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Abstract: We consider a MAP/PH/1-type queueing system with server vacations as a model that
is useful for the analysis of multiple access systems with polling discipline without transmission
interruption. Vacation of the server corresponds to the service providing competitive information
flows to the polling system. In this paper, we consider a vacation queueing model under pretty general
assumptions about the probabilistic distributions describing the behavior of the system and the
realistic assumption, in many real-world systems, that ongoing service cannot be terminated ahead of
schedule. We derive the criterion of the stable operation of the system and the stationary distributions
of the system states and the waiting time. An illustrative numerical example is presented.

Keywords: queueing model; random multiple access; time-limited service; polling system; stability

1. Introduction

A popular discipline for service provision, in particular information transmission,
in many systems with multiple access, is polling, see, for example, [1–3]. Under this
discipline, different flows of information, which should be transmitted in the system,
sequentially obtain time slots for access to the transmission thread. Queueing theory is
one of the most powerful tools for the analysis of polling systems. The polling systems
are usually described by very complicated multi-dimensional stochastic processes and
queueing models with server vacations are very useful for the analysis of these processes.
Vacation queueing models have been studied in a huge number of works, for example,
in [4–8].

In this paper, we consider a vacation queueing model with an exhaustive time-limited
service. This means that the server takes a vacation when it becomes idle or when the
so-called maximum attendance time expires, whichever occurs first. An important feature
of the considered model is the assumption that the ongoing service cannot be interrupted
when the maximum attendance time expires. A similar model has previously been con-
sidered, for example, in [9–11]. In contrast to these papers, we consider a system with
a more general Markovian Arrival process, which much better describes the real-world
information flows than the stationary Poisson process. We also assume that the maximum
attendance time has the so-called phase-type (PH) distribution, while only exponential or
degenerate distributions have been previously considered in the literature. The exponential
distribution is one of the special cases of the phase-type distribution. As follows from [12],
to approximate any arbitrary distribution in the sense of weak convergence, a PH-type
distribution can be used.

Consideration of the model analyzed in this paper was originated during the imple-
mentation of applied research to optimize the work of the inter-banking processing center

Mathematics 2021, 9, 1508. https://doi.org/10.3390/math9131508 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2881-0227
https://orcid.org/0000-0003-2655-4805
https://doi.org/10.3390/math9131508
https://doi.org/10.3390/math9131508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9131508
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9131508?type=check_update&version=1


Mathematics 2021, 9, 1508 2 of 15

of the Republic of Belarus, which handles all money transactions between the banks. The
results of analysis of a similar queueing model have recently been reported in [13]. That
paper presents the motivation to consider these types of queueing system, their practi-
cal importance, the state-of-the-art, and the relevant literature. The principal difference
between the models under study in [13] and in this paper is the following: in the model
considered in [13], it was assumed that the customers are impatient. This means that any
customer waiting in the queue departs from the system without service after a random
amount of time. We assume that this time depends on the state of the server and has an
exponential distribution with the nonnegative parameter αr. The server can be in three
states: r = 0 if the server has a vacation; the state r = 1 corresponds to the case when
the server is busy and the maximum server attendance time is not finished; and r = 2 if
the server is also busy but the maximum server attendance time is expired. It is assumed
in [13] that αr > 0 for at least one of the values of r, r = 0, 1, 2.

The main difficulty in the analysis of the model with impatient customers in [13]
consists of the fact that the process of the system is a multi-dimensional, level-dependent
Markov chain. This excludes the possibility of using the well-known results for the level-
independent Quasi-Birth-and-Death processes; see, for example, [14], for an analysis of
the system. Therefore, more complicated results for the so-called Asymptotically Quasi-
Toeplitz Markov chains (see [15]) were used in [13] for the analysis of a queueing model.
In particular, it was proven that if αr > 0 for at least one of the values of r, r = 0, 1, 2,
then the Markov chain describing the vacation queueing model under study is ergodic
for any values of other parameters of the system, in particular of the pattern of the arrival
process and its rate, distributions of service, vacation and maximum attendance times.
The impatience of customers is the inherent feature of many real-world systems and
this explains its account in the paper [13]. However, in certain systems, the customers
are absolutely patient and depart from the system only after receiving the service. In
particular, in modeling the inter-banking processing center noted above, it was suggested
that any financial transaction accepted for processing in the center must be implemented
and committed. Therefore, the parameter αr = 0 for all values of r, r = 0, 1, 2, and the
ergodicity condition of the Markov chain (stability condition of the queueing model) has to
be derived. Fulfillment of this condition has to be verified before the stationary distribution
of the system states will be computed. Such a condition is presented in this paper. The
practical importance of this condition consists of the possibility of its use for planning the
throughput of the system, customers’ admission discipline, and the proper choice of the
equipment required for providing the desired quality of service.

