С. П. Жвавый, Г. Д. Ивлев, Е. И. Гацкевич, Д. Н. Шараев

О ВОЗМОЖНОСТИ КОНВЕКТИВНОГО ПЕРЕНОСА ТЕПЛА В ПРОЦЕССЕ ЛАЗЕРНО-ИНДУЦИРОВАННОГО ПЛАВЛЕНИЯ КРЕМНИЯ

Проведенное нами исследование [1] воздействия излучения рубинового (длительность импульса т.=80 нс) лазера на монокристаллический кремний показало, что при плотностях энергии облучения W выше порога плавления W, расчетные значения пиковой температуры поверхности $T_a(W)$ существенно превышает измеренные, в то время, как рассчитанная и экспериментальная зависимости времени существования жидкой фазы t(W) согласуются. По мере увеличения W различие по T_p возрастает до сотен градусов. Также показано, что результаты расчета и эксперимента совнадают как по никовой температуре, так и по времени существования расплава, если предположить, что коэффициент теплопроводности k жидкой фазы приблизительно в 3 раза превышает справочное значение, что весьма сомнительно. Повышенную эффективность переноса тепла также можно объяснить развитием гидродинамического движения в стадии лазерно-инлуцированного плавления Si, которое, как известно, есть фазовый переход полупроводниковый кристалл - жидкий металл.

Гидродинамические явления могут быть обусловлены генерацией поверхностных периодических структур при воздействия мощного лазерного излучения [2-5]. Эффект возникновения поверхностных обусловлен дифракцией периодических структур падающей пространственно-когерентной световой волны на исходных поверхностных шероховатостях и интерференцией (дифрагированных воли с волной, прошедшей в среду), создающей латеральное пространственно-лериодическое темлературное поле. Благодаря этому возникают силы, увеличивающие амплитуды затравочных шероховатостей, что ведет к неустойчивости, при которой амплитуды материальных возбуждений, модулирующих рельеф поверхности, и ними амплитуды дифрагированных волн связанные С экспоненциально нарастают во времени. Если плотность энергии в лазерном импульсе $W \leq W_{m}$, то роль таких материальных возбуждений могут играть поверхностные акустические волны. При $W = W_m$ имеет место неустойчивость каниллярных волн, при еще больших значениях

138

W – интерференционная неустойчивость испарения поверхности. Конвективное движение в расплаве может быть вызвано также термоэлектрическим эффектом [6].

Рассмотрим слой расплава толциной *h*, в приповерхностной области которого (в скин-слос) ироисходит выделение тепла ири поглощении излучения с плогностью потока *q*. Тогда можно записать

$$k \frac{dT}{dx} = q$$
 (1)

В том случае, если существует дополнительный механизм переноса тепла, уменьшающий температуру поверхности на $\Delta T = T - T_1 (T, T_1) = \Delta T$, имеем

$$(k+k_1)\frac{dT_1}{dz} = q = (k+k_1)\frac{d(T-\Delta T)}{dz} , \qquad (2)$$

где k₁ - коэффициент, учитывающий эффект усиления теплопереноса

Полагая, что $\frac{d\Delta T}{dz} \approx \frac{\Delta T}{h}$, из (1) и (2) находим

$$k_{1} = k \frac{k \frac{\Delta T}{h}}{q - k \frac{\Delta T}{h}} \approx \frac{k^{2}}{q} \frac{\Delta T}{h}$$
(3)

В [4] исследовалась устойчивость горизонтального слоя жидкости, нагреваемой со стороны свободной поверхности. Было показано, что при достаточно больших плотностях потока излучения под действием термокапиллярных сил в расплаве может происходить развитие неустойчивости поверхностных волн, которое приводит к понижению температуры поверхности расплава ΔT , т. е. к эффективному увеличению переноса тепла в приповерхностном слое. Если использовать выражение для ΔT из [4]

$$\Delta T \approx \left(\xi K\right)^2 \frac{q_t}{2k} \left(\frac{k}{2\rho c\omega}\right)^{1/2},\tag{4}$$

где $\zeta - a(q_{l}q_{l} - 1)^{1/2}$ – амплитуда смещений поверхности, $a^2 = \sigma/\rho g$, $\sigma - коэффициент поверхностного натяжение, <math>\rho$ - плотность, g – ускорение свободного падения, c – удельная теплоемкость, $\omega^2 = \omega^2 dh(Kh)$, ω_o –

частота гравитационно-капиллярной волны с волновым числом K, q, пороговое значение плотности тепляво, о чотока для возбуждения волны, то можно записать

$$k = k \frac{(aK)^2}{2h} \left(\frac{1}{2\rho c\omega}\right)^2 \frac{q-q}{q}$$
(5)

