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Abstract — The object tracking alongside the image segmentation have recently become of particular significance in 

satellite and aerial imagery. The latest achievements in this field are closely related to the application of the deep-learning 

algorithms and, particularly, convolutional neural networks (CNNs). Supplemented by the sufficient amount of the 

training data CNNs provide the advantageous performance in comparison to the classical methods based on Viola-Jones 

or Support vector machines. However, the application of CNNs for the object detection on the aerial images faces several 

general issues that cause classification error. The first one is related to the limited camera shooting angle and spatial 

resolution. The second one arises from the restricted dataset for specific classes of objects that rarely appear in the 

captured data. This paper represents a comparative study on the effectiveness of different deep neural networks for 

detection of the objects with similar patterns on the images within a limited amount of the pre-trained datasets. It has 

been revealed that YOLO ver. 3 network enables better accuracy and faster analysis than R-CNN, Fast R-CNN, Faster 

R-CNN, and SSD architectures. This has been demonstrated on example of “Stanford Dataset”, “DOTA v-1.5”, and 

“xView 2018 Detection” datasets. The following metrics on the accuracy have been obtained for the YOLO ver. 3 

network: 89.12 mAP (Stanford Dataset), 80.20 mAP (DOTA v-1.5), and 78.29 (xView 2018) for testing; and 85.51 mAP 

(Stanford Dataset), 79.28 (DOTA v-1.5), and 79.92 (xView 2018) on validation with the analysis speed of 26.82 frames per 

second.  
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I. INTRODUCTION1 

iniaturization of the microelectronics and expansion 

of the computing capabilities have boosted the 

development of the multifunctional systems that can 

be installed within the modern small unmanned aerial 

vehicles (UAV). Among the possible application scenarios 

for both scientific and commercial UAVs a widely 

demanded but the most resource-intensive is the 

image/video capturing and processing. This task is 

commonly characterized by the real-time object detection 

and tracking that is relevant for a wide range of applications 

such as remote monitoring, navigation, logistics, 

telecommunications, etc. A special interest of these systems 

has been gained for security surveillance [1]-[2]. The 

adaptive device control, pathfinding and launch [3]-[5], 

monitoring of the traffic of the self-driving cars in the urban 

areas [6], and the earth remote sensing [7]-[9] belong to the 

most frequently reported implementations of the computer 

vision systems within the mentioned application fields of 

the UAVs and satellites. Solutions for object detection may 

belong here to either supervised or unsupervised learning 

algorithms. 
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The unsupervised learning implementations are 

represented by the standard pixel-wise segmentation 

algorithms and machine learning methods. For example, the 

face detection problem can be addressed with a 

combination of the optimized decision trees that compare 

the intensity of the pixels in the internal nodes [10] whereas 

a method based on the Haar-like features can be employed 

for human detection [11]. Although, the key feature of such 

algorithms is the high processing speed, they typically 

suffer from the lack of the accuracy for the recognition of 

the highly correlated objects from different classes and the 

background-covered objects. 

The supervised machine learning methods for object 

detection include Support Vector Machine (SVM), k-

nearest neighbors, and methods based on deep neural 

networks (dNN) among which the latter become currently a 

common approach with already 40 different network 

architectures proposed since 2013 [12]-[13].  

The main benefit serving for the widespread utilization of 

the dNN algorithms is the high accuracy ensured for object 

detection. At the same time, these solutions demonstrate 

rather low scalability for multiple classes detection (when a 

limited number of the pre-trained dataset is provided), as 

well as longtime constraints related to the network 

configuration, learning and tuning. Furthermore, the object 

detection can appear substantially challenging for dNNs 

compared to the classification task due to the variety of the 

specific features of the aerial images [14]. Among them one 

can mention the class imbalances, limited data availability, 

limited camera shooting angle, and spatial resolution. 

