Direct synthesis and crystal structure of metal(II) thiocyanate complexes with 1-alkyl-1,2,4-triazoles

<u>M.M. Degtyarik</u>, S.V. Voitekhovich, A.S. Lyakhov, L.S. Ivashkevich, O.A. Ivashkevich Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus, e-mail: *monija@tut.by*

In continuation of our previous studies in coordination chemistry of 1,2,4triazoles [1,2], here we report direct synthesis and characterization of metal(II) thiocyanate complexes with 1-*iso*-propyl-1,2,4-triazole (ptr) and 1-*tert*-butyl-1,2,4triazole (btr). These triazoles were found to interact with metal powders and ammonium thiocyanate in organic solvents (DMSO, toluene, acetonitrile, alcohols) under heating to give crystalline complexes [M(ptr)₄(SCN)₂], where M = Co, Ni; [M(btr)₄(SCN)₂]·btr, where M = Cu, Ni; [Cu(btr)₂(SCN)₂]_n and [Cu(btr)₃(SCN)₂].

Single crystal X-ray analysis showed that ptr and btr acted as monodentate ligands coordinated by metal cations *via* the heteroring N⁴ atoms in all obtained complexes. Complex $[Cu(btr)_2(SCN)_2]_n$ was found to be 1D coordination polymer, formed due to bridging thiocyanate anions (Fig. 1*a*). Other compounds are mononuclear complexes, in which thiocyanate anions are coordinated by metal only through the nitrogen atoms. In complexes $[M(btr)_4(SCN)_2]$ btr, their crystal lattices include also non-coordinated triazole molecules (Fig. *b*).

Fig. *a*) Coordination polymeric chain in the crystal structure of [Cu(btr)₂(SCN)₂]_n;
 b) complex molecule together with non-coordinated triazole molecule in the crystal structure of [Cu(btr)₄(SCN)₂] btr. All hydrogen atoms are omitted for clarity.

References

[1] S.V. Voitekhovich et al. Z. Anorg. Allg. Chem. (2018) 644: 100
[2] M.M. Degtyarik et al. J. Belarusian State Univiversity. Chemistry (2020) 1: 64.