This paper has the following structure: The mathematical model of the considered
system is presented in Section 2. In Section 3, the behavior of the system under study is
described by a continuous-time multi-dimensional Markov chain. This chain belongs to
the class of Quasi-Birth-and-Death processes. The generator of this chain is given. The
ergodicity condition is derived and the vectors of the stationary probabilities of the system
states are computed in the matrix geometric form in Section 4. In Section 5, the formulas
for the main performance measures of the system are written down. Section 6 presents
the analysis of the waiting time distribution including the derivation of the formula for
computing the mean waiting time. Section 7 contains the major findings and conclusions.

2. Mathematical Model

A single-server queueing system is analyzed. The system has an infinite buffer.
We assume the Markovian arrival flow (MAP) of customers. Arrivals in the MAP are
described by an underlying process νt, t ≥ 0, that is an irreducible continuous-time Markov
chain with a finite state space {0, . . . , W}. The intensities of this chain transitions that are
accompanied by the generation of one customer (not accompanied by customer arrivals)
are combined into the square matrix D1(D0), of size W + 1. The infinitesimal generator of
the process νt, t ≥ 0 is the matrix D(1) = D0 + D1.



Mathematics 2021, 9, 1508 3 of 15

The vector of the stationary distribution (invariant vector) θ of the process νt is a
unique solution of the following system

θD(1) = 0, θe = 1.

Hereinafter, e is a column vector consisting of ones and 0 is a zero row vector of appropriate
size. The size of a vector is indicated using a lower index if it is not clear from context, for
instance eW means the unit column vector of size W = W + 1.

The fundamental intensity λ of the MAP arrival process can be calculated by the
following formula

λ = θD1e.

The rate λ defines the average number of arriving customers per unit of time.
Detailed information about the MAP arrival process and its usefulness in modeling

customers flows in telecommunication systems can be found in, for example, [16–21]. An
example of when MAP with a special matrix structure is used to simulate traffic in real
networks can be found in a recent paper [22].

We assume that the busy periods of the server alternate with the vacation periods.
The service period starts immediately after completion of the vacation period conditioned
on the fact that the system is not empty. If the system is empty, the server takes another
vacation. Since the arrival of a customer does not imply the beginning of a busy period,
each arriving customer joins the buffer. We assume the First In–First Out service discipline.

The duration of the vacation time has the PH distribution with the parameters (γ, Γ).
The vacation time is defined as the time until the continuous-time Markov chain ξt, t ≥ 0,
having R transient states and one absorbing state, transits to the absorbing state conditioned
on the fact that the initial state is chosen among transient states. The initial state of the
process ξt, t ≥ 0, is randomly chosen according to the probability distribution defined
by the probabilistic row vector γ = (γ1, . . . , γR). The intensities of the transitions of
the Markov chain ξt, t ≥ 0, within the set of transient states, are defined by the R-
dimension square irreducible matrix Γ. The intensities of transitions to the absorbing state
are defined by a column vector Γ0 = −Γe. The distribution function of the vacation time
can be found as 1− γeΓxe. The Laplace–Stieltjes transform of this distribution function is
γ(sI − Γ)−1Γ0, Re s > 0. The mean vacation time can be found as v1 = γ(−Γ)−1e.

We assume that the service period also has the PH distribution with the parameters
(τ, T). The service period is defined as the time until the continuous-time Markov chain
χt, t ≥ 0, having K transient states and one absorbing state, transits to the absorbing state
conditioned on the fact that the initial state is chosen among transient states. Let us denote
T0 = −Te. The mean service period can be found as τ1 = τ(−T)−1e.

