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Non-Hermitian photonic systems with loss and gain attract much attention due to their exceptional abilities

in molding the flow of light. Introducing asymmetry to the PT -symmetric system with perfectly balanced

loss and gain, we reveal the mechanism of transition from the quasibound state in the continuum (quasi-BIC) to

the simultaneous coherent perfect absorption (CPA) and lasing in a layered structure comprising epsilon-near-

zero (ENZ) media. Two types of asymmetry (geometric and non-Hermitian) are analyzed with the scattering

matrix technique. The effect of the CPA-lasing associated with the quasi-BIC is characterized with the unusual

linear dependence of the quality factor on the inverse of asymmetry parameter. Moreover, the counter-intuitive

loss-induced-lasing-like behavior is found at the CPA-lasing point under the non-Hermitian asymmetry. The

reported features of non-Hermitian structures are perspective for sensing and lasing applications.

I. INTRODUCTION

Since the pioneering work of PT -symmetric quantum

mechanics [1], non-Hermitian physics became an extremely

wide field of research concerning not only quantum effects

but also branches of classical physics including photonics,

mechanics, electrical engineering, and even biophysics [2].

Principles of the non-Hermitian photonics have stimulated an

especially fruitful design of novel optical systems with loss

and gain elements. PT -symmetric structures with balanced

loss and gain as a particular case of non-Hermitian systems

have attracted most attention due to their ability to implement

basic effects of both PT -symmetric response and symme-

try breaking [3–6]. Applications of PT symmetry in optics

and photonics are diverse and include sensing with enhanced

sensitivity [7–9], slowing of light [10], effective single-mode

lasing [11–14], coherent perfect absorption (CPA) [15–17],

topological-protection of surface states [18], and even train-

ing of optical neural networks [19].

There are two basic geometries widely employed in the

studies on non-Hermitian photonics [3]. Longitudinal geome-

try is used in single-mode [20] and multimode coupled waveg-

uides [21–23], one- [24] and two-dimensional photonic lat-

tices [25], and coupled microcavities [26]. The most popular

transverse geometry is a multilayer structure with alternating

loss and gain media. Being a non-Hermitian generalization of

the photonic crystal concept, such a multilayer attracts much

attention due to its simplicity for analysis and availability for

unusual optical responses, such as anisotropic transmission

resonances [27], resonant scattering [28], nonlinear satura-

∗ dvnovitsky@gmail.com

tion effects [29–32], nonlocality [33], pulse-propagation ef-

fects [34, 35], effects of disorder [36], etc. From the more

general perspective, many of these effects can be treated as

“anomalies” in light scattering [37, 38] being described by

means of scattering matrix technique [27, 39]. The features of

light scattering on dielectric structures were deeply studied in

recent years [40–44].

A special type of “anomaly” is a singular optical response

in media with permittivity close to zero, which are called

epsilon-near-zero (ENZ) media. The ENZ media demonstrate

a number of unique properties such as wavelength expansion,

field enhancement, light tunneling, light velocity manipula-

tion, and strong nonlinear and nonlocal effects [45–47]. Here

we are interested in the so-called bound states in the contin-

uum (BICs) – trapped modes of open cavities with perfect lo-

calization of radiation and resonances of infinite quality (Q)

factor [48–50]. ENZ-containing structures can support BICs

both in waveguide [51] and layered geometries [52–56].

In this paper, we study a non-Hermitian generalization

of the ENZ-containing layered structures supporting bound

states in the continuum. It has been recently shown [57] that

PT -symmetry breaking in the structures with balanced loss

and gain results in transformation of a BIC into quasi-BIC,

which is the resonance with the finite Q factor. Here, we make

a further step introducing asymmetry in the distribution of loss

and gain. The asymmetry (either in the thicknesses of layers

or in the non-Hermiticity value itself, see Fig. 1) serves as an

additional degree of freedom for transferring from the quasi-

BIC to another “anomaly” effect – the CPA-lasing point – as

is demonstrated using analysis of the scattering-matrix poles

and zeros. The CPA-lasing in this case is directly associated

with the quasi-BIC providing strong light amplification, linear

dependence of the Q factor on the inverse asymmetry param-

eter, and loss-induced-like lasing effect.

http://arxiv.org/abs/2205.11336v1
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Figure 1. Schematic of an asymmetric trilayer consisting of the outer

layers with loss and gain ENZ media, respectively, and the dielec-

tric spacer. The outer layers are initially of the same thicknesses d+
and non-Hermiticity parameters γ . Asymmetry has either geometric

(d− = αd+) or non-Hermitian (γ− = βγ+) origin as shown in the

lower part of the figure. The spacer has the thickness dil = 10d+ and

permittivity εil = 5.