Taken together this mainly results in the visual similarity of 
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different types of objects appearing on the captured images, 

e.g. of various vehicles like small cars, trucks, cargo trucks, 

utility trucks, buses, etc. Another challenge for object 

detection with dNN is related to the limited availability of 

the datasets for specific objects’ classes, where in case of 

the aerial imagery the dataset expansion is extra constrained 

by significant accompanying expenses. The mentioned 

problem is often stated along with the class imbalance issue 

[15], where objects of some classes, which have a high 

diversity on the images, overlap with the objects with a low 

diversity causing a significant drop of the resultant accuracy 

[16-17].   

Examples of the dNN application for object detection 

include different versions of You Looks Only Once (Yolo) 

architecture (SmallYoloV3, TinyYoloVoc, TinyYoloNet, 

and DroNet) which provides up to 90% accuracy with a 

single-shot object detector for vehicle tracking on the road 

with UAVs [18]; tracking and partial forecasting of the 

motion direction of the object with Region Proposal 

Networks (RPN) allowing 75.92% accuracy [19], etc. 

Adaptation of the R-CNN, Fast R-CNN, Faster R-CNN, 

and R-FCN architectures for object detection tasks has been 

recently addressed via the rotation-invariant and Fisher 

discriminative CNN models [20]. Modification of the Fast 

R-CNN with 70.4% accuracy for detection, tracking and 

movement prediction of autonomous vehicles has been also 

demonstrated with PASCAL VOC 2007 dataset in [21]. 

The extraction of the features and simultaneous localization 

of the geospatial objects have been shown with a 

combination of the RPN with the contextual feature fusion 

network [22]. The adaptation of the learning phase of the 

RiCNN architecture proposed in [23] enforces the training 

samples to share the similar features to achieve rotation 

invariance. Very recently a study on implementation of the 

existing deep neural networks to several datasets, including 

self-developed large-scale detection dataset DIOR covered 

by 20 aerospace object categories has been reported [24]. 

Aiming at systemizing different dNN architectures in 

terms of their accuracy for object detection and study their 

application for the particular case of limited dataset 

including objects with similar patterns, this paper represents 

a comparison study on performance of R-CNN, Fast R-

CNN, Faster R-CNN, and YOLO V3 architectures on 

example of the aerial images captured with UAVs and 

satellites. Training process has been performed on datasets 

of small and medium size (“Stanford Dataset”, “DOTA v-

1.5”, and “xView 2018 Detection”) with special techniques 

applied for dataset pre-processing. The possibilities to 

implement these solutions for on-board computer vision 

systems of UAV’s have been discussed. 

II. METHODS AND PROCEDURES 

Since it is challenging to predict which types of dNNs 

would be effective for the discussed task, the architectures 

based on different principles of feature extraction have to 

be compared. Among the known solutions the R-CNN, Fast 

R-CNN, Faster R-CNN, YOLO ver. 3, and SSD 

architectures have been reported in literature on benefits in 

processing speed and detection accuracy and thus have been 

selected for the study. 

A. R-CNN 

Region Convolution Neural Network is one of the first 

approaches used to determine the object on the image. The 

R-CNN network consists of several sequential steps (Fig. 

1): 

1) Determination of a set of hypotheses: based on 

selective search method a list of hypotheses is defined, 

which includes 2000 different regions partially 

overlapping with each other.  

2) Features extraction using convolutional neural network 

and its encoding into a vector: each hypothesis is 

transferred independently and separately from each 

other to the input of the convolutional neural network.  

3) Object classification within each hypothesis: to 

determine which particular object appears in the region 

under analysis, the list of separate classification models 

One vs. Rest is used. In fact, the binary classification 

problem is solved wherever the specific class is in the 

intended region exists. 

 

B. Fast R-CNN 

The Fast R-CNN network is an advanced model of the R-

CNN (the corresponding architecture is presented in Fig. 2) 

and differs: 

1) Features map extraction is performed for the whole 

image. 

2) Hypothesis search follows the selective search 

algorithm. 

3) Each hypothesis is matched to a location on the feature 

map, i.e. a single set of selected features is used for 

each hypothesis. 

4) Classification of each hypothesis and correction of the 

bounding box coordinates is performed (may be run in 

е parallel since the SVM classification algorithm is not 

used). 

