aqueous layer was extracted with Et2O (3 × 50 mL),
and the combined organic phases were washed with saturated NaHCO3 solution (50 mL)
and dried over Na2SO4. The solvent was removed under reduced pressure to afford the
crude stannane 2 (9.3 g). According to 1H NMR analysis, the crude product contains 7 g
(77 mol.%, 78% yield) of 2, contaminated with self-coupling products 7 (0.5 g, 8 mol.%) and
Bu3SnSnBu3 (1.8 g, 15 mol.%). However, the crude stannane 2 can be used for the allylation
of aldehydes without any further purification.

Tributyl(4,4-diethoxy-2-methylenebutyl)stannane (2): Rf = 0.68 (PE:EtOAc, 20:1). IR
(neat): ν = 1627, 1215, 1119, 1060 cm−1. 1H NMR (400 MHz, CDCl3): δ = 4.62 (t, J = 5.7 Hz,
1H), 4.63–4.57 (m, 1H), 4.57–4.51 (m, 1H), 3.70–3.61 (m, 2H), 3.56–3.46 (m, 2H), 2.29–2.23 (m,
2H), 1.93–1.75 (m, 2H), 1.56–1.38 (m, 6H), 1.37–1.24 (m, 6H), 1.20 (t, J = 7.1 Hz, 6H), 0.89 (t,
J = 7.3 Hz, 6H), 0.88 (t, J = 7.3 Hz, 9H).13C NMR (100.6 MHz, CDCl3): δ = 145.61, 107.34,
102.31, 61.13 (2C), 42.41, 29.08 (3C), 27.36 (3C), 19.51, 15.30 (2C), 13.68 (3C), 9.44 (3C).

1,1,8,8-Tetraethoxy-3,6-dimethyleneoctane (7): Rf = 0.5 (PE:EtOAc, 20:1). 1H NMR
(400 MHz, CDCl3): δ = 4.83 (br.s, 4H), 4.60 (t, J = 5.7 Hz, 2H), 3.70–3.59 (m, 4H), 3.54–3.43 (m,
4H), 2.35 (d, J = 5.7 Hz, 4H), 2.20 (br.s, 4H), 1.19 (t, J = 7.1 Hz, 12H). 13C NMR (100.6 MHz,
CDCl3): δ = 144.93 (2C), 111.78 (2C), 102.09 (2C), 61.05 (4C), 40.31 (2C), 34.66 (2C), 15.25
(4C). HRMS (ESI) calcd. for C18H34O4Na+ [M+Na]+ 337.2349, found m/z 337.2347.

3.4. Preparation of Hydrated Scandium Triflate Catalyst

Water (0.76 mL, 42 mmol) was added to a stirred suspension of anhydrous scandium
triflate (10.3 g, 21 mmol) in anhydrous diethyl ether (240 mL). The resulting mixture was
stirred until almost complete dissolution of solid occurred. The solvent was removed under
reduced pressure. The solid residue was thoroughly grinded with mortar and pestle under
air and not protected from atmospheric moisture. The obtained powder was dried on a
rotary evaporator at 70 ◦C and reduced pressure (5 mm Hg) for 3 h.

3.5. (5S,7S)-1,1-Diethoxy-7-(methoxymethoxy)-3-methylenedecan-5-ol (anti-8)

A solution of (S)-3-(methoxymethoxy)hexanal (3) (1.84 g, 11.5 mmol) in anhydrous
toluene (25 mL), and a solution of tributyl(4,4-diethoxy-2-methylenebutyl)stannane (2)
(9.20 g, 20.6 mmol) in anhydrous toluene (30 mL) were sequentially added to a turbid
solution of freshly prepared hydrated scandium triflate catalyst (8.04 g, 12.6 mmol) in a
mixture of anhydrous toluene (55 mL) and diethyl ether (27 mL) at −70 ◦C under inert
atmosphere (argon). The reaction mixture was stirred at −70 ◦C for 12 h. (TLC monitoring
clearly revealed the product only after aqueous work up of the samples taken). The
reaction mixture was quenched with saturated aqueous solution of NaHCO3 (150 mL)
and vigorously stirred until it warmed to room temperature (ca. 1 h). The organic layer
was separated, and the aqueous layer was extracted with diethyl ether (3 × 100 mL). The
combined organic extracts were dried over Na2SO4. The solvent was removed under
reduced pressure, and the title compound was isolated by column chromatography (SiO2,
eluent PE:EtOAc, gradient 10:1 to 4:1). Colorless oil (2.63 g, 72%). Rf = 0.36 (PE:EtOAc, 4:1).
[α]D

