3. Imbert C. // C. r. Acad. sci.— 1967.— V. 264.— № 8.— P. B585.

4. Лавриненко А. В., Барковский Л. М., Борздов Г. Н. // ЖПС.— 1985.— Т. 42.— № 5.— С. 849. 5. Федоров Ф. И. Теория гиротропии.— Минск, 1976.

6. Борздов Г. Н., Барковский Л. М., Лаврукович В. И. // ЖПС.— 1976.— Т. 25.— № 3.— С. 526. 7. Барковский Л. М. // ЖПС.— 1975.— Т. 23.— № 2.— С. 304.

8. Железняков В. В., Кочаровский В. В., Кочаровский Вл. В.// УФН.— 1983.— Т. 141.— № 2.— С. 257.

Поступила в редакцию 10.03.85.

УДК 621.315.592

П. И. ГАЙДУК, Ф. Ф. КОМАРОВ, В. С. СОЛОВЬЕВ

СТРУКТУРА И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА КРЕМНИЯ после имплантации сурьмы и импульсного отжига под слоем анодного окисла

Отжиг имплантационных нарушений с помощью мощных световых импульсов является объектом пристального внимания в течение последних лет [1, 2]. Это объясняется не только заманчивыми перспективами практического использования импульсного отжига в технологии микроэлектроники, но и возможностью непосредственного исследования таких процессов, как кристаллизация аморфных слоев, взаимодействие излучения с многослойными структурами, когда на конечный результат отжига сильное влияние может оказывать различие в теплофизических характеристиках таких объектов.

В настоящей работе импульсная кристаллизация аморфных имплантационных слоев изучалась на примере системы SiO₂ — Si. Использовались монокристаллические пластины кремния марки КДБ-0,3 с ориентацией (III). Имплантация Sb+ проводилась при комнатной температуре на установке типа «Везувий» с подавлением каналирования. Условия имплантации (Д = $(1,2-6,2) \cdot 10^{15}$ ион/см², E = 60 кэВ) обеспечивали создание аморфного слоя толщиной не менее 50 нм. Перед отжигом анодированием выращивался окисел толщиной от 50 до 110 нм. Такой диапазон давал возможность варьировать соотношение между содержанием сурьмы в окисле и кремнии с учетом особенностей ее распределения после имплантации. Кроме того, указанные толщины находились в области максимума просветления для лазерного излучения [3, 4].

Для импульсного отжига использовался рубиновый лазер с модулированной добротностью (λ=0,694 мкм) или источник некогерентного излучение — криптоновые лампы. Длительность импульса ти и плотность энергии W при импульсном наносекундном отжиге (ИНО) составляли соответственно 25 нс и 0,2—2,5 Дж/см², при импульсном миллисекундном отжиге (ИМО) — 30 мс и 50—86 Дж/см².

Исследования проводились с использованием просвечивающей электронной микроскопии (ПЭМ) и дифракции (ПЭД). Электрофизические свойства исследовались с помощью четырехзондовых измерений слоевого сопротивления (R_s) в сочетании с послойным удалением анодно-окисленных слоев. Для построения концентрационных профилей использовались данные Ирвина [5] по подвижности носителей.

Результаты и их обсуждение

В таблице представлены основные параметры воздействия на исследуемые объекты и доминирующие дефекты структуры. В отсутствие окисного слоя в зависимости от плотности энергии лазерного излучения происходит либо частичное плавление поврежденного слоя и образование при кристаллизации поликристалла или микродвойников (0,3 < W < <1,0 Дж/см²), либо полное проплавление и эпитаксия из жидкой фазы с образованием в относительно невысокой концентрации мелких дислокационных петель (W>1,3 Дж/см²) [6, 7].