 
Fig. 1.  Architecture of R-CNN network. 
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C. Faster R-CNN 

In Faster R-CNN method the selective search algorithm is 

represented by two modules: hypotheses determination and 

its post-processing. The first module has been implemented 

using the Region Proposal Network (RPN). The second 

similarly to the Fast R-CNN (starting from the Region of 

Interest layer). The detection process using Faster R-CNN 

includes the following steps: 

1) Images feature map extraction. 

2) Generation of hypotheses based on the feature map, 

determination of the approximate coordinates. 

3) Comparison of the hypotheses coordinates with the 

feature map using RoI. 

4) Hypotheses classification and additional refinement of 

the coordinates. 

The major improvement takes place precisely at the stage 

of hypotheses generation via an auxiliary neural network 

referred to as Region Proposal Network (see Fig. 3).  

A summary of the evolution of the R-CNN architectures is 

shown in Table I. 

D. YOLO 

The YOLO network architecture (Fig 4.) is applied to the 

entire image at once by splitting it into a grid wherein n 

bounding boxes are selected and assigned with the 

probability and offset value. The predicted probability is 

compared with a pre-defined threshold value, whereupon a 

decision on the object presence within the image is made. 

 
Based on the YOLO concept several versions of the 

network architecture have been developed. The versions 

differ from each other with respect to the used 

convolutional networks for classification, implementation 

of residual learning techniques, up-sampling and multi-core 

presentation of each grid’s sample set. For example, the 

YOLO v3 network applies detection 1×1 kernels to feature 

maps of three different sizes in several parts of the network. 

E. Single Shot Detector (SSD) 

Single Shot Detector (Fig. 5) consists of two shots: first 

one is intended to extract the feature maps whereas the 

second one applies convolutional filters to detect objects. 

To extract features and generate a feature map a VGG 

networks has been used. The latter contained four sets of 

convolutional layers with ReLu, where size of each next 

layer reduces by half in comparison to the previous one. 

Detection has been performed with a separate convolutional 

filter, which makes 4 predictions for each cell. Hereby, each 

filter output includes N + 4 channels N scores for each class 

and one boundary box. 

 The distinctive feature of the SSD network is the 

possibility for objects separation into classes in a single run 

using a given grid of windows on the image pyramid. 

III. RESULTS 

A. Segmentation of aerospace images 

DSTL dataset has been chosen as a basic set for image 

segmentation task since it partly includes the pre-marked 

images. Dataset consists of RGB, multispectral part (400-

1040 nm) and a mid-infrared part (1195-2365 nm). 

Training dataset out of 425 images includes 10 pre-

labeled classes: trucks, cars, rivers, lakes, agricultural lands, 

roads, etc. Only 25 images from the whole dataset were pre-

marked. Here the different classes had uneven distribution 

over the images, e.g. rivers and lakes totally cover over 

20% of the area, agriculture lands – over 30%, cars – less 

than 0.5%. The data has been pre-processed including the 

normalization and resizing to ensure the same resolution of 

1024×1024 px. For this, a custom ImresNet network, which 

 
Fig. 4.  Regional Proposal Network. 

  

 
Fig. 2.  General architecture of the Fast R-CNN network. 

 
Fig. 3.  Regional Proposal Network. 

  

 
Fig. 5. Single Shot Detector (SSD). 
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consists of 16 layers with 32 neurons in the first hidden 

layer and 64 in the others, has been used 

The architecture of four CNNs (U-Net, DeepLab, 

FullyConvolutional, GlobalConvolutional) have been 

optimized according to the following paraments: number of 

the feature maps, size of the convolution kernel, pooling 

type, dropout probabilities, and activation function. Then 

the networks have been trained by Adam optimization 

algorithm with learning speed of 10-3, hyperparameters 

𝛽1=0.9, 𝛽2=0.999; decomposition of 10-5, and 30 epochs on 

1000 frames batches [25].  

Categorical cross entropy with modulation coefficient has 

been selected as a loss function to compensate the high 

classes imbalance. In order to evaluate the segmentation 

accuracy an intersection of real labels and predicted areas 

has been calculated according to Jacard Index Metrix. 

Dropout probabilities have been optimized for each 

network type in order to prevent over-learning and for 

regularization purposes. The corresponding optimized 

dropout values are represented in Table II. 