20 = +24.7 (c 0.69, CH2Cl2). IR (neat): ν = 3474, 1644, 1444, 1374, 1130, 1042, 916 cm−1.
1H NMR (400 MHz, CDCl3): δ = 4.95 (s, 1H), 4.94 (s, 1H), 4.67 (s, 2H), 4.63 (t, J = 5.8 Hz,
1H), 4.06–3.95 (m, 1H), 3.86–3.77 (m, 1H), 3.70–3.59 (m, 2H), 3.54–3.44 (m, 2H), 3.39 (s, 3H),
2.98 (d, J = 2.9 Hz, 1H), 2.47–2.32 (m, 2H), 2.27–2.14 (m, 2H), 1.64–1.26 (m, 6H), 1.18 (t,
J = 7.0 Hz, 6H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 142.33, 115.07,
102.28, 96.25, 75.53, 65.66, 61.30, 61.14, 55.69, 45.35, 41.55, 39.82, 37.26, 18.51, 15.21, 15.18,
14.19. HRMS (ESI) calcd. for C17H34O5Na+ [M+Na]+ 341.2298, found m/z 341.2296.
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3.6. Preparation of C7–C16 Building Block 15 for the Synthesis of (+)-Neopeltolide
3.6.1. (6S)-2-Ethoxy-6-((S)-2-(methoxymethoxy)pentyl)-4-methylenetetrahydro-2H-pyran (16)

p-Toluenesulfonic acid monohydrate (p-TsOH·H2O, 0.06g, 0.32 mmol) was added to a
solution of alcohol 8 (5.20 g, 16.4 mmol) in CH2Cl2 (125 mL) and the reaction mixture was
stirred at room temperature for 30 min, at which time Et3N (0.20 mL, 1.45 mmol) was added.
The solvent was removed under reduced pressure and acetal 18 (mixture of epimers ~50:50
according to 1H NMR) was isolated by column chromatography (SiO2, eluent PE:EtOAc,
20:1). Colorless oil (4.01 g, 90%). Rf = 0.60 (PE:EtOAc, 4:1). IR (neat): ν = 1655, 1443, 1374,
1350, 1215, 1145, 1042, 918, 890 cm−1. 1H NMR (400 MHz, CDCl3): δ = 4.90 (d, J = 3.4 Hz,
1H), 4.80–4.74 (m, 4H), 4.68 (d, J = 6.8 Hz, 1H), 4.65 (s, 2H), 4.61 (d, J = 6.8 Hz, 1H), 4.32 (dd,
J = 9.6, 2.4 Hz, 1H), 4.02–3.93 (m, 1H), 3.93–3.81 (m, 2H), 3.76–3.64 (m, 2H), 3.57– 3.41 (m,
3H), 3.36 (s, 6H), 2.45–2.08 (m, 6H), 2.05–1.89 (m, 2H), 1.77–1.30 (m, 12H), 1.24 (t, J = 7.1 Hz,
3H), 1.18 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). 13C NMR
(100.6 MHz, CDCl3): δ = 142.61, 140.67, 110.52, 110.39, 101.70, 97.07, 96.12, 96.00, 75.27,
74.20, 71.64, 66.63, 64.34, 62.46, 55.62, 55.56, 41.53, 41.30, 40.97, 40.64, 40.51, 39.04, 37.61,
37.47, 18.12, 18.11, 15.20, 14.89, 14.26, 14.24. HRMS (ESI) calcd. for C15H28O4Na+ [M+Na]+

295.1880, found m/z 295.1879.