When the service period starts, the first customer from the buffer is chosen for service.
The service time of any customer also has the PH distribution with the parameters (β, S).
An underlying process of this time is denoted as ηt, t ≥ 0. The Markov chain ηt, t ≥ 0,
has M transient states. Let us denote S0 = −Se. The mean service time can be found as
b1 = β(−S)−1e.

If, during the service completion epoch, the buffer is idle, the vacation period imme-
diately begins. In standard T-limited service (see e.g., [8]) it is assumed that when the
service period is expired, the vacation of the server immediately begins and the customer
who obtains service during the service period completion epoch is lost or returns to the
buffer. In the model under study, we assume that the service of a customer cannot be
terminated. After the service period completion the vacation period starts only after the
customer service completion.

The main goal of the analysis is to obtain the condition of the existence of the stationary
distribution of the system states and to compute this distribution as well as the distribution
of the waiting time of an arbitrary customer.
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3. The Process of the System States

Let, at the moment t, t ≥ 0,

• it be the number of customers in the system, it ≥ 0,;
• rt be the current status of the server: rt = 0 if the server is on vacation, rt = 1 if the

server is busy and the service period is not finished, and rt = 2 if the server is busy
but the maximum server attendance time is finished;

• νt be the state of the underlying process of the MAP, νt = 0, W;
• mt be the state of the underlying process ξt of the vacation period in the case rt = 0,

mt = (χt, ηt) (the pair of the states of the underlying processes of the service period
and the service time) in the case rt = 1, and mt = ηt if rt = 2.

One can verify that the behavior of the system under study is described by the multi-
dimensional process ζt = {it, rt, νt, mt}, t ≥ 0, which is an irreducible continuous-time
Markov chain. This Markov chain has the following state space

Ω = {(i, 0, ν, ξ), i ≥ 0, 0 ≤ ν ≤W, 1 ≤ ξ ≤ R)}⋃
{(i, 1, ν, χ, η), i ≥ 1, 0 ≤ ν ≤W, 1 ≤ χ ≤ K, 1 ≤ η ≤ M}⋃

{(i, 2, ν, η), i ≥ 1, 0 ≤ ν ≤W, 1 ≤ η ≤ M.}

Let us denote the generator of the Markov chain ζt, t ≥ 0, by Q. The generator is a
square matrix with all negative diagonal entries. Moduli of the diagonal entries define the
intensity of the leaving of the Markov chain in the corresponding states. The non-diagonal
entries of the generator are non-negative. These entries define the transition intensities of
the process ζt, t ≥ 0, from one state to another.

To obtain the generator Q in the block-matrix form, we enumerate the states of the
process ζt in the direct lexicographic order of the components and assume that all states of
the Markov chain ζt having values (i, r) of the first two components form the sub-level (i, r).
One can verify that the number of states of the level (i, 0) is WR, the number of states of
the level (i, 1) is WKM and the number of states of the level (i, 2) is WM. Then, we form
level i, i ≥ 0, from the sub-levels (i, r), r = 0, 1, 2.

Lemma 1. The generator Q of the Markov chain ζt has the following block-tridiagonal structure:

Q =


Q0,0 Q0,1 O O . . .
Q1,0 Q0 Q+ O . . .

O Q− Q0 Q+ . . .
...

...
...

...
. . . ,


where the non-zero blocks Qi,j are defined as follows:

Q0,0 = D0 ⊕ (Γ + Γ0γ), Q0,1 =
(
D1 ⊗ IR |O |O

)
, Q1,0 =

 O
IW ⊗ eK ⊗ S0 ⊗ γ

IW ⊗ S0 ⊗ γ

,

Qi,i−1 = Q− =

 O O O
O IW ⊗ IK ⊗ S0 ⊗ β O

IW ⊗ S0 ⊗ γ O O

,

Qi,i = Q0 =

D0 ⊕ Γ IW ⊗ Γ0 ⊗ τ ⊗ β O
O D0 ⊕ T⊕ S IW ⊗ T0 ⊗ IM
O O D0 ⊕ S

,

Qi,i+1 = Q+ =

D1 ⊗ IR O O
O D1 ⊗ IK ⊗ IM O
O O D1 ⊗ IM

, i ≥ 1.
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Here, I denotes the identity matrix, and O denotes a zero matrix, and ⊗,⊕ are the symbols of the
Kronecker product and the sum of the matrices correspondingly, see [23]. If it is necessary, the size
of the matrix I is given as the low index, that is, IK represents the identity matrix of size K.