 
The weighted Jacard indexes for image segmentation into 

10 classes for both training and validation phases are 

presented in Table III. It has been determined that within 

the training phase the best result with the Jacard index of 

0.684 is demonstrated by the DeepLab network, whereas 

the worst one is exhibited by the Fully Convolutional 

network. For the testing phase U-Net network with the 

Jacard index of 0.663 shows the most accurate result.  

 
The comparison of the networks according to the 

weightiness, that determines the possibility to implement 

these networks for real-time segmentation (Table III), 

demonstrates the benefit of the GCNet architecture. 

Generalizing the ability, speediness and learning efficiency, 

the U-Net network is determined as an optimal 

configuration.  

B. Object detection of aerospace images. 

“Stanford Campus”, “DOTA v-1.5” and “xView 2018 

election” have been selected as datasets to study the 

performance of the dNNs for objects detection on the aerial 

images. All datasets include the images captured with the 

same camera shooting angle, classes with high similarity of 

the captured pattern and limited size of the pre-labeled 

training dataset. 

The “Stanford Campus” dataset consists of 8 unique 

scenes [see Table IV] and accounts in total 60 videos taken 

from UAVs with duration times from 2 to 11 min. The 

appearance frequency for objects in the scenes is 

represented in Table IV. Every 20th frame of the videos (in 

total 3000 images) containing 41800 objects has been put 

into the training set. The selected images have been resized 

to resolution of 1400×1100 px with ImresNet network that 

has been discussed in the segmentation part. In order to 

ensure generalization each video has been split in half into 

validation and testing parts (700 images and 7500 objects), 

with a 10% part added to the training part. 

 
The “Dota-v 1.5” dataset has been used in part (1927 

images with resolution ranging from 800×800 to 

4000×4000 px.). The data includes 127 241 instances 

representing 11 classes: baseball diamond, tennis court, 

basketball court, ground track field, soccer ball field, 

swimming pool, storage tank, roundabout, large vehicles, 

small vehicles, harbor and ships. Among them there are 

several groups out of two, three or four classes that have 

similar or slightly variant visual patterns.  

In total 647 images with 0.3-meter resolution have been 

selected from the “xView” dataset. The final dataset 

contains 19 object classes: small car, truck, cargo truck, 

utility truck, bus, trailer, cargo car, dump truck, pickup 

truck, truck tractor, haul truck, cargo plane, aircraft hangar, 

fixed-wing aircraft, helicopter, tugboat, yacht, sailboat and 

container ship. The pre-processing includes random crop of 

the 416×416 px areas from the images, augmentation with 

image flips, shifts and random 45⁰ rotation. Part of the 

images have few annotations (< 5) that sophisticates the 

training procedure. 

The following architectures SSD, R-CNN, Fast R-CNN, 

Faster R-CNN, and YOLO v3 have been studied on 

effectiveness. For R-CNN generation already the half of the 

necessary proposal regions (1000) has been defined 

sufficient to reach the required accuracy which significantly 

accelerates the process of objects detection. Here the 

support vector machine is used as a classifier. In case of 

Faster R-CNN, the network has been modified by 

implementing the residual learning strategy within the 

ResNet model for classification tasks. This has been applied 

to address the rather low diversity of the detected objects in 

TABLE I 
DROPOUT PROBABILITY VALUE FOR IMPLEMENTED CNNS FOR SATELLITE 

IMAGES SEGMENTATION 

Network 
architecture Dropout probability value 

U-Net 0.60 

FullConv 0.25 

DeepLab 0.25 

GCNet 0.3, 0.2, 0.1, 0.05 

 

TABLE II 
RESULTS OF SATELLITE IMAGE SEGMENTATION 

Network 
architecture 

Jacard index 
on testing set 

Jacard index 
on training set 

Number of 
weights 

U-Net 0.663 0.672 10 234 124 

FullConv 0.522 0.554 24 194 852 

DeepLab 0.582 0.684 40 284 743 

GCNet 0.647 0.679 8 296 163 

 