3.6.2. (6S)-6-((S)-2-(Methoxymethoxy)pentyl)-4-methylenetetrahydro-2H-pyran-2-ol (9)

Pyridinium p-toluenesulfonate (PPTS, 4.56 g, 18.2 mmol) was added to a solution of
cyclic acetal 16 (3.80 g, 14.0 mmol) in a mixture of acetone (600 mL) and H2O (200 mL)
and the reaction mixture was stirred under gentle reflux for 12 h. After cooling to room
temperature acetone was evaporated under reduced pressure and the reaction product
was extracted from the water phase with CH2Cl2 (3 × 150 mL). The combined organic
extracts were washed with saturated aqueous NaHCO3 solution (100 mL) and dried over
Na2SO4. The solvent was removed under reduced pressure and the title compound was
isolated by column chromatography (SiO2, eluent PE:EtOAc, 10:1). Obtained as ~50:50
mixture of epimers according to 1H NMR. Colorless oil (2.73 g, 80%). Rf = 0.45 (PE:EtOAc,
2:1). IR (neat): ν = 3417, 1655, 1441, 1378, 1334, 1214, 1140, 1101, 1039, 895 cm−1. 1H NMR
(400 MHz, CDCl3): δ = 5.38–5.33 (m, 1H), 4.86–4.83 (m, 1H), 4.83–4.80 (m, 1H), 4.79–4.76
(m, 2H), 4.67–4.58 (m, 5H), 4.23 (d, J = 5.3 Hz, 1H), 4.14–4.05 (m, 1H), 3.87–3.78 (m, 1H),
3.78–3.69 (m, 1H), 3.55 (dd, J = 3.9, 1.4 Hz, 1H), 3.51 (ddt, J = 11.9, 9.6, 2.7 Hz, 1H), 3.37 (s,
3H), 3.36 (s, 3H), 2.53–1.87 (m, 8H), 1.75–1.28 (m, 12H), 0.90 (t, J = 7.2 Hz, 6H). 13C NMR
(100.6 MHz, CDCl3): δ = 142.36, 140.39, 111.35, 110.61, 96.70, 96.05, 95.75, 92.04, 75.26, 74.03,
71.84, 66.19, 55.65, 55.58, 42.07, 41.39, 41.26, 40.67, 40.22, 39.62, 37.90, 37.47, 18.38, 18.17,
14.22, 14.18. HRMS (ESI) calcd. for C13H24O4Na+ [M+Na]+ 267.1567, found m/z 267.1567.

3.6.3. ((S)-6-((S)-2-(Methoxymethoxy)pentyl)-4-methylenetetrahydro-2H-pyran-2-one (17)

Pyridinium chlorochromate (PCC, 15.9 g, 73.8 mmol) was added to a solution of
lactole 9 (3.60 g, 14.8 mmol) in anhydrous CH2Cl2 (170 mL) and the reaction mixture was
vigorously stirred at room temperature for 8 h. Diethyl ether (200 mL) was added, and
the mixture was filtrated through a layer of silica gel. Precipitate of chromium salts was
washed with diethyl ether (2 × 100 mL) and the collected ether solution was filtrated
through a layer of silica gel again. The organic extracts were combined; the solvent was
removed under reduced pressure. Chromatography purification (SiO2, eluent PE:EtOAc,
10:1) afforded lactone 17 as colorless oil (3.10 g, 87% yield). Rf = 0.45 (PE:EtOAc, 2:1). [α]D

20

= +44.1 (c 1.30, CH2Cl2). IR (neat): ν = 1750, 1655, 1376, 1290, 1237, 1151, 1096, 1041 cm−1.
1H NMR (400 MHz, CDCl3): δ = 4.94 (br.s, 2H), 4.67 (d, J = 6.7 Hz, 1H), 4.64 (d, J = 6.7 Hz,
1H), 4.61–4.51 (m, 1H), 3.91–3.78 (m, 1H), 3.35 (s, 3H), 3.37–3.19 (m, 2H), 2.75–2.55 (m,
1H), 2.33 (ddd, J = 15.7, 10.8, 1.6 Hz, 1H), 1.84–1.62 (m, 2H), 1.62–1.28 (m, 4H), 0.91 (t,
J = 7.3 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 170.36, 135.81, 112.17, 96.18, 75.45, 74.02,
55.60, 40.71, 38.32, 37.21, 36.65, 18.01, 14.18. HRMS (ESI) calcd. for C13H22O4Na+ [M+Na]+

265.1410, found m/z 265.1410.
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3.6.4. (S)-6-((S)-2-(Methoxymethoxy)pentyl)-4-methyl-5,6-dihydro-2H-pyran-2-one (10)