Proof of Lemma 1 is implemented using careful analysis of all possible transitions in
the Markov chain ζt, t ≥ 0, during an infinitesimally small time and further forming the
corresponding intensities of transitions into the block matrices. The Kronecker product
and sum of matrices are used here for the description of the intensities of the simultaneous
transition of several independent Markov chains. One can see that the blocks Qi,j (except
the boundary blocks) do not depend on the levels i and j separately but depend on the
difference j− i. The Markov chain ζt, having such a property according to [14], belongs
to the class of level-independent Quasi-Birth-and-Death processes. The boundary blocks
Q0,0, Q0,1, Q1,0 of the generator have fewer sub-blocks than other sub-blocks, since the
process rt can only be in state 0 when the system is idle.

4. Ergodicity Condition

The criterion for the ergodicity of the Markov chain ζt is presented in the follow-
ing statement.

Theorem 1. The Markov chain ζt is ergodic if and only if the inequality is fulfilled:

−x1(T⊕ S)e > λ. (1)

Here, the vector x1 is computed as

x1 = (1, 0, . . . , 0)Ã−1, (2)

where the non-singular matrix Ã is given by

Ã = AÎ + Ī,

A = IK ⊗ (S0 ⊗ β + S) + T⊗ IM + (T0 ⊗ eM)(τ ⊗ β), (3)

Î =

0 0 · · · 0
0 1 · · · 0
0 0 · · · 1

, Ī =
(
b | O

)
,

b = eKM + T0 ⊗ (−S)−1eM + v1T0 ⊗ eM. (4)

Proof. According to [14], the Markov chain ζt has a stationary mode if and only if the
following inequality holds:

yQ−e > yQ+e. (5)

Here, the vector y can be found as the unique solution of the system

y(Q− + Q0 + Q+) = 0, (6)

ye = 1. (7)

One can see that the matrix Q− + Q0 + Q+ has the following form

Q− + Q0 + Q+ =

=

D0 ⊕ Γ + D1 ⊗ IR IW ⊗ Γ0 ⊗ τ ⊗ β O
O D0 ⊕ T⊕ S + (D1 ⊗ IK)⊕ (S0 ⊗ β) IW ⊗ T0 ⊗ IM

IW ⊗ S0 ⊗ γ O D0 ⊕ S + D1 ⊗ IM

. (8)
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Looking at the structure of this matrix given by formula (8), we can assume that the solution
to system (6) has the form:

y = (θ⊗ x0, θ⊗ x1, θ⊗ x2). (9)

Remember that θ is the invariant vector of the MAP underlying process and it satisfies
the system

θ(D0 + D1) = 0, θe = 1. (10)

The vectors xr, r = 0, 1, 2 have to be defined. Let us substitute the vector y in form
(9) into the system (6) matrix, which is given by Formula (8). Using the so-called mixed
product rule (see properties of the Kronecker product and the sum of matrices given in [23])
and Equation (10), it is possible to verify that this vector satisfies system (6) if the vector
x = (x0, x1, x2) satisfies the system

x

 Γ Γ0 ⊗ τ ⊗ β O
O IK ⊗ (S0 ⊗ β + S) T0 ⊗ IM

S0 ⊗ γ O S

 = 0. (11)

From normalization condition (7), using the mixed product rule, we easily derive the
normalization condition for the vector x :

xe = 1. (12)

From Equation (11), we easily obtain the following relations for the sub-vectors xr, r =
0, 1, 2 :

x0 = x2S0γ(−Γ)−1, (13)

x2 = x1(T0 ⊗ IM)(−S)−1, (14)

x1(IK ⊗ (S0 ⊗ β + S) + T⊗ IM) + x2S0(τ ⊗ β) = 0. (15)

By substituting (14) into (15), we obtain that the vector x1 is a solution of the following system

x1A = 0, (16)

where the matrix A is given by Formula (3).
It is easy to verify that the matrix A is an irreducible generator. Therefore, it is singular.