Максимальный инкремент неустойчивости соответствует волнам, находящимся в резонансе $C_1 K \approx \omega_o (C_1^2 - q | d\sigma/dT | / pk)$, и составляет для кремния ~1,5 10^3 с⁻¹ ири плотности энергии 1,5 Дж/см² и длительности импульса 80 нс В этом случае можно записать

$$k_{1} = Akq \left[1 - \frac{q_{1}}{q} \right], \quad \text{rme} \qquad A = \frac{\left| \frac{d\sigma}{dT} \right|}{2pgh\sqrt{2pckC_{1}h}} \tag{6}$$

Окончательно выражение для коэффициента теплопроводности в расплаве при наносекундном лазерном нагреве запишется в виде

$$k_{ab} = k \left[1 + Aq \left(1 - \frac{h}{h_r} \frac{T_r - T_m}{T - T_m} \right) \right], \tag{7}$$

где T_m -- температура плавления, T_t и h_t - пороговые значения температуры и толщины слоя расплава, при которых возникает конвективный перенос тепла.

Численное моделирование динамики фазовых превращений в кремнии, инициируемых наносекундным лазерным излучением, проводилось на основе одномерного уравнения теплопроводности с учетом кинетики зарождения и роста новой фазы [7]:

$$\rho c(T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k_{eff}(x, T) \frac{\partial T}{\partial x} \right] + S(x, T) - \rho L \left(\frac{\partial \varphi}{\partial t} - \frac{\partial \psi}{\partial t} \right)$$
(8)

с граничными и начальными условиями

$$\frac{\partial T}{\partial x}\Big|_{t=0} = 0, \quad T(x \to \infty, t) = T_0, \quad T(x, t=0) = T_0$$
(9)

где L скрытая теплота фазового перехода, I_0 начальная температура Гепловой источник S(x,t) в (1) описывает выделение тепла за счет поглощения лазерного излучения

$$S(x,t) = (1 - R)\alpha(x,T) \frac{W(t)}{T} \exp[-\int_{0}^{t} \alpha(x,T) dx], \qquad (10)$$

где R и α(x, T) - коэффициенты отражения и поглощения

Последние два члена в правой части уравнения (8) описывают мощность тепловых стоков и источников при плавлении и кристаллизации полупроводника. Здесь $\varphi(x,t)$ – доля расплава, образовавшегося в точке x к моменту времени t после начала плавления, $\psi(x,t)$ – доля закристаллизовавшегося расплава в точке x к моменту времени t после начала кристаллизации. В рамках теории фазовых переходов доля образовавшейся новой фазы выражается через частоту зародышеобразования J(t) и скорость роста V(t) [8, 9]:

$$\varphi(x,t) = 1 - \exp\{-\beta \int_{t_1} J(\tau) [\int_{\tau} V(t) dt]^2 d\tau\},$$
(11)

где t_1 – время начала зародышеобразования в точке x, β – константа формы. Функция J(t) для случая двумерного зародышеобразования имеет вид [8, 9]:

$$J(t) = N \frac{kT}{h} \exp(-\frac{U}{kT}) \exp(-\frac{\pi d_a \sigma^{-T} T_{aa}}{L^* kT \Delta T}), \qquad (12)$$

где N – число атомов на границе раздела на 1 см², U – энергия активации перехода атома через границу раздела фаз, d_a – межатомное расстояние (высота монослоя), L - теплота плавления на один атом, σ – поверхностная энергия границы раздела фаз, $\Delta T = T - T_m$ при плавлении и $\Delta T = T - mT$ при кристаллизации. Для скорости роста использовалось выражение [10]

$$V(t) = d_{\star} \frac{kT}{h} \exp(-\frac{U}{kT})[1 - \exp(-\frac{L}{kT_{\star}}\frac{\Delta T}{T})].$$
 (13)

В двухфазной (переходной) зоне, состоящей из расплава и кристалла полупроводника, параметры определялись следующим образом [7].

$$A(x,t) = \varphi(x,t)A_{t}(x,t) + [1 - \varphi(x,t)]A_{s}(x,t),$$
(14)

где индексы / и s относятся к жидкой и кристаллической фазам соответственно.

Уравнение (8) совместно с (9)-(14) решалось численно методом прогонки. Форма лазерного импульса задавалась функцией $\sin^2(\pi t/2\tau_p)$ с $\tau_p = 80$ нс Значения параметров кремния, используемых при решении задачи, приведены в табл. 1.