Triethylamine (1.86 mL, 1.36 g, 13.5 mmol) was added to a solution of lactone 17
(2.90 g, 12.0 mmol) in THF (50 mL) and the reaction mixture was stirred under gentle
reflux for 5 h. After cooling to room temperature, the solvent was removed under reduced
pressure and the residue was purified by column chromatography (SiO2, eluent PE:EtOAc,
5:1). Colorless oil (2.50 g, 86%). Rf = 0.41 (PE:EtOAc, 2:1). [α]D

20 = −20.6 (c 0.75, CH2Cl2).
IR (neat): ν = 1722, 1437, 1386, 1247, 1149, 1096, 1038 cm−1. 1H NMR (400 MHz, CDCl3):
δ = 5.79 (br.s, 1H), 4.67 (d, J = 6.7 Hz, 1H), 4.65 (d, J = 6.7 Hz, 1H), 4.66–4.55 (m, 1H),
3.94–3.82 (m, 1H), 3.35 (s, 3H), 2.38–2.24 (m, 1H), 2.18 (dd, J = 17.8, 4.0 Hz, 1H), 1.96 (br.s,
3H), 1.90 (ddd, J = 14.5, 9.6, 2.8 Hz, 1H), 1.68 (ddd, J = 14.5, 9.8, 2.9 Hz, 1H), 1.63–1.27
(m, 4H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 165.07, 157.16, 116.48,
96.16, 74.05, 73.75, 55.64, 40.43, 37.22, 35.25, 22.92, 18.01, 14.21. HRMS (ESI) calcd. for
C13H22O4Na+ [M+Na]+ 265.1410, found m/z 265.1405.

3.6.5. (4S,6S)-6-((S)-2-(Methoxymethoxy)pentyl)-4-methyltetrahydro-2H-pyran-2-one (11)

A solution of lactone 10 (2.4 g, 10 mmol) in 2-propanol (0.05 M, 200 mL) was subjected
to flow hydrogenation with the aid of Thales Nano H-CubeTM flow reactor. The solution
of starting material was passed through an H-Cube reactor with a flow rate of 1 mL/min
at 25 ◦C and at 5 bar hydrogen pressure, using a 10% Pd/C 30 mm-length cartridge. The
solvent was evaporated, yielding compound 11 as colorless oil (2.42 g, quantitative yield).
Rf = 0.53 (PE:EtOAc, 2:1). [α]D

20 = +70.0 (c 0.78, CH2Cl2). IR (neat): ν = 1737, 1458, 1379,
1236, 1153, 1097, 1041 cm−1. 1H NMR (400 MHz, CDCl3): δ = 4.65 (s, 2H), 4.47 (ddt,
J = 12.1, 9.3, 3.0 Hz, 1H), 3.90–3.81 (m, 1H), 3.34 (s, 3H), 2.71–2.59 (m, 1H), 2.12–1.96 (m,
2H), 1.92–1.82 (m, 1H), 1.74 (ddd, J = 14.6, 9.3, 3.2 Hz, 1H), 1.65 (ddd, J = 14.6, 9.5, 3.1 Hz,
1H), 1.60–1.26 (m, 4H), 1.25–1.13 (m, 1H), 1.01 (d, J = 6.3 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H). 13C
NMR (100.6 MHz, CDCl3): δ = 171.27, 96.22, 77.13, 73.96, 55.58, 41.70, 37.95, 37.59, 37.27,
26.68, 21.65, 17.98, 14.19. HRMS (ESI) calcd. for C13H24O4Na+ [M+Na]+ 267.1567, found
m/z 267.1568.

3.6.6. (3R,5S,7S)-7-(Methoxymethoxy)-3-methyldecane-1,5-diol (12)

A solution of lactone 11 (1.42 g, 5.8 mmol) in anhydrous diethyl ether (12 mL) was
added dropwise to a suspension of LiAlH4 (0.22 g, 5.8 mmol) in anhydrous diethyl ether
(12 mL) and the reaction mixture was stirred at room temperature under inert atmosphere
(argon) for 25 min. The reaction mixture was diluted with diethyl ether (50 mL) followed by
slow dropwise addition of water (ca. 2 mL) upon external cooling with an ice-bath. White
precipitate was filtered off, washed with diethyl ether (3 × 20 mL), and combined organic
phases were dried over Na2SO4. The solvent was evaporated under reduced pressure,
yielding compound 12 as colorless oil (1.44 g, quantitative yield), which was used in the
next step without further purification. Rf = 0.34 (EtOAc). [α]D