The rank of the system is equal to KM − 1. To obtain the system of a full rank, we use
normalization condition (12). Taking into account relations (13)–(15), condition (12) reduces
to the equation

x1b = 1, (17)

where the column vector b is given by Formula (4).
Replacing the first equation of system (16) with Equation (17), we get the equation

x1Ã = (1, 0, . . . , 0). (18)

It can be shown that, if condition (1) is fulfilled, then the matrix Ã is non-singular. Therefore,
a solution of system (18) has form (2). Having the vector x1 computed, the vectors x0, x2
are immediately computed from (13) and (14). Thus, we succeeded in explicitly solving
systems (11) and (12) for the vector x and, then, systems (6) and (7) for the vector y. By
substituting the vector y into (5), performing some algebraic manipulations, we obtain the
inequality

x1

[
eK ⊗ S0 + T0 ⊗ eM

]
> λ.

Taking into account the mixed product rule for the matrices, this inequality can be rewritten
in form (1).
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Remark 1. It is well known that the ergodicity of a queueing system means that the system
can serve more customers than it receives on average, per unit time conditioned on the fact that
the system is overloaded. If the system under study is overloaded, the arrival rate is equal to λ
while the rate of customers’ departure from the system is equal to the left-hand side of inequality
(1). This becomes clearer if this side is rewritten in the equivalent, due to relation (11), form
x1(eK ⊗ S0) + x2S0. The components of the vector x1 define the stationary distribution of the
underlying processes of the service period and the service time when the state of the process rt is 1
and the system is overloaded. The components of the vector x2 define the stationary distribution
of the underlying process of the service time when the state of the process rt is 2 and the system is
overloaded. Departures from the system occur only when the state of the process rt is 1 or 2. The
intensities of departures are defined by the corresponding elements of the vector S0 when the states
of the underlying process of service time are fixed. Thus, condition (1) is intuitively clear.

Remark 2. One of the main performance measures of any queueing system is the throughput, that
is, the maximal intensity of flow of customers who obtained successful service. In the system under
study, the throughput Tout can be calculated using the following formula:

Tout = x1[eK ⊗ S0 + T0 ⊗ eM] = −x1(T⊕ S)eKM.

Corollary 1. If the arrival flow is described by the stationary Poisson process with the rate λ,
durations of vacation, maximum attendance time and service time have an exponential distribution
with the parameters γ, τ and µ, respectively, and ergodicity condition (1) has the form

λ <
τ + µ

1 + τ
µ + τ

γ

.

This condition is easily tractable, as follows. When the system is overloaded, we call
the cycle the sequence of three times: vacation time, maximum attendance time, and the
residual service time of a customer during service for which the maximum attendance time
expires. It is clear that the average length of the cycle is equal to γ−1 + τ−1 + µ−1. Then
λ(γ−1 + τ−1 + µ−1) is the mean number of customers who arrive during the cycle. The
mean number of service completions during the maximum attendance time is equal to
µτ−1. One more customer finishes its service after completion of the maximum attendance
time. Therefore, the average number of service completions during an arbitrary cycle is
equal to µτ−1 + 1. Then, the ergodicity condition requires that the average number of
arrivals during the cycle is less than the average number of customer departures during
the cycle. This results in the inequality

λ(γ−1 + τ−1 + µ−1) < µτ−1 + 1.

This coincides with the inequality derived in the considered partial case directly from
inequality (1).

If inequality (1) is fulfilled, then the stationary distribution of the Markov chain ζt
exists for any system parameters. Let

π(i, 0, ν, ξ) = lim
t→∞

P{it = i, rt = 0, νt = ν, ξt = ξ}, i ≥ 0, ν = 0, W, ξ = 1, R,

π(i, 1, ν, χ, η) = lim
t→∞

P{it = i, rt = 1, νt = ν, χt = χ, ηt = η}, i ≥ 1, ν = 0, W, χ = 1, K, η = 1, M,

π(i, 2, ν, η) = lim
t→∞

P{it = i, rt = 2, νt = ν, ηt = η}, i ≥ 1, ν = 0, W, η = 1, M,

be the stationary state probabilities of the Markov chain under study. Then we form the
row vectors π(i, r) consisting of state probabilities of the sub-level (i, r) and the vectors πi
of state probabilities of the level i :

πi = (π(i, 0), π(i, 1), π(i, 2)), i ≥ 1, π0 = π(0, 0).
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The following result immediately follows from [14].