II. GEOMETRIC ASYMMETRY

We start with the non-Hermitian trilayer system having

outer loss and gain layers of different thicknesses and the

spacer (interlayer) between them (Fig. 1). This case is char-

acterized by violation of the gain-loss balance due to dimen-

sions and, therefore, is called the geometric asymmetry. To

be consistent with Ref. [57], we take the permittivity of the

loss and gain media ε±(ω) = 1± iγ −ω2
p/ω2, where ωp is

the plasma frequency and γ is the non-Hermiticity magnitude.

Exploitation of the classical Drude-Lorentz model does not

spoil the conclusions we make further. The loss layer has

the thickness d+ = λp/2π (i.e., ωpd+/c = 1, where c is the

speed of light), whereas the gain layer has different thickness

d− = αd+, where α is the geometric asymmetry parameter.

The parameters of the spacer are dil = 10d+ and εil = 5.

In our previous paper [57], the symmetric case (α = 1)

has been already studied. In the Hermitian limit (γ = 0), the

symmetric system possesses an unobservable infinitely nar-

row resonance (BIC) due to destructive interference of the

Fabry-Perot mode and the volume plasmon excited by TM-

polarized waves at the plasma frequency. When γ > 0, the

non-Hermiticity drives the transition of perfect BIC to the

quasi-BIC through the mechanism of PT symmetry break-

ing. This quasi-BIC, which can be reached at the incidence

angle θBIC = arcsin

√

εil −
(

πcn
ωpdil

)2

(n is the integer), shows

up in spectra as a finite-width resonance, see the solid line in
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Figure 2. Spectra of reflection for different geometric asymmetry

parameters α marked as numbers near the curves. The angle of inci-

dence is θ = 23.881◦ , the non-Hermiticity magnitude γ = 0.001.

Fig. 2(a).

Let us fix the angle of incidence (θ = θBIC ≈ 23.881◦ at

n = 7) and the non-Hermiticity magnitude (γ = 0.001) and

start changing the geometric asymmetry parameter α . Re-

flection spectra calculated within the transfer-matrix method

[57] are shown in Fig. 2. For α < 1, the thickness of the

gain layer gets smaller than the thickness of the loss layer,

d− < d+, so that the quasi-BIC resonance dip just becomes

broader and shallower [see the line at α = 0.9 in Fig. 2(a)].

The case of α > 1, when d− > d+, is much more interesting

due to its richer physics connected to competition between

loss and gain. As shown in Fig. 2(a), there is a broad res-

onance peak at α = 1.1, so that the transfer from the dip to

the peak happens somewhere between α = 1 and 1.1. Anal-

ysis shows that this transition happens at αt ≈ 1.0056, when

the system contains slightly more gain than loss. There is no

paradox that αt 6= 1, since for 0 < α < αt the gain results

in the overall (wideband) reflection with intensity coefficient

R > 1, while the dip appears on this background. The reso-

nance keeps symmetric line quite close to αt [Fig. 2(b)] and

becomes asymmetric only in the very vicinity of the transi-

tion. The line at αt clearly has the Fano profile [Fig. 2(c)]

stemming from the interplay between wide Fabry-Perot and

narrow plasmonic resonances. Finally, close to some interme-

diate asymmetry parameter α0 = 1.0112, the reflection peak

reaches maximum [Fig. 2(d)] and then gradually diminishes.

The transition point αt corresponds to the middle between the

deepest dip at α = 1 and highest peak at α = 1.0112 in agree-

ment with expected linearity of the response on small pertur-

bation.