20 = +40.2 (c 0.90, CH2Cl2). IR
(neat): ν = 3385, 1463, 1378, 1147, 1098, 1041 cm−1. 1H NMR (400 MHz, CDCl3): δ = 4.67 (d,
J = 6.7 Hz, 1H), 4.64 (d, J = 6.7 Hz, 1H), 4.00–3.91 (m, 1H), 3.82–3.75 (m, 1H), 3.74–3.59 (m,
2H), 3.40 (s, 3H), 3.35 (d, J = 3.0 Hz, 1H), 2.43 (t, J = 5.6 Hz, 1H), 1.93–1.81 (m, 1H), 1.62–1.41
(m, 7H), 1.40–1.27 (m, 2H), 1.14–1.05 (m, 1H), 0.93 (d, J = 6.7 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H).
13C NMR (100.6 MHz, CDCl3): δ = 96.42, 76.04, 65.73, 60.45, 55.83, 44.15, 42.28, 40.37, 37.21,
26.06, 20.05, 18.65, 14.16. HRMS (ESI) calcd. for C13H28O4Na+ [M+Na]+ 271.1880, found
m/z 271.1877.

3.6.7. (R)-4-((4S,6S)-2,2-Dimethyl-6-propyl-1,3-dioxan-4-yl)-3-methylbutan-1-ol (13)

Two small crystals of p-TsOH·H2O were added to a solution of diol 12 (15 mg,
0.06 mmol) in methanol (1 mL) and the reaction mixture was stirred under gentle re-
flux for 2 h. After cooling to room temperature, the solvent was evaporated under reduced
pressure, the residue was dissolved in 2,2-dimethoxypropane (1 mL) and two small crystals
of pTsOH·H2O were added again. The reaction mixture was stirred at room temperature
for 24 h. One drop of triethylamine was added, the solvent was evaporated under reduced
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pressure, and the title compound was isolated by column chromatography (SiO2, eluent
PE:EtOAc, 7:1). Colorless oil (8 mg, 55%). Rf = 0.45 (PE:EtOAc, 2:1). [α]D

20 = +27.3 (c 0.17,
CH2Cl2). IR (neat): ν = 3406, 1460, 1379, 1225, 1172, 1134, 1053 cm−1. 1H NMR (400 MHz,
CDCl3): δ = 3.87 (dtd, J = 11.2, 7.8, 3.4 Hz, 1H), 3.81–3.59 (m, 3H), 1.85–1.62 (m, 2H),
1.62–1.23 (m, 8H), 1.34 (s, 3H), 1.33 (s, 3H),1.19 (ddd, J = 14.0, 8.6, 3.4 Hz, 1H), 0.92 (d,
J = 6.7 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 100.21, 66.41,
64.83, 60.76, 42.89, 40.13, 39.44, 38.03, 26.18, 24.75, 24.66, 19.83, 18.58, 13.94. HRMS (ESI)
calcd. for C14H28O3Na+ [M+Na]+ 267.1931, found m/z 267.1929.

3.6.8. (5S,7S,9R)-9,13,13,14,14-Pentamethyl-5-propyl-2,4,12-trioxa-13-silapentadecan-7-ol (18)

tert-Butyldimethylsilyl chloride (1.51 g, 10.0 mmol) was added to a solution of diol
12 (2.34 g, 9.4 mmol) and imidazole (0.90 g, 13.2 mmol) in anhydrous CH2Cl2 (30 mL)
at 0 ◦C and the reaction mixture was stirred for 1.5 h while gradually warming to room
temperature. Then water (30 mL) was added, the organic layer was separated, and the
aqueous layer was extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts
were washed with saturated aqueous NaHCO3 solution (20 mL) and dried over Na2SO4.
Solvent was removed under reduced pressure, and the reaction product was isolated by
column chromatography (SiO2, eluent PE:EtOAc, 15:1). Colorless oil (3.25 g, 96%). Rf = 0.43
(PE:EtOAc, 4:1). [α]D

