Анализ фононных мод и электронфононного взаимодействия в квантовокаскадных лазерных гетероструктурах

Ан.А. Афоненко, А.А. Афоненко, Д.В. Ушаков

Белорусский государственный университет, пр. Независимости 4, Минск, 220030 Беларусь. *afonenko@bsu.by

Проведено моделирование фононных мод квантово-каскадных гетероструктур на основе двойных и тройных полупроводниковых соединений. Рассчитаны зависимости частот фононных мод структуры от волнового вектора в плоскости слоев и от набега фазы на периоде сверхрешетки. Показано, что диапазон вариации энергий квантов фононных мод GaAs/Al_{0.15}Ga_{0.85}As структуры составляет ~ 1 мэВ. Учет зависимости матричных элементов электрон-фононного взаимодействия от волнового вектора и набега фазы может быть существенным при анализе характеристик ККЛ.

Введение

Распространенный дизайн квантово-каскадных структур терагерцового диапазона основан на быстром опустошении нижнего рабочего уровня за счет резонансного испускания продольных оптических фононов [1]. Информация о частотах оптических фононов и скоростей электрон-фононного рассеяния необходима для проектирования и оптимизации квантово-каскадных лазеров. Целью данной работы является анализ фононных мод в полупроводниковых сверхрешетках, в которых происходит смешение колебаний атомных решеток двойных и тройных соединений.

Теоретическая модель

Пространственное распределение потенциала продольных колебаний ϕ находилось из уравнения Максвелла для индукции электрического поля \vec{D} :

$$\vec{\nabla} \cdot \vec{D} = -\vec{\nabla} \varepsilon (z, \omega) \vec{\nabla} \phi = 0.$$
 (1)

Спектральная зависимость диэлектрической проницаемости $\varepsilon(\omega)$ находилась в модели Фрелиха:

$$\begin{aligned} \varepsilon_{\text{GaAs}}\left(\omega\right) &= \varepsilon_{\omega} \frac{\omega^{2} - \omega_{\text{LO}}^{2}}{\omega^{2} - \omega_{\text{TO}}^{2}},\\ \varepsilon_{\text{AlGaAs}}\left(\omega\right) &= \varepsilon_{\omega} \frac{\omega^{2} - \omega_{\text{LOI}}^{2}}{\omega^{2} - \omega_{\text{TOI}}^{2}} \frac{\omega^{2} - \omega_{\text{LO2}}^{2}}{\omega^{2} - \omega_{\text{TOI}}^{2}}. \end{aligned}$$
(2)

Частоты собственных колебаний поперечных ω_{TO} и продольных ω_{LO} фононов в тройных соединениях $Al_xGa_{1-x}As$ в зависимости от состава *x* соединения брались из работы [2]. Индексами 1 и 2 отмечены частоты AlAs- и GaAs-подобных колебаний кристаллической решетки. Отметим, что при *x* = 0 ча-

стоты
$$\omega_{LO2}$$
 и ω_{TO2} совпадают и $\varepsilon_{GaAs}(\omega) \equiv \varepsilon_{AlGaAs}(\omega)$.

Потенциал фононов, распространяющихся в плоскости слоев с волновым вектором q, в каждом слое n предоставлялся в виде

$$\varphi(x,z) = \left[A_n \exp(qz) + B_n \exp(-qz)\right] \exp(iqx) . (3)$$

На границах слоев спивались величины φ и $\varepsilon d\varphi/dz$. Использовались периодические граничные условия на одном каскаде структуры с дополнительным фазовым множителем: $\varphi(x,L) = \exp(iq_z L)\varphi(x,0)$, где L – период структуры, q_z – аналог *z*-компоненты волнового вектора.