As a quantitative characteristic of the observed resonances,

we calculate the quality (Q) factor. Due to the symmetry

of lineshapes outside the immediate vicinity of the transition

from the dip to peak, it can be estimated with the simple rela-

tion Q = ω0/∆ω , where ω0 is the frequency of the resonance

peak or dip and ∆ω is the full width of the resonance. Such

a consideration is in accordance with the modern treatment
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Figure 3. Dependence of the Q factor on the geometric asymmetry

parameter α (a) and on the value 1/(α −α0). The angle of incidence

is θ = 23.881◦ , the non-Hermiticity magnitude γ = 0.001. The red

star shows the quasi-BIC position at α = 1, whereas the filled area

marks the transition between the dip and peak.

of non-Hermitian resonances using the quasi-normal modes

characterized by complex frequencies [58]. Dependence of

the Q factor on the parameter α calculated with this expres-

sion is shown in Fig. 3. One can see that the powerful peak at

α ≈ α0 in Fig. 2(d) corresponds to the sharp increase of the

Q factor exceeding 108. This amplification of the reflection

and transmission are linked to strong localization of radiation

inside the structure.

Figure 3(b) surprisingly shows that the Q factor is inversely

proportional to the geometric asymmetry parameter α . This

result is in contrast to what is observed in usual BICs, which

demonstrate the inverse proportionality of Q to the square of

the asymmetry factor [59]. On the other hand, the recently

introduced non-Hermitian BICs (so-called pt-BICs) reported

in Ref. [60] have precisely such an inverse behavior of Q as

a function of the longitudinal wavenumber playing the role of

the asymmetry parameter. The fundamental difference with

that case is that our system is not PT symmetric due to the

asymmetry between loss and gain layers, so that the maximal
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Figure 4. Dependence of the transfer-matrix elements on (a)-(b) the

non-Hermiticity parameter γ for the symmetric structure and (c)-(d)

the asymmetry parameter α for γ = 0.001. The angle of incidence is

θ = 23.881◦, the frequency is ω = ωp.

Q factor is reached at some α0 > 1.

What is the nature of the Q factor enhancement at α0?

To address this question, let us consider poles and zeros of

the scattering matrix of our system. The scattering matrix

gives the equivalent results as the effective Hamiltonian ap-

proach [39], but is more convenient to analyze the multi-

layer structures. In general, the scattering matrix of a mul-

tilayered structure has the form Ŝ =

(

t rR

rL t

)

[39]. Here

t = 1/M11 is the transmission coefficient and rL = M21/M11

and rR =−M12/M11 are the reflection coefficients for the left-

and right-incident waves which can be determined through the

corresponding elements of the transfer matrix M [57, 61]. A

pole of the scattering matrix can be determined from the con-

dition of the mode self-excitation arising at t = ∞ or, equiva-

lently, M11 = 0. According to Ref. [37], the condition for a

scattering matrix zero is t ± r = 0 resulting in M12 = ±1 or

M21 = ±1. The conditions for poles and zeros are generally

fulfilled at complex frequencies. A BIC appears in Hermi-

tian systems when pole and zero meet at the real axis of the

complex-frequency plane [37]. One can directly confirm that

this happens in the symmetric trilayer at γ = 0, ω = ωp and

θ = θBIC, where the elements of the transfer matrix become

real with M11 = 0, |M12| = |M21| = 1. Introduction of non-

Hermiticity breaks this exact BIC down as reported in Ref.

[57]. Figures 4(a) and 4(b) show how this looks like from the

viewpoint of poles and zeros. One can see that both elements

of the transfer matrix are complex for γ 6= 0, with real parts

ReM11 =−1 6= 0 and ReM12 = 0 6= ±1, so that the condition

for the coalescence of pole and zero is not fulfilled anymore

(since M21 = M∗
12, further we consider only M12).

Influence of the geometric asymmetry on the components

of the transfer matrix is shown in Figs. 4(c) and 4(d). Whereas

their imaginary parts change only slightly, the real parts

demonstrate clear linear dependence on α , so that ReM11 ≈
0 and ReM12 ≈ −1 at α = α0. Although the imaginary
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parts do not vanish, the values of the real parts allow us to

suggest that we effectively reach both the pole and zero at

α = α0. Nonzero imaginary parts only limit possible val-

ues of the Q factor making it finite. Thus, the asymmetry

can be used to compensate the mismatch between pole and

zero induced by non-Hermiticity. Moreover, one can esti-

mate the change of the transfer-matrix elements with α by

using the analytical expression for M. Since this expres-

sion is very cumbersome, it is more convenient for illus-

tration to substitute all the parameters, except α , and ob-

tain the numerical dependence M(α). For example, we re-

sult in M11(α)≈ (−93.17+0.58i)cosh[(0.40+0.0012i)α]+
(240.18 + 0.67i)sinh[(0.40 + 0.0012i)α] ≈ −(1 − 1.18i) +
(89.62+ 0.66i)(α − 1), which gives a very good linear ap-

proximation for M11(α) shown in Fig. 4(c) and allows to es-

timate α0.