20 = +30.5 (c 1.18, CH2Cl2). IR (neat): ν = 3474, 1464, 1380, 1255, 1147,
1096, 1040, 837, 776 cm−1. 1H NMR (400 MHz, CDCl3): δ = 4.68 (d, J = 6.7 Hz, 1H), 4.65
(d, J = 6.7 Hz, 1H), 4.02–3.92 (m, 1H), 3.85–3.76 (m, 1H), 3.72–3.59 (m, 2H), 3.41 (s, 3H),
2.93 (d, J = 3.6 Hz, 1H), 1.88–1.75 (m, 1H), 1.64–1.27 (m, 9H), 1.19–1.09 (m, 1H), 0.92 (d,
J = 6.6 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H). 13C NMR (100.6 MHz,
CDCl3): δ = 96.40, 76.01, 65.45, 61.45, 55.85, 44.99, 42.13, 40.54, 37.22, 26.32, 25.96 (3C), 19.58,
18.68, 18.31, 14.20, –5.28 (2C). HRMS (ESI) calcd. for C19H42O4SiNa+ [M+Na]+ 385.2745,
found m/z 385.2744.

3.6.9. (5S,7S,9R)-7-Methoxy-9,13,13,14,14-pentamethyl-5-propyl-2,4,12-trioxa-13-
silapentadecane (14)

A solution of 18 (0.71 g, 1.96 mmol) in anhydrous THF (6 mL) was added dropwise
with stirring to a suspension of NaH (60% dispersion in mineral oil, 0.43 g, 10.8 mmol)
in anhydrous THF (10 mL). After 10 min, a solution of Bu4NI (0.02 g, 0.05 mmol) in THF
(1 mL) was added followed by a solution of iodomethane (0.50 mL, 1.14 g, 8.0 mmol) in
THF (5 mL). The reaction mixture was stirred at room temperature under inert atmosphere
(argon) for 14 h, and then diethyl ether (20 mL) was added. The reaction mixture was cooled
to 0 ◦C and quenched by slow dropwise addition of water, until the evolution of hydrogen
stopped. The mixture was diluted with water (20 mL), the organic layer was separated,
and the aqueous layer was extracted with diethyl ether (3 × 20 mL). The combined organic
extracts were dried over Na2SO4. The solvent was removed under reduced pressure, and
title compound was isolated by column chromatography (SiO2, eluent PE:EtOAc, 40:1).
Colorless oil (0.71 g, 96%). Rf = 0.45 (PE:EtOAc, 10:1). [α]D

20 = +14.5 (c 0.84, CH2Cl2). IR
(neat): ν = 1464, 1380, 1255, 1147, 1096, 1043, 836, 776 cm−1. 1H NMR (400 MHz, CDCl3):
δ = 4.68 (d, J = 6.8 Hz, 1H), 4.65 (d, J = 6.8 Hz, 1H), 3.75–3.58 (m, 3H), 3.49– 3.41 (m, 1H),
3.39 (s, 3H), 3.32 (s, 3H), 1.79–1.66 (m, 1H), 1.65–1.27 (m, 9H), 1.16 (ddd, J = 13.8, 8.2, 5.3 Hz,
1H), 0.97–0.83 (m, 15H), 0.04 (s, 6H). 13C NMR (100.6 MHz, CDCl3): δ = 95.94, 75.53, 75.05,
61.27, 55.89, 55.60, 42.01, 40.40, 40.36, 37.54, 26.29, 25.95 (3C), 20.03, 18.30, 18.25, 14.28, –5.28,
–5.32. HRMS (ESI) calcd. for C20H44O4SiNa+ [M+Na]+ 399.2901, found m/z 399.2902.

3.6.10. (3R,5S,7S)-5-Methoxy-7-(methoxymethoxy)-3-methyldecan-1-ol (19)

PPTS (0.021 g, 0.08 mmol) was added to a solution of silyl ether 14 (3.080 g, 8.20 mmol)
in methanol (50 mL) and the reaction mixture was kept at room temperature for 15 h.
Triethylamine (0.060 mL, 0.044 g, 0.44 mmol) was added, the solvent was removed un-
der reduced pressure, and the residue was purified by column chromatography (SiO2,
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PE:EtOAc, 7:1). Colorless oil (2.10 g, 98%). Rf = 0.46 (PE:EtOAc, 2:1). [α]D
20 = +15.5 (c 0.84,