Для частного случая $q = q_z = 0$ собственные частоты фононных мод находятся из следующих уравнений:

$$\sum_{n} \varepsilon_{n}(\omega) d_{n} = 0, \qquad \sum_{n} \frac{d_{n}}{\varepsilon_{n}(\omega)} = 0, \qquad (4)$$

где d_n – толщины слоев, суммирование ведется по периоду структуры. Первое уравнение описывает моды с постоянной амплитудой $\varphi(x,z) = \text{const}$, а второе – моды с кусочно-постоянной производной $d\varphi(x,z)/dz = \text{const}$.

Для случая q = 0, $q_z \neq 0$ собственные частоты фононных мод совпадают с частотами ω_{TO} и ω_{LO} всех полупроводниковых материалов структуры.

Нормировка фононных мод для расчета матричных элементов проводилась с использованием условия

$$\int \varepsilon_0 \frac{\partial (\omega \varepsilon)}{\partial \omega} \frac{\left(\vec{\nabla}\phi\right)^2}{2} dV = \hbar \omega .$$
(5)

Результаты расчетов

В расчетах анализировалась структура квантовокаскадного лазера GaAs/Al_{0.15}Ga_{0.85}As [3, 4]. Толщины барьерных слоев/квантовых ям составляли соответственно 5.7/**8.2**/3.1/7.1/4.2/16.1/3.4/9.6 нм, где GaAs КЯ выделены жирным шрифтом.

В анализируемой структуре выделяются три типа продольных фононных мод, которые соответствуют собственным колебаниям в исходных материалах GaAs и Al_{0.15}Ga_{0.85}As (рис. 1). Диапазон вариации энергий квантов фононных мод в зависимости от волнового вектора q_z составил 1.2 мэВ для AlAsподобных мод, 0.8 и 0.2 мэВ для GaAs-подобных мод. Дисперсия в зависимости от волнового вектора q оказалась приблизительно в два раза меньше.

Рис. 1. Зависимость энергии продольных оптических фононов $\hbar \oplus$ от нормированного волнового вектора q (a_0 – постоянная решетки кристалла) при различных набегах фаз $q_z L = 0$, $\pi/2$ и π :

1 – AIAs подобная мода, 2, 3 – GaAs подобные моды

Рис. 2. Нормированные матричные элементы электрон-фононного взаимодействия в зависимости от волнового вектора q для AIAs-подобных мод (a), GaAs-подобных мод (б, в) при различных набегах фаз $q_z L = 0$, $\pi/2$ и π

На рис. 2 представлены матричные элементы электрон-фононного взаимодействия, которые нормированы на величину матричных элементов в объемном кристалле с усредненными диэлектрическими проницаемостями:

Рис. 3. Пространственное распределение потенциала фононных мод для q = 0, $q_z = 0$ (1), $q = 0.01 \cdot 2\pi/a_0$, $q_z = 0$ (2) и $q = 0.01 \cdot 2\pi/a_0$, $q_z = \pi/L$ (3)

Для статистически значимых величин волнового вектора электрона $q < \sqrt{2m_e kT}/\hbar \approx 0.02 \cdot 2\pi/a_0$ $(T = 300 \text{ K}, m_c = 0.067 m_e)$ зависимость матричных элементов от q и q_z является существенной. Это обстоятельство, а также отличие пространственных распределений потенциалов фононных мод от гармонических функций (рис. 3) может быть существенным при анализе генерационных характеристик квантово-каскадных лазеров терагерцового диапазона.

Работа выполнена при финансовой поддержке гранта БРФФИ № Ф18Р-107.

Литература

- B.S. Williams, H. Callebaut, S. Kumar *et al.* // Appl. Phys. Lett., V. 82, 1015 (2003).
- S.J. Adachi // Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. 2009.
- Д.В. Ушаков, А.А. Афоненко, А.А. Дубинов *и др.* // Квантовая электроника, Т. 49, № 10, 913 (2019).
- R.A. Khabibullin, N.V. Shchavruk, D.S. Ponomarev et al. // Opto-electronics Review, V. 49, № 10, 913 (2019).