МОДЕЛИРОВАНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ОДНОРОДНЫХ ВОЛОКОННЫХ РЕШЕТОК БРЭГГА

Е. В. Волчанина, А. В. Поляков

Белорусский государственный университет, Минск, Беларусь E-mail: e.volchanina@yandex.ru, polyakov@bsu.by

Получена зависимость спектральной ширины отражения волоконной брэгговской решетки в зависимости от ее длины и амплитуды модуляции показателя преломления. Проведено численное моделирование взаимного влияния спектральных свойств системы из пяти волоконно-оптических решеток Брэгга, сформированных в одномодовом кварцевом волоконном световоде с однородным гауссовым профилем модуляции показателя преломления.

Ключевые слова: волоконная решетка Брэгга, брэгговская длина волны, ширина спектра отражения, относительная спектральная отражательная способность.

Волоконные брэгговские решетки (ВБР) в настоящее время широко используются в оптических волокнах и планарных световодах для уплотнения каналов по длине волны (так называемая DWDMтехнология), оптической фильтрации сигналов, как резонаторные зеркала в волоконных и полупроводниковых лазерах, сглаживающие фильтры в оптических усилителях, для компенсации дисперсии в магистральных каналах связи, в оптоволоконных измерительных системах различных физических величин. Во всех случаях эффективность применения ВБР определяется их спектральными характеристиками.

ШИРИНА СПЕКТРА ОТРАЖЕНИЯ

Значение брэгговской длины волны отражения задается как:

$$\lambda_B = 2n_{eff}\Lambda, \qquad (1)$$

где λ_B — длина волны брэгговского резонанса; n_{eff} — эффективный показатель преломления; Λ — период брэгговской решетки.

Используя данные экспериментальных исследований [1,2], получили выражение для спектральной ширины резонанса однородной брэгговской решетки, измеренной между первыми нулями коэффициента отражения в ее спектре:

$$\Delta\lambda_{\rm och} = \frac{9}{5}\lambda_B \frac{\Lambda}{L} \sqrt{1 + \left(\frac{4\kappa_B L}{\pi}\right)^2}, \qquad (2)$$

где L – длина ВБР; $\kappa_B = \pi \Delta n \eta_B / \lambda_B$ – коэффициент связи; Δn – амплитуда модуляции наведенного показателя преломления; $\eta_B = \int_0^a |E_{co}|^2 r dr / \int_0^\infty |E_{co}|^2 r dr$ – доля мощности основной моды, которая распространяется по сердцевине ВС радиусом *a*; E_{co} – амплитуда электрического поля основной моды.

На рисунке 1 представлена рассчитанная согласно (2) зависимость $\Delta\lambda_{och}$ от технических характеристик ВБР. Для расчетов использовали следующие параметры: λ_B =1550 нм, n_{eff} =1,4619, Λ =530 нм, η_B =0,375. Из графика следует, что наибольшее влияние на уменьшение $\Delta\lambda_{och}$ оказывает увеличение длины ВБР.

Рис. 1. Зависимость спектральной ширины отражения ВБР по основанию от параметров решетки

Формула для описания спектральной ширины отражения ВБР на полувысоте имеет вид:

$$\Delta \lambda_{1/2} = \frac{3}{2} \lambda_B \alpha_N \left(\frac{\eta_B \Delta n}{3n_{eff}} \right)^2 + \left(\frac{\Lambda}{L} \right)^2, \qquad (3)$$

где параметр α принимается равным 1 для сильно-отражательных решеток (ВБР с отражением около 100%), в то время как для слабоотражательных решеток $\alpha \approx 0.5$.

СПЕКТРАЛЬНЫЕ СВОЙСТВА СИСТЕМЫ ВБР

Для нахождения распределения поля в оптическом волокне использовали следующие допущения: оптическое волокно не имело потерь; профиль показателя преломления ступенчатый и описывался circфункциями, центры которых совпадали; материал являлся оптически изотропным; волокно являлось слабонаправляющим [3]. При таких допущениях, исходя из теории связанных мод Лама и Гайсайда (Lam and Gaeside), относительную спектральную отражательную способность ВБР с постоянной амплитудой и периодом изменений показателя преломления описали следующим выражением [4]:

$$R(l,\lambda) = \frac{\Omega_c^2 \sin h^2(sL)}{\Delta k^2 \sin h^2(sL) + s^2 \cosh^2(sL)},$$
(4)

где $R(L,\lambda)$ – функция, зависящая от длины решетки, профиля показателя преломления и длины волны излучения; Ω_c – коэффициент связи; $k = 2\pi n_{eff}/\lambda_B$ – волновой вектор брэгговской решетки; $\Delta k = k - 2\pi n_{eff}/\lambda$ – коэффициент расстройки волнового вектора; $s^2 = \Omega_c^2 - \Delta k^2$.

Коэффициент связи Ω_с для брэгговской структуры с синусоидальным изменением показателя преломления описывается уравнением:

$$\Omega_{\rm c} = \frac{\pi \Delta n}{\lambda} \Biggl(1 - \frac{\lambda^2}{4\pi^2 d_{\rm B}^2 \left(n_0^2 - n_{\rm ob}^2 \right)} \Biggr), \tag{5}$$

где $d_{\rm B}$ – диаметр сердцевины волокна; n_0 – средний показатель преломления сердцевины; $n_{\rm o6}$ – показатель преломления оболочки оптического волокна.

Профиль показателя преломления однородной брэгговской решетки представлен в виде

$$n_e(z) = n_0 + \Delta n \cos(2\pi z/\Lambda), \qquad (6)$$

где *z* – расстояние вдоль оси волокна.

Для проверки достоверности результатов представленной математической модели провели сравнение рассчитанных по формулам (4–6) спектров отражения ВБР с экспериментальными значениями, приведенными в работах [1, 2]. Установлено, что экспериментальные и расчётные значения по брэгговской длине волны, ширине спектра отражений центрального максимума, спектральному положению боковых лепестков согласовывались между собой. Поскольку ВБР часто используются в квазираспределенных волоконно-оптических датчиках в качестве чувствительных и спектральноселективных элементов, было выявлено взаимное влияние спектральноотражательных способностей при наличии нескольких ВРБ. На рисунке 2 представили результаты моделирования спектральных свойств 5 соседних по спектру ВБР в окрестности длины волны 1550 нм, сформированных в одномодовых германо-силикатных кварцевых волокнах (ВС), у которых брэгговские длины волн отражения смещены друг от друга на $\Delta\lambda=0,8$ нм.

Рис. 2. Результат моделирования спектров 5-ти ВБР для одномодового ВС при $\Delta \lambda = 0,8$ нм

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Достовалов А. В., Вольф А. А., Бабин С. А. Поточечная запись ВБР первого и второго порядка через полиимидное покрытие фемтосекундным излучением с длиной волны 1026 нм // Прикладная фотоника. 2014. № 2. С. 48–61.
- 2. Каблов Е. Н., Сиваков Д. В., Гуляев И. Н. и др. Применение оптического волокна в качестве датчиков деформации в полимерных композиционных материалах // Все материалы. Энциклопедический справочник. 2010. № 3. С. 10–15.
- 3. Сазонкин С. Г., Дворецкий Д. А., Денисов Л. К. и др. Сравнение методов измерения и моделирования спектров отражения волоконных брэгговских решеток // Наука и образование. 2012. № 6. С. 319–328. DOI: 10.7463/0612.0422468
- 4. Варжель С. В. Волоконные брэгговские решетки // СПб: Университет ИТМО, 2015. 65 с.