CH2Cl2). IR (neat): ν = 3442, 1463, 1379, 1144, 1094, 1042 cm−1. 1H NMR (400 MHz,
CDCl3): δ = 4.68 (d, J = 6.8 Hz, 1H), 4.65 (d, J = 6.8 Hz, 1H), 3.75–3.61 (m, 3H), 3.47–3.39 (m,
1H), 3.39 (s, 3H), 3.33 (s, 3H), 1.84–1.29 (m, 11H), 1.19(ddd, J = 13.5, 8.1, 5.1 Hz, 1H), 0.95
(d, J = 6.7 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 95.81, 75.90,
75.05, 60.80, 56.13, 55.63, 41.78, 40.20, 40.14, 37.41, 26.20, 20.26, 18.23, 14.24. HRMS (ESI)
calcd. for C14H30O4Na+ [M+Na]+ 285.2036, found m/z 285.2039.

3.6.11. (3S,5S,7S)-5-Methoxy-7-(methoxymethoxy)-3-methyldecanal (15) [55]

A solution of DMSO (0.58 g, 7.4 mmol) in anhydrous CH2Cl2 (8 mL) was added to a
solution of (COCl)2 (0.32 mL, 0.47 g, 3.7 mmol) in anhydrous CH2Cl2 (7 mL) at −78 ◦C and
the reaction mixture was stirred at the same temperature under inert atmosphere (argon) for
25 min. A solution of alcohol 19 (0.76 g, 2.9 mmol) in anhydrous CH2Cl2 (8 mL) was added
and the reaction mixture was stirred at −78 ◦C for 1 h. Then triethylamine (2.30 mL, 1.68 g,
16.6 mmol) was added and the mixture was stirred while gradually warming to 0 ◦C for 1 h.
The reaction mixture was quenched with water (25 mL), the organic layer was separated,
and the aqueous layer was extracted with CH2Cl2 (3 × 20 mL). The combined organic
extracts were dried over Na2SO4. The solvent was removed under reduced pressure, and
the title compound was isolated by column chromatography (SiO2, eluent PE:EtOAc, 15:1).
Colorless oil (0.71 g, 94%). Rf = 0.48 (PE:EtOAc, 4:1). [α]D

20 = +9.4 (c 0.85, CH2Cl2). IR
(neat): ν = 1725, 1463, 1380, 1143, 1091, 1038 cm−1. 1H NMR (400 MHz, CDCl3): δ = 9.74 (t,
J = 2.1 Hz, 1H), 4.67 (d, J = 6.8 Hz, 1H), 4.64 (d, J = 6.8 Hz, 1H), 3.74–3.63 (m, 1H), 3.48–3.39
(m, 1H), 3.38 (s, 3H), 3.32 (s, 3H), 2.47–2.36 (m, 1H), 2.30–2.20 (m, 2H), 1.69–1.19 (m, 8H),
1.00 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). 13C NMR (100.6 MHz, CDCl3): δ = 202.56,
95.85, 75.46, 74.96, 55.92, 55.62, 51.32, 41.54, 40.02, 37.38, 24.99, 20.27, 18.21, 14.23. HRMS
(ESI) calcd. for C14H28O4Na+ [M+Na]+ 283.1880, found m/z 283.1884.

4. Conclusions

We have developed an improved and cost-efficient protocol for multigram preparation
of (allyl)tributylstannane 2, which can be used as a synthetic equivalent of a C5-bipolar syn-
thon in the synthesis of natural compounds. The use of 2 in stereoselective transformations
was exemplified by highly diastereoselective 1,3-anti-allylation of aldehyde 3, designed
en route to the total synthesis of (+)-Neopeltolide. Scandium triflate was revealed as an
effective Lewis acid catalyst in this transformation. Addition of water was found to be
crucial for adjusting the catalytic activity of scandium triflate and led to greatly improved
stereoselectivity. Although stoichiometric amounts of scandium triflate are required to
attain high yield of 8, this work represent a rare example of the use of functionalized
allylstannanes in stereocontrolled allylation of oxysubstituted aldehydes.
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4/13/3/470/s1, copies of 1H, 13C-NMR and HRMS spectra, synthesis of aldehyde 3.
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