Theorem 2. The vectors πi, i ≥ 0, defining the stationary distribution of the states of the
considered queueing system, are calculated by the following formula:

πi = π1Ri−1, i ≥ 1. (19)

Here, the matrix R can be found as the minimal non-negative solution of the following matrix equa-
tion:

R2Q+ + RQ0 + Q− = O.

The vectors π0 and π1 satisfy the following system:

π0Q0,0 + π1Q1,0 = 0, π0Q0,1 + π1(Q0 + RQ−) = 0, (20)

π0eWR + π1(I− R)−1eWKM = 1.

5. Performance Measures of the System

When the vectors πi, i ≥ 0, have been calculated, we can compute different perfor-
mance characteristics of the system.

The mean number L of customers in the system is

L =
∞

∑
i=1

iπie = π1(I− R)−2e.

The mean number Lq of customers in the queue is calculated as

Lq =
∞

∑
i=1

iπ(i, 0)eWR +
∞

∑
i=2

(i− 1)π(i, 1)eWKM +
∞

∑
i=2

(i− 1)π(i, 2)eWM.

The probability that the server is in the vacation is defined by

F(0) =
∞

∑
i=0

π(i, 0)e.

The probability that the server is busy and the maximum attendance time is not
finished is defined by

F(1) =
∞

∑
i=1

π(i, 1)e.

The probability that the server is busy but the maximum attendance time is finished is
defined by

F(2) =
∞

∑
i=1

π(i, 2)e.

The mean number of customers in the system, conditioned on the fact that the server
is in the state r, is defined by

L(r) = (F(r))−1
∞

∑
i=1

iπ(i, r)e, r = 0, 1, 2.

The probability that a customer meets the server, having status r upon arrival, is
defined by

Pr = λ−1
∞

∑
i=1

π(i, r)(D1 ⊗ IK2−r M)e, r = 0, 1, 2.
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The intensity of the output flow of successfully serviced customers in the system λ(out)

is defined by

λ(out) =
∞

∑
i=1

π(i, 1)(eWK ⊗ S0) +
∞

∑
i=1

π(i, 2)(eW ⊗ S0).

It is evident that, because the customers are absolutely patient, the relation λ(out) = λ
is true. This relation is useful for the control of the accuracy of the computation of the
stationary distribution.

The mean number J of starting service periods per unit of time is defined by

J =
∞

∑
i=1

π(i, 0)(eW ⊗ Γ0).

6. Distribution of Waiting Time

Let us introduce the following notation:

• W(x) is the waiting time distribution function of an arbitrary customer;
• w(s) is the Laplace–Stieltjes transform (LST) of W(x). It is evident that w(s) can be

found as w(s) =
∞∫
0

e−sxdW(x), Re s > 0;

• w(r)
i (s) is the column vectors of the LSTs of the arbitrary customer waiting time

conditioned on the fact that this customer arrives during the epoch when the number
of customers in the system is i, i ≥ 0, the server is in the r-th state, r = 0, 1, 2. The
states of other components that define the system’s behavior are assumed to be fixed.

Theorem 3. The LST w(s) can be found as:

w(s) =
1
λ

[ ∞

∑
i=0

π(i, 0)(D1eW ⊗ IR)w
(0)
i (s) +

∞

∑
i=1

π(i, 1)(D1eW ⊗ IKM)w(1)
i (s)+

+
∞

∑
i=1

π(i, 2)(D1eW ⊗ IM)w(2)
i (s)

]
,

where
w(1)

i (s) = (Ω(s))ieKM, i ≥ 0, (21)

Ω(s) = (sI−T⊕ S)−1
[
(T0⊗ IM)(sI− S)−1S0γ(sI− Γ)−1Γ0(τ⊗ β) + IK ⊗ (S0β)

]
(22)

and
w(0)

i (s) = (sI− Γ)−1Γ0(τ ⊗ β)w(1)
i (s), i ≥ 0, (23)

w(2)
i (s) = (sI− S)−1S0γw(0)

i−1(s), i ≥ 1. (24)

Proof. To derive the formulas for LST w(s), we use the method of collective marks,
(see, [24,25]). To this end, we tag an arbitrary customer that arrives at the system and
keep track of its movement in the system. The method of collective marks assumes that a
virtual stationary Poisson flow of catastrophes with the intensity s arrives at the system.
In this case, w(s) defines the probability of no catastrophe arrival during the stay of the
tagged customer in the buffer. Note that a catastrophe has no physical interpretation and
cannot impact the system under study. It is used only to obtain the probabilistic meaning of
the LST. Note that the entries of the vector w(r)

i (s) define the probability of no catastrophe
arrival during the tagged customer stay in the buffer, conditioned on the fact that the cus-
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tomer arrives when the number of customers in the system is i and all other components
that define the system state have the corresponding values.