TABLE III 

STRUCTURE OF THE STANFORD CAMPUS DATASET 

№ 
Vide

os 
Bikes 

Pedestr
ian 

Skateb
oarder 

Cart Car Bus 

1 9 51.94 43.36 2.55 0.29 1.08 0.78 

2 4 56.04 42.46 0.67 0 0.17 0.67 

3 12 4.22 64.02 0.60 0.40 29.5 1.25 

4 4 18.89 80.61 0.17 0.17 0.17 0 

5 7 32.89 63.94 1.63 0.34 0.83 0.37 

6 5 56.30 33.13 2.33 3.10 4.71 0.42 

7 4 12.50 87.50 0 0 0 0 

8 15 27.68 70.01 1.29 0.43 0.50 0.09 

 

https://doi.org/10.1109/JMASS.2020.3040976


This is a preprint of an article published in IEEE Journal on Miniaturization for Air and Space Systems, 2(2) (2021) 98-103 

The final authenticated version is available online at: https://doi.org/10.1109/JMASS.2020.3040976 

5 

terms of feature depth. This optimization solution allowed 

to skip several items and thus to prevent overfitting of the 

network. The YOLO v3 network has been modified by 

adding the unsampled layers to extract small object’s 

features, which are highly important in detecting objects 

with similar patterns. Within the YOLO v3 the Darknet 53 

network has been implemented instead of Darknet 19 with 

the grid of 13×13 px size with 7 anchors. The size of the 

convolutional kernel has been decreased to 13 as default, so 

that the 13×13 region is employed to detect the large 

objects, 26×26 – the medium, and 56×56 – the small ones. 

For the SSD network the grid was set to [5 x 5], zoom level 

– to 1.0 and the ratio of 1:1 as this set of parameters was 

determined to demonstrate the best result.  

Since the background of the images contains much more 

classes to be detected than the foreground has, the Focal 

Loss algorithm and advanced cross-entropy loss function 

with the adjusting parameter y have been applied. This 

allows to minimize risks of false detection, when patterns 

on the background contribute to the noise component within 

the training process. The performance of several 

mechanisms for weights optimization, and namely Adagrad, 

RMSprop, Adadelta, and Adam, have been compared. As 

the result, advanced version of stochastic gradient descent 

(SGD) Adam has been finally chosen due to the possibility 

to avoid a zero-shift at the initial moments. The following 

parameters for Adam method have been used: learning rate 

= 0.01, weight decay = 0.001, momentum = 0.7, y value = 

4, α = 0.30.  

The dNNs have been implemented in the Python on Intel 

Core i7 6700HQ and GPU NVIDIA Tesla K80 processing 

units using the TensorFlow, Pytorch, Numpy, Keras, and 

matplotlib libraries. During the training and validation 

phases the mean Average Precision (mAP) value has been 

calculated for all selected dNNs for all classes whereupon 

the weighted accuracy has been calculated (see Table V). 

 
For testing phase, the best result has been obtained for 

the YOLO v3 network with mAP = 87.12. The best training 

accuracy has been shown by Faster R-CNN network with 

mAP = 86.12. The given results on image processing speed 

in frames per second have been used to characterize the 

dNN effectiveness for real-time detection. It has been 

determined that the fastest network is YOLO v3 (fps= 

26.82) whereas the slowest is Fast R-CNN (fps = 13.23).  

Table VI represents the object detection results for Dota 

v1.5 and xView 2018 datasets. As previously mentioned, 

the Dota v1.5 and xView 2018 datasets contain only 

images, and thus the ability for real-time processing is not 

considered. Taking into account the rate of methods 

convergence, generalization ability and speediness, the best 

result on detection of the objects with similar patterns has 

been shown by YOLO v3 deep neural network. 

 
An example of the detected objects of two classes: 

pedestrians (black) and bikes (blue) defined by the YOLO 

v3-based network on the image from Stanford Campus 

Dataset is represented in Fig. 6a; an example of the detected 

objects of large vehicles (red) and small vehicles (blue) on 

the image from “Dota-v 1.5” is represented in Fig. 6b and 

example of the detected objects of cargo plane (red) and 

fixed-wing aircraft (blue) on the image from “xView” is 

represented in Fig. 6b  

 
This shows the possibility to implement the methods 

based on deep neural networks, especially YOLO v3-based 

network, within the on-board computer vision systems for 

unmanned aerial vehicles. 