It is known that in non-Hermitian systems the coincidence

of pole and zero heralds an intriguing effect of simultaneous

coherent perfect absorption (CPA) and lasing [37]. In our

case, the lasing can be immediately associated with the sharp

growth of the Q factor at α = α0. To further corroborate this

interpretation, in Appendix A, we demonstrate the CPA effect

in our structure for the same conditions as lasing.

Thus, the peak of the Q factor reported above has the nature

of CPA-lasing point. However, appearance of this point in the

asymmetric structure is closely related to the quasi-BIC in the

symmetric one. The sharp increase of the Q factor and the

lasing at α0 are achievable for the gain layer which is only

1.12% thicker than the loss layer. Such a small difference in

thickness matters, because light intensity is localized under

the conditions close to the quasi-BIC resonance. Therefore,

we call the observed effect the CPA-lasing associated with the

quasi-BIC.

The previous consideration was performed at the specific

value of loss and gain parameter γ . The same approach based

on the pole and zero dynamics and allowing to estimate the

CPA-lasing asymmetry parameter α0 can be applied to any

level of non-Hermiticity. As a result, we obtain the depen-

dence α0(γ) shown in Fig. 5. The BIC is observed in the

Hermitian case (γ = 0) and in the symmetric structure with

α0 = 1. Increasing γ leads to the drift of pole and zero coin-

cidence to the nonunitary asymmetry, α0 > 1. As a result, we

obtain the line of CPA-lasing points in the plane (γ,α0). It is

interesting to note that this line is clearly straight indicating

the linear dependence between non-Hermiticity and asymme-

try in the analyzed system.

If the condition for the incidence angle (θ = θBIC) is relaxed

(for example, we deal with the normal incidence of light), the

much thicker gain medium should be used to reach the las-

ing. In that case, however, lasing is due to the pole dynamics

only, in contrast to our case. Thus, the use of the CPA-lasing

point associated with the quasi-BIC provides a different mech-

anism and allows to optimize the lasing structures, in particu-

lar lower the lasing threshold.

The CPA-lasing phenomenon associated with the quasi-

BIC can be compared with the similar effect reported by Song

et al. [60]. In that paper, it is shown that a PT -symmetric

perturbation splits the BIC into the pt-BIC and lasing thresh-
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Figure 5. The change of the geometric asymmetry parameter α0 cor-

responding to the pole and zero coincidence with the non-Hermiticity

parameter γ .

old modes. Song et al.’s pt-BIC is characterized by the Q fac-

tor having the linear dependence on the inverse asymmetry pa-

rameter in contrast to the usual for BICs inverse dependence

on the squared asymmetry parameter. In our case, the depen-

dence is also linear, but the situation is fundamentally differ-

ent: the asymmetry perturbation violates existing PT sym-

metry of the loss-gain distribution and transforms the quasi-

BIC into the CPA-lasing point. We emphasize the role of

asymmetry which distinguishes our results also from the CPA-

lasing arising from the BIC under the PT -symmetric pertur-

bation in electronic circuits [62].

III. NON-HERMITIAN ASYMMETRY

In this section, we consider a geometrically symmetric

(d+ = d−) trilayer structure with violated balance between

loss and gain. We introduce another asymmetry parameter

β = γ−/γ+, where γ+ and γ− are the loss and gain magnitudes,

respectively. The asymmetry realized through parameter β
can be called non-Hermitian asymmetry. Condition β > 1 im-

plies dominating impact of gain in system’s response. One

can expect that β > 1 has a similar effect as the increase of

the gain layer thickness (α > 1) discussed above. However,

this is not the case.

As shown in Fig. 6(a), the elements of the transfer matrix

approach the CPA-lasing condition (simultaneous ReM11 ≈ 0

and ReM12 ≈−1) at β = 0.99, i.e., in the overall lossy system.