Результаты расчета хорошо согласуются (рис 1) с экспериментальными данными [1] при $A = 0,2 \, 10^{-7} \, \text{сm}^2/\text{BT}$ и $(T_t - T_m)/h_t = 2 \cdot 10^5 \, \text{К/см}$. Расчетная зависимость $T_p(W)$ аппроксимируется следующим выражением

142

где a = 1462,5 K, b = 1.3,7 см² К/Дж и с = 13,8 см⁴ К/Дж⁴

Параметры	Кристала Si	Pacnasa Si
р. г/см	2,328 [11]	2,53 0,152 10
TV	1693	1. U. , (m) (U)
с, Дж/ ·· К	0 844+1,18 10 ⁴ T - 1,55 10 ⁴ T ² [11]	1.04
1. Дж/г	1787 [11]	
k, Вт/см∙К	$\frac{1521}{T^{11100}}, l' < 1200K$ $\frac{8,97}{T^{1010}}, l' \ge 1200K$ [12]	0,585 [11]
R	0,35	0 72
а, см	1578exp(77493) [13]	106 [12]
U, 3B	0,42 [14]	
d, эрг/см ²	210	

Аналогичная зависимость для времени существования расплава записывается в виде

$$\mathbf{t} = a_1 + b_1 W + c_1 W^2 \tag{16}$$

Enforment 1

где $a_1 = -63$ с, $b_1 = 67,6$ см²с/Дж, и $c_1 = 27,3$ см⁴с/Дж².

В отношении представленных экспериментальных данных о гемпературе $T_p(W)$, отметим, что они получены из пирометрических измерений на эффективных длинах волн $\lambda_{e1} = 0,86$ и $\lambda_{e2} = 0,53$ мкм. Время $\tau(W)$ определялось в эксперименте по данным о динамике отражения зондирующего излучения от зоны лазерного воздействия.

Таким образом, в работе проведен анализ различия между результатами численного моделирования и экспериментальными данными по пиковой температуре поверхности кремния при плотностях энергии W наносекундного лазерного облучения выше порога плавления полупроводника W_m , когда указанная температура значительно превышает равновесную точку фазового перехода. На эффективности основе гипотезы существенном повышении 0 фронту плавления переноса тепла к 3a счет развития термокапиллярных волн в расплаве сформулировано выражение для эффективного коэффициента переноса тепла. Численное лазерно-индуцированных фазовых моделирование переходов.

143

(15)

проведенное на основе разработанной рансе модели с учетом эффективного коэффициента теплопереноса, дает хорошее согласне с экспериментом как по пиковой температуре, так и по длигельности существования расплава в зависимости от $W \supset W_m$.

Работа выполнена при поддержке БРФФИ по проекту Ф99-184

Литература

- Ivlev G.D., Gatskevich E.I., Sharaev D.N. Time-resolved temperature and reflectivity measurements at nanosecond laser-induced melting and crystallization of silicon // Proc. SPIE. 2001. Vol. 4157. P. 78-81
- Воздействие мощного лазерного излучения на поверхность полупроводников и металлов: нелинейно-оптические эффекты и нелинейно-оптическая диагностика / С.А. Ахманов, В.И. Емельянов, Н.И. Коротеев, В.Н. Семиногов // УФН, 1985, Т. 147, № 4. С. 675–745.
- Анисимов С.И., Трибельский М.И., Эпельбаум Я.Г. Неустойчивость плоского фронта испарения при взаимодействии лазерного излучения с неществом // ЖЭТФ. 1980. Т. 78, № 4. С. 1597–1605.
- Левченко Е.Б., Черняков А.Л. Неустойчивость поверхностных воли в неоднородно нагретой жидкости // ЖЭТФ 1981. Т 81, № 1 С 202-209.
- Tokarev V.N., Konov V.I Suppression of thermocapillary waves in laser melting of metals and semiconductors // J Appl Phys. 1994. Vol 76, № 2 P 800-805
- Эйдельман Е.Д. Возбуждение электрической неустойчивости нагреванием // УФН. 1995. Т 165, № 11 С. 1279-1294.
- Жаавый С.В. Моделирование процессов плавления и кристаллизации монокристаллического кремния при воздействии накосекундного лазерного излучения //ЖТФ 2000 Т 70, № 8. С 58-62
- Анександров Л.Н. Кинетика кристаллизации и перекристаллизации полупроводниковых пленок. Новосибирск: Наука. 1985. 224 с.
- Беленький В.З. Геометрико-вероятностные модели кристаллизации. М.: Наука. 1989 88 с.
- Скрипов В.П., Коверда В.П. Спонтанная кристаллизация переохлажденных жидкостей. М.: Наука. 1984. 232 с.
- Ресель Л.Р., Глазов В.М. Физические свойства электронных расплавов. М. Наука 1980 296 с.
- Bell A.E. Review and analysis of laser annealing. // RCA Review. 1979.Vol. 40, № 3. P. 295-338.
- Time resolved reflectivity and melting depth measurements using pulsed ruby laser on silicon / M. Toulemonde, S. Unamuno, R. Heddache et al. // Appl. Phys. A 1985, Vol. 36, № 1, P. 31-36.
- Peter M.R. Interface kinetics of freezing and melting with density change // Phys. Rev. B 1988. Vol 38, № 4 P 2727-2739.