Taking into account the probabilistic meaning of the conditional LSTs w(r)
i (s) and the

formula of total probability, the following expressions for the LSTs w(r)
i (s), r = 0, 1, 2, can

be derived:

w(0)
i (s) =

∞∫
0

e(−sI+Γ)tΓ0dt(τ ⊗ β)w(1)
i (s) = (sI− Γ)−1Γ0(τ ⊗ β)w(1)

i (s), i ≥ 0, (25)

w(2)
i (s) =

∞∫
0

e(−sI+S)tS0dtγw(0)
i−1(s) = (sI− S)−1S0γw(0)

i−1(s), i ≥ 1, (26)

w(1)
i (s) =

∞∫
0

e(−sI+T⊕S)tdt
[
(T0 ⊗ IM)w(2)

i (s) + (IK ⊗ (S0β))w(1)
i−1(s)

]
=

= (sI− T⊕ S)−1
[
(T0 ⊗ IM)w(2)

i (s) + (IK ⊗ (S0β))w(1)
i−1(s)

]
, i ≥ 1, (27)

w(1)
0 (s) = eK ⊗ eM. (28)

Solving a system of recursive Equations (25)–(27) with initial condition (28), we obtain
Expressions (21)–(24). Then, the expression for the LST w(s) is easily derived from the
formula of total probability.

Remark 3. It is easy to see that

Ω(0)e = e, w(r)
i (0) = e, r = 0, 1, 2.

Corollary 2. The mean waiting time W1 of an arbitrary customer can be calculated by the follow-
ing formulas:

W1 = −w′(s)|s=0 =

=
1
λ

[ ∞

∑
i=0

π(i, 0)(D1eW ⊗ IR)W
(0)
i +

∞

∑
i=1

π(i, 1)(D1eW ⊗ IKM)W(1)
i +

∞

∑
i=1

π(i, 2)(D1eW ⊗ IM)W(2)
i ,

]
where the column vectors W(r)

i = −(w(r)
i (s))′|s=0, i ≥ 1, r = 0, 1, 2, are computed as follows:

W(1)
i = −((Ω(s))i)′|s=0e, i ≥ 1,

where the derivatives ((Ω(s))i)′|s=0 can be computed recursively:

((Ω(s))i)′|s=0 = ((Ω(s))i−1)′|s=0Ω(0) + (Ω(0))i−1(Ω(s))′|s=0, i ≥ 1,

with the initial condition

Ω′(s)|s=0e = (T⊕ S)−1
[

eKM + T0 ⊗ ((Iv1 − S−1)eM)

]
and

W(0)
0 = Γ−1eR, W(0)

i = Γ−1eR + eR(τ ⊗ β)W(1)
i , i ≥ 1,

W(2)
i = S−1eM + eMγW(0)

i−1, i ≥ 1.
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Corollary 3. The mean sojourn time Vsoj of an arbitrary customer can be calculated by the follow-
ing formulas:

Vsoj = W1 + b1.

7. Numerical Example

Numerical realization of the obtained results does not solve essential problems, com-
pared to [13], because the steady-state distribution of the considered queueing system
has the matrix geometric distribution. The importance of accounting for the variance
of vacation, service and maximum attendance time, revealed in [13] for the system with
impatient customers, takes place in the case of the considered system with absolutely
patient customers as well.

In this numerical example, we intend to briefly show the impact of the correlation
on the arrival process. We assume that the service time of any customer has the PH
distribution with the parameters given by the vector β = (1, 0) and sub-generator

S =

(
−100 100

0 −100

)
.

The mean service time is b1 = 0.02.
The service period (maximum attendance time) has the PH distribution with the

parameters given by the vector τ = (1, 0) and sub-generator

T =

(
−2 2
0 −2

)
.