This results in a surprising increase of reflection with decreas-

ing β as corroborated with the spectra shown in Fig. 6(b)

with the dip-to-peak transition at βt ≈ 0.995. The CPA-lasing

condition at β = 0.99 corresponds to the extremely amplified

reflection [Fig. 6(c)] and the strongly enhanced Q factor (Fig.

7). As in the case of geometric asymmetry, the Q factor lin-

early depends on inverse of the non-Hermitian asymmetry pa-

rameter (see the inset in Fig. 7), although the peak value of Q
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Figure 7. Dependence of the Q factor on the non-Hermitian asym-

metry parameter β and on the value 1/(β −β0) (inset). The angle of

incidence is θ = 23.881◦ , the loss magnitude γ+ = 0.001. The red

star shows the quasi-BIC position at α = 1, whereas the filled area

marks the transition between the dip and peak.

is somewhat lower due to the lossy character of the structure.

On the contrary, for the systems with overall gain, we do

not see any significant increase of the reflected (and transmit-

ted) radiation in vicinity of the plasma frequency even for as

great asymmetry parameter as β = 50 [Fig. 6(d)]. Forma-

tion of the dip for β > 1 can be explained as the quasi-BIC

in the symmetric case (β = 1) broadened and elevated by the

overall gain in the asymmetric structure. Amplification of the

reflection (as well as transmission) happens mostly above the

plasma frequency where the outer layers are dielectric-like.

We should also emphasize the narrowband nature of CPA-

lasing [Fig. 6(c)] as opposed to the strongly wideband usual

amplification [Fig. 6(d)] which can be of interest for possible

applications.

Our analysis demonstrates that the CPA-lasing point as-

sociated with the quasi-BIC can be reached using the non-

Hermitian asymmetry either. Its behavior is caused by

the intriguing interplay of loss and gain and provides one

more intriguing loss-induced effect in addition to the loss-

induced transparency [63] and loss-induced lasing [64] in

non-Hermitian systems. The difference is that we use the

asymmetry as a driver for such an unusual response possible

due to the quasi-BIC proximity.

The above considerations have been performed at the

plasma frequency where the true BIC exists in the Hermi-

tian limit and the non-Hermiticity-induced quasi-BIC reso-

nance has a symmetric lineshape. At the nearby frequencies,

the asymmetric Fano resonances appear at the angles differ-

ent from θBIC and can be used to realize the CPA-lasing-like

effect in asymmetric structures as well. The corresponding

examples are discussed in Appendix B.

IV. CONCLUSION

To sum up, we have introduced the concept of the CPA-

lasing associated with the quasi-BIC unveiled in asymmet-

ric non-Hermitian ENZ-containing layered structures. One

can say that asymmetry in these structures supports transfor-

mation of the quasi-BIC resonance into the CPA-lasing res-

onance. The cases of different thicknesses of loss and gain

layers (geometric asymmetry) and unequal levels of loss and

gain (non-Hermitian asymmetry) have been studied. The ef-

fects of asymmetry have been analyzed in the framework of

poles and zeros of the scattering matrix revealing intriguing

features. We have determined a CPA-lasing point of merging

pole and zero characterized by strong amplification of the out-

coming intensity and sharp increase of the Q factor associated

with the nearby quasi-BIC. We would like to highlight two im-

portant results found out in this paper. First, the Q factor has

unusual inverse linear dependence on the asymmetry param-

eter. Second, the counter-intuitive loss-induced amplification

is discovered in the system with non-Hermitian asymmetry

at the plasma frequency. We believe that the results reported

here are of general interest for non-Hermitian photonics and

can be extended to two- and three-dimensional systems. The

CPA-lasing effect associated with the quasi-BIC is envisaged

to be demanded in laser and nonlinear-optics systems based

on strong light enhancement.
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Appendix A: CPA-lasing effect via counter-propagating waves

To directly demonstrate the CPA-lasing effect in our sys-

tem, we consider two counter-propagating waves as in Refs.