IV. CONCLUSION 

The comparative study on the performance of different 

architectures of deep neural networks for both pattern 

recognition on aerospace images and object detection from 

unmanned aerial vehicles with limited amount of the pre-

trained datasets has been performed.  

TABLE V 
RESULTS OF OBJECT DETECTION ON DOTA V1.5 AND XVIEW 2018 DATASETS 

Algorithm mAP test mAP validation 

Dota v1.5 

SSD 73.19 76.98 

R-CNN 70.17 71.12 

Fast R-
CNN 

74.02 
75.64 

Faster R-

CNN 
78.93 

79.92 

YOLO v3 80.20. 79.28 

xView 2018 Detection 

SSD 71.52 75.63 

R-CNN 75.91 74.39 

Fast R-

CNN 
76.01 

79.23 

Faster R-

CNN 
77.33 

79.58 

YOLO v3 78.29 79.92 

 

 
a)                                           b) 

Fig. 6. Examples of detected objects by the YOLO v3-based network on the 
images from a) Stanford Campus Dataset; b) Dota-v 1.5, of a) pedestrians 

(black) and bikes (blue); b) large vehicles (red) and small vehicles (blue); c) 

cargo plane (red) and fixed-wing aircraft (blue) classes. 
  

TABLE IV 
RESULTS OF OBJECT DETECTION ON STANFORD CAMPUS DATASET 

Algorithm 
Frames per 

second 
mAP test mAP validation 

Stanford Campus Dataset 

SSD 22.83 78.24 82.87 

R-CNN 14.92 80.49 85.26 

Fast R-
CNN 

13.23 81.18 
83.23 

Faster R-

CNN 
15.65 84.78 86.12 

YOLO v3 26.82 87.12 85.51 
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In order to prevent the over-learning of the neural 

networks for image segmentation task the supplementary 

dropout layers with empirical optimization have been 

introduced. The shift and rotate augmentation procedures 

have been utilized to artificially increase the dataset. The 

best weighted average result in terms of speediness, 

learning efficiency, and generalization ability has been 

showed by the GCNet network with Jacard index equal to 

0.647 in the testing phase and 0.679 in the training phase. 

The accuracy of the region proposal network (R-CNN) 

together with its advanced versions, SSD and YOLO v3 

architectures, for object detection in aerial imaging has 

been studied. The networks have been trained and 

optimized in terms of loss function, optimization algorithm, 

number of input layers and neurons, and accuracy metrics. 

The weighted mean Average Precision (mAP) has been 

selected as the performance criterion. On example of 

“Stanford Campus” dataset it has been defined that the 

YOLO ver. 3 network enables the best accuracy (mAP = 

87.12) and the fastest analysis (26.82 frames per second) 

compared to the R-CNN, Fast R-CNN, Faster R-CNN, and 

SSD architectures. The tests with “Dota v1.5” and “xView 

2018 Detection” have further confirmed the advantages of 

the YOLO ver. 3 network with the absolute accuracy values 

of 80.20 and 78.29 mAP, accordingly.  

The obtained results in accuracy and, especially, in 

processing speed indicate clear feasibility for 

implementation of the proposed network based on YOLO 

ver. 3 architecture for an airborne device within the 

unmanned aerial vehicle for real-time object detection. 

Particularly, the pre-trained dNN launched on Nvidia Jetson 

Nano computer supplemented by the transmitter module 

would be capable for real-time transmission of images 

including the edges of the detected object and accuracy 

data. Moreover, the implementation of the dNN algorithm 

within the on-board system would allow to minimize the 

impact of the Air-to-Ground video transmission pipeline on 

the decision-making process. Functionalities of Nvidia 

Jetson such as Nano DeepStream SDK (streaming pipelines 

for AI-based video) and integration of various types of ML 

frameworks like Tensorflow and Pytorch would enable 

additional optimization of the dNN and their test on board. 
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