Д. ·10 ¹⁵ /см ²	^d SiO ₂ , ^{HM}	₩, Дж/см²	τ _и	Дефекты
6,2	_	0,85	25 нс	Иикродвойники (МД)
6,2	70	1,0	25 нс	Крупные дислокационные конфи- гурации (КДК)
6,2	90	0,7	25 нс	КДК
6,2	90	0,8	25 нс	КДК
6,2	100	1,3	25 нс	КДК
6,2	110	1,5	25 нс	КДК
6,2		1,8	25 нс	Мелкие дислокационные петли (ДП)
6,2	50	1,8	25 нс	КДК, дефекты упаковки (ДУ)
6,2	70	2,0	25 нс	КДК, ДУ
6,2	75	1,9	25 нс	КДК, ДУ
3,8		86	30 мс	мд
4,7	50	50	30 мс,	Поверхностный аморфный слой, поликристалл, МД
4,7	50	86	30 мс	МД
2,4	_	86	30 мс	МД
2,4	50	86	30 мс	МД
1,2	-	86	30 мс	МД
1,2	50	86	30 мс	МД

Характеристика структуры слоев кремния после имплантации ионов сурьмы и различных режимов отжига

Наличие окисла заметно снижает величину W, необходимую для плавления аморфизированного имплантационного слоя: в частности, при толщине окисла 70 нм проплавление имплантационного слоя имело место уже при $W \approx 0.5 \ \text{Дж/см}^2$. Дефекты структуры, характерные для случая плавления при ИНО под окислом (рис. 1, *a*),— крупные дислокационные конфигурации (крупные петли, обрывки дислокаций). Мы предполагаем, что их образование обусловлено напряжениями, возникающими из-за присутствия окисла и различия в коэффициентах термического расширения Si и SiO₂.

При плотности энергии лазерного излучения 1,7—2,0 Дж/см² создаются условия для плавления и полного растворения окисла в расплаве кремния. Из-за пространственной неоднородности лазерного пучка в отдельных местах окисел полностью не плавится. Там же, где эффект плавления и растворения имеет место, возникают дефекты упаковки (ДУ) типа вычитания, в том числе и в форме тетраэдров (см. рис. 1, б). Подобная структура наблюдалась ранее после ИНО термически окисленных слоев кремния с ионоимплантированным мышьяком [8]. Столь большое различие в предыстории образцов говорит о том, что появление ДУ, несомненно, связано лишь с плавлением и растворением окисла. По форме ДУ схожи с обычными эпитаксиальными ДУ. Это говорит о вероятном зарождении их на фронте кристаллизации. Центрами зарождения, по всей видимости, являются фрагменты — тетраэдры SiO₄. Введение ДУ может способствовать в этом случае почти идеальному сопряжению частиц окисла с кремнием. Отметим, что размеры ДУ меняются от 10-20 до 200-400 нм, причем плотность дефектов упаковки существенно возрастает с уменьшением их размера. Это связано с тем, что концентрация зародышей ДУ (окисных островков) уменьшается с ростом глубины. Максимальный размер ДУ (~400 нм) хорошо согласуется с глубиной проплавления кремния при отжиге с W=2,0 Дж/см² [9, 10] (см. рис. 1, б).

Рис. 1. Структура кремния, легированного сурьмой, после различных режимов обработки:

a, $\delta - \Xi = 6,2.10^{15}$ HoH/cM²; $\theta - \Xi = 4,7.10^{15}$ HOH/cM²; $a - HHO: W = 0.8 \ \exists w/cM^2, \tau_H = 25 \ \text{Hc};$ $\delta - HHO: W = 2,0 \ \exists w/cM^2, \tau_H = 25 \ \text{Hc}; \ \theta - HOO: W = 86 \ \exists w/cM^2, \tau_H = 30 \ \text{Mc}$

Отжиг некогерентным излучением приводит, в зависимости от W, к частичной или полной эпитаксиальной твердофазной кристаллизации. В последнем случае наблюдается, однако, микродвойникование 1-го и 2-го порядков (см. рис. 1, в). При этом плотность и размеры микродвойников практически не зависят от наличия окисного слоя. Подобная структура образуется при термической равновесной кристаллизации аморфных слоев на подложке (III) — ориентации, содержащей малорастворимую примесь в высокой концентрации [11]. Следует заметить, что плотность двойников растет с ростом дозы имплантированной примеси и уменьшением W. В случае W < 70 Дж/см² аморфные слои кристаллизуются лишь частично, с образованием поликристаллического слоя в приповерхностной области. При W < 60 Дж/см² поверхностный слой не кристаллизуется.

Облучение с W выше порогового значения (это значение зависит от ряда экспериментальных условий и в нашем случае превышало 90 Дж/см²) вызывает плавление имплантационного слоя. При этом, однако, наряду с улучшением структурного совершенства слоя (доминирующие дефекты — лишь мелкие ДП, декорированные примесью, выделения сурьмы) происходит повреждение поверхности пластины, причем характер повреждений в присутствии окисла или без него различен.