[16, 17]. Depending on the phase difference ∆φ between these

waves, we expect observing either CPA or lasing. Calcula-

tions of the output intensity (sum of reflected and transmitted

intensities from all interfaces) demonstrated in Fig. 8 validate

these expectations. Indeed, for ∆φ = 0, the output intensity is

maximal and is five orders of magnitude larger than the input

one (lasing). To the contrary, ∆φ = π corresponds to the out-

put intensity close to zero (CPA). Notice that such values of

the phase difference ∆φ associated with lasing and CPA are

due to presence of the ENZ medium [65]. To the contrary,

in the case of usual (positive) permittivities, ∆φ = π/2 and

∆φ =−π/2 are used for CPA and lasing observation [17].

Appendix B: CPA-lasing at Fano resonances

An example regarding the non-Hermitian asymmetry at var-

ious angles is shown in Fig. 9. We take two angles: the first

one θ = 22.7◦ is below θBIC, while the second angle θ = 25.0◦

is above it. The resonance frequency position shift to the val-

ues ω = 0.999ω and ω = 1.001ω , respectively. One can see

that the pole condition ReM11 ≈ 0 is achieved at β0 = 1.03263

[Fig. 9(a)] and β0 = 1.03 [Fig. 9(c)], while the zero condition

(ReM12 ≈ 1) is not reached at these β0. However, even such

an incomplete CPA-lasing condition is enough for strong am-

plification of the reflection near β0 as seen in Figs. 9(b) and

9(d).

The amplification confirms the same nature of the effect

at any frequency and its tolerance to the parameters varia-

tion. Nevertheless, the case of the plasma frequency can be

distinguished for two reasons. First, there is a pronounced

asymmetry of the Fano spectra profiles in Fig. 9 as com-

pared to the symmetric profiles in Fig. 6 of the main text.

Second, β0 > 1 both below and above θBIC being opposed

to the counter-intuitive case of β0 < 1 at the incidence angle

θ = θBIC. These facts confirm the specific nature and unusual

features of response close to the BIC at the plasma frequency.
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Figure 9. (a), (c) Dependence of the transfer-matrix elements on

the asymmetry parameter β at the angles of incidence θ = 22.7◦ (at

frequency ω = 0.999ω) and θ = 25.0◦ (at frequency ω = 1.001ω)

and (b), (d) the corresponding spectra of reflection for different non-

Hermitian asymmetry parameters β marked as numbers near the

curves. The loss magnitude γ+ = 0.001.
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[20] C. E. Rüter, K. G. Makris, R. El-Ganainy,

D. N. Christodoulides, M. Segev, and D. Kip, Observa-

tion of parity-time symmetry in optics, Nat. Phys. 6, 192

(2010).

[21] A. V. Hlushchenko, V. I. Shcherbinin, D. V. Novitsky, and V. R.

Tuz, Loss compensation symmetry in a multimode waveguide

coupler, Laser Phys. Lett. 17, 116202 (2020).

[22] A. V. Hlushchenko, V. I. Shcherbinin, D. V. Novitsky, and V. R.

Tuz, Multimode parity-time symmetry and loss compensation

in coupled waveguides with loss and gain, Phys. Rev. A 104,

013507 (2021).

[23] A. V. Hlushchenko, D. V. Novitsky, V. I. Shcherbinin, and V.

R. Tuz, Multimode PT -symmetry thresholds and third-order

exceptional points in coupled dielectric waveguides with loss

and gain, J. Opt. 23, 125002 (2021).

[24] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N.

Christodoulides, and U. Peschel, Parity-time synthetic photonic

lattices, Nature 488, 167 (2012).

[25] M. Kremer, T. Biesenthal, L.J. Maczewsky, M. Heinrich, R.

Thomale, and A. Szameit, Demonstration of a two-dimensional

PT -symmetric crystal, Nat. Commun. 10, 435 (2019).

[26] J. Wen, X. Jiang, L. Jiang, and M. Xiao, Parity-time symmetry

in optical microcavity systems, J. Phys. B 51, 222001 (2018).

[27] L. Ge, Y. D. Chong, and A. D. Stone, Conservation relations

and anisotropic transmission resonances in one-dimensional

PT -symmetric photonic heterostructures, Phys. Rev. A 85,

023802 (2012).

[28] O. V. Shramkova and G. P. Tsironis, Scattering properties of

PT-symmetric layered periodic structures, J. Opt. 18, 105101

(2016).
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