The mean duration of the service period is equal to 1. This means that, on average, fifty
customers can be served during the service period if the queue is not exhausted.

The duration of the vacation time has the PH distribution with the parameters given
by the vector γ = (1, 0) and sub-generator

Γ =

(
−0.5 0.5

0 −0.5

)
.

The mean duration of the vacation time is equal to 4. In possible applications to the analysis
of polling systems, this can be approximately interpreted as the fair sharing of the server
between five flows of customers. After the unit of time of the customers receiving service
from the tagged queue, the service of this queue is suspended. The service is resumed only
after four other queues sequentially receive service from the server.

The aim of this example is to show the importance of accounting for the coefficients of
correlation and variation of inter-arrival times. To this end, we consider a MAP arrival flow,
coded as MAP, with the coefficient of correlation ccor = 0.2 and the squared coefficient of
variation ccor = 12.35 and a stationary Poisson arrival process, coded as SPAP, with the
coefficient of correlation ccor = 0 and the squared coefficient of variation ccor = 1. These
processes have the same average arrival intensity λ. We will vary the intensity λ over the
interval [0.1,8] with the step 0.1 and show the dependencies of the several performance
measures of the system on this parameter. To obtain the arrival flow with the average
intensity λ, we use the base flow with the average intensity 1, and then multiply the
corresponding matrices by λ. The base matrices for the MAP are fixed as follows:

D0 =

(
−1.35223319 0

0 −0.0438826

)
,

D1 =

(
1.34323164 0.00900155
0.0244342 0.0194484

)
.
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The base matrices for SPAP are the following

D0 = (−1),

D1 = (1).

Figures 1–5 show the dependence of the main performance measures on the average
arrival rate λ for the MAP and SPAP.
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Figure 1. Dependence of the mean number L of customers in the system on the average arrival rate λ.
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Figure 2. Dependence of the probability P0 that a customer meets the server, having status 0 (being
on vacation) upon arrival, on the average arrival rate λ.
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Figure 3. Dependence of the probability P1 that a customer meets the server, having status 1 upon
arrival, on the average arrival rate λ.
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Figure 4. Dependence of the probability P2 that a customer meets the server, having status 2 upon
arrival, on the average arrival rate λ.
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Figure 5. Dependence of the average sojourn time Vsoj on the average arrival rate λ.

It is seen from Figures 1 and 5 that the mean number L of customers and the average
sojourn time Vsoj of an arbitrary customer in the system grow when the average arrival
rate λ increases. This tendency is evident. Less evident is the fact that the values of L and
Vsoj grow more quickly when the arrival flow is the MAP. This is explained by the positive
correlation of inter-arrival times in the MAP. This correlation implies less regular arrival
of customers compared to the system with SPAP, having the same mean arrival rate as
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the MAP. Periods of time when customers arrive rarely (and starvation of the server may
occur) alternate with periods when customers arrive frequently, which leads to the increase
of the queue length and customer sojourn time. These observations are consistent with
the behavior of the probabilities Pk, k = 0, 1, 2, illustrated by Figures 2–4. The probability
that the server is on vacation is smaller in the case of the MAP. A longer queue requires
a longer time until the server becomes idle and the probability that the server becomes
idle and goes to vacation is smaller compared to the system with non-correlated SPAP.
Correspondingly, probabilities P1 and P2, that the server is busy, are higher in the case of
the MAP.

8. Conclusions

In this paper, we analyzed a single-server queueing system with vacations. The service
period is limited. The arrival flow of customers is defined by the MAP. The distributions
of the vacation and service times and the maximum server attendance time are of the
phase-type. Service is not preemptive: if the maximum server attendance time expires, the
currently provided service cannot be interrupted. It has to be performed completely before
beginning the vacation. The necessary and sufficient ergodicity condition of the system
states is derived. The stationary distribution of the system states, as well as the waiting
time distribution of an arbitrary customer, are obtained.

The distributions of the real attendance time of the server, which is the minimum of the
busy period of the system, and of the sum of the maximum attendance time and the residual
service time of the customer during service for which the maximum attendance time expires,
can be found, following [13]. This distribution is interesting from the perspective of the
application of the results of the investigation of the considered vacation queueing model to
the analysis of polling systems.
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