Исследования профилей распределения проводимости и концентрации примеси по глубине позволили установить следующее.

1. При импульсном отжиге не происходит диффузионного перераспределения атомов сурьмы из слоя SiO₂ в кремний. Об этом свидетельствует следующий факт. Анодирование одного из двух одинаковых образцов проводилось до получения окисла толщиной 70 нм (толщина затраченного на окисление слоя Si составляла 28 нм), второго — 100 нм (толщина окисленного Si около 44 нм). Величина среднего проецированного пробега сурьмы в кремнии при 60 кэВ составляла 37 нм [12]. Следовательно, в первом случае максимум распределения примеси после окисления находился в кремнии, во втором — в окисле. Результаты измерения профилей распределения примеси по глубине образца (рис. 2, 3) показывают, что при отжиге в условиях, обеспечивающих эпитаксиальное восстановление структуры слоев, не происходит перераспределения Sb из SiO₂ в Si.

Рис. 2. Профили распределения примеси в кремнии после имплантации сурьмы (расчет [12] с учетом анодирования — d_{SiO2}=70 нм) (1) и последующего отжига (2,3):

 $2 - d_{SIO_2} = 70$ нм, W = 1 Дж/см²; $3 - d_{SIO_2} = 75$ нм; W = 1.9 Дж/см²

Рис. 3. Профили распределения примеси в кремнии после имплантации сурьмы (расчет [12] с учетом анодирования -d_{SiO2}=100 нм) (1) и последующего отжига (2,3):

 $2 - d_{SiO_2} = 100$ нм, W = 1,0 Дж/см²; $3 - d_{SiO_2} = 110$ нм, W = 1,5 Дж/см²

2. Перераспределение примеси в кремнии при отжиге определяется в первую очередь величиной W (или глубиной проплавления).

3. При ИНО в определенных режимах можно достичь 100 %-ной электрической активации примеси с максимальной концентрацией 3.10²⁰ см⁻³ (см. рис. 2, 3).

Таким образом, результаты исследований позволяют заключить, что наличие окисного слоя в целом позволяет создать более благоприятные условия для импульсного отжига ионолегированных слоев кремния.

Список литературы

1. Двуреченский А.В., Качурин Г.А., Нидаев Е. Н., Смирнов Л.С. Импульсный отжиг полупроводниковых материалов. — М., 1982.

2. Готра З. Ю., Осередько С. А., Бобицкий Я. Н. // Зарубежная электронная техника.— 1983.— № 6.— С. З. 3. Татига Н., Міуао М., Токиуата Т. // J. Appl. Phys.— 1979.— V. 50.—

№ 5.— P. 3783.

4. Okabayashi H., Yoshida M., Ishida K. // Appl. Phys. Lett.- 1980 .-V. 36.— № 3.—P. 202.

V. 36.— № 3.—Р. 202.
5. Ігvіл Ј. С. // Bell. Syst. Techn. J.— 1962.— V. 41.— Р. 387.
6. Гайдук П. И., Комаров Ф. Ф., Соловьев В. С. // Поверхность. Физика, химия, механика.— 1983.— № 6.— С. 77.
7. Gaiduk P. I., Komarov F. F., Solov'yev V. S. // Rad. Eff.— 1984.—
V. 82.— № 3.—4.— Р. 271.

8. Narayan J. // Appl. Phys. Lett.— 1980.— V. 37.— № 1.— P. 66. 9. Baeri P., Campisano S. U., Foti G., Rimini E. // J. Appl. Phys.— 1979.— V.50.— № 2.— P. 788.

10. Narayan J., White C. W. // Phil. Mag.— 1981.— V. 43.— № 6.— P. 1515. 11. Komarov F. F., Solov'yev V. S., Shiryaev S. Yu. // Rad. Eff.— 1979.—

V. 42.- P. 169.

12. Буренков А. Ф., Комаров Ф. Ф., Кумахов М. А., Темкнн М. М. Таблицы параметров пространственного распределения ионоимплантированных примесей. — Минск, 1980.

Поступила в редакцию 08.02.85.