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Constructive methods for factorization of matrix-functions
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A survey of constructive methods for the factorization of i = 0 matrix functions is presented. The impor-
tance of these methods for theoretical and practical applications is singled out, Several classes of matrices

are considered which arve factorized by the proper technigue. The perspective of the constructive methods
and procedures is discussed and open questions are formulated.
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1. Introduction
This paper deals with the problem of factorization of matnix-functions. Let us formulate this problem in
the classical setting.

Let 17 be an onented simple closed smooth curve on the complex plane © (the special case I" =R
can be considered too). Denote by 1377 D7 the domams on the Riemann sphere lying, respectively, o
the left and to the rght of the curve I, with respect to the chosen onentation. Let G € (.4 (1))

G — g

be a non-singular matrix funetion, defined on I7 (for example, a matnx with continuous entries). The
matrix-lfunction & = Gir) admits a {sght} factorization i it can be represented in the form
Gl )= G {NANG (1), (1.1}

where non-singular matrices G~ (1), G7 (1) possess an analytic continuation into D~ D7, respectively”
Alr) 15 the # = n diggonal matnx,

iy Ny
m_r]=dmg{(' ‘) (’ ') } (1.2)
F—¥ F—

and i~ € D7 ¢~ & 07 are cerain {fixed) points. In particular, it I = |, then one can choose

=it =—i,

"Here . (I 1" stands for d set of square » = 7 matnx functions, @ means imvertibility.
TGinee (G} (G1)* possess analytic continuation into corresponding domains, then both matrices G (), &'z} need to
be nom-singularin £ 07, respectively.
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and if I 15 a bounded curve and 0 & 27 then

=it
=1
=i

The integer numbers @, ... &, are called partial indices, and the matrces G7i{f), G7(1) are known as
minus-, plus-factors. I fctoreeation (1..1) exists, then the partial indices are uniquely determined up to
thewr order, i.e. they are imvariants of the factorization problem. Upon interchanging G~ and &7 (1)
in (1..1) we arnve at the feft-factorization.

Lnitially, the factonzation problem is linked to Riemann or, more precisely, with two problems
formulated by him, known as the Riemann boundary value problem (or Riemann-Hifbert bowndary
value problem, see Gakhov (1977)), and the Rigmann monodromy problem (or 2 (st Hilheri problem, or
Riemann-Hilbert problem, see Bolibrukh (19907). In fact, the notion of partial indices was first intro-
duced in the study of the vector-matnx Riemann boundary value problem in Muskhelishvili & Vekua
(1943,

In the present day, the factorization problem is interesting due to its connections to notable mathe-
matical problems (vector-matrin boundary value problems, systems of singular integral equations, the
Wiener-Hopf and other convolution type equations, the Riemann-Hilben problem, classification of vec-
tor bundles on the Riemann sphere, nonlinear evolution equations, the Toeplitz operators, ete), as well
as to applied problems (elasticity and elasto-plasticity, radiation and neutron transpon, wave dilfrac-
tion, fracture mechanics, geomechanies, signal processmg, financial mathematics, ete). Several mono-
eraphs and extended surveys on the theory, on specific approaches and applications of the factorization
of matnx-functions has been published (see, eg., Ban er af. (2008), Bbttcher & Spitkovsky (2013),
Clancey & Gohberg (1987), Ehrhardt & Speck (2002), Ehrhardt & Spitkovsky (2001), Gohberg er al
{2003), Lawne & Abrahams (2007, Litvinchuk & Spitkovsky (1987), Vekua (1967)).

Sometimes the factorization problem is called the Wiener-Hopf factonzation. The latter is connected
with the so-called Wiener-Hopf technique developed mitially for the study of the Wiener-Hopf integral
equation of the form

fk:.r— P flNd = glx), 0<x< o=
it

The fundamentals of the idea were mitially proposed in the original paper by Wicner & Hopf (1931)
and is outhined as follows: by applying a Fourier transform to the mtegral equation, we can derive the
so-called Wiener-Hopf functional equation

Klo)F o)+ F i) = Gla),

where unknown functions £7 F~ have 1o be analytic in the half-planes 07 D7 intersecting along the
strip %, and the given functions K (), K~ ' a), G{a) are analytic in this strip (called the Wiener-Hopf
strip). For many mixed boundary value problems the Wiener-Hopf formulation appears in the form of
coupled Wiener-Hopl equations that can be reduced to o functional equation in the matrix form (see
MNoble (1988)) and thus 15 related o the above descnibed factorization problem (see also Duduchava
{1979}, Duduchava & Wendland (1995) in relation to crack problems). The historical development of
the Wiener-Hopl method 1s presented in Lawne & Abrahams (2007). The relanonship between the
Wiener-Hopf factorization and the Riemann boundary value problem has been recently discussed in
Kisil (2015).
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Generalizations of the classical factorization problem have also been proposed (see, e.g., Simo-
nenko (1968), Veitch & Abrahams (2007)). Among these generalizations we point out the so-called
d-factorization, based on the ideas of Simonenko (1968) and dealing mitially with the factonzation of
matrices with Lebesgue-measurable entres.

The @ factorzation was introduced by 1 Spitkovsky (see Litvinchuk & Spitkovsky (1987)). Below
we repeat this definition following the survey paper Ehrhardt & Spitkovsky (2001 ), where this definition
is given mn a complete form suitable for our presentation,

Let @ be n x n matrix function, G € (L7(17))"™" and the following assertions hold:

(G e (LU (67) e (L))"

(i) G- e (LP(r)"™ Gy e (L2 ()™

The operator

f=gh)ytattee ((67)Y) (1.3)
15 4 well defined linear mapping from the linear space of all rational vector functions with poles off 7
and maps this set into I:LI H":I;]”. Let, in addition to conditions (1), (11), we assume that

(111} mapping (1..3) is bounded in the LP-norm (and thus it can be extended by continuity to a
bounded operator on the whole space (L7(17))").

In this case, the representation (1..1) 1s called o @-factonzation in the space LP(17).

Here p~!' 44! = 1 and the sub-indices “+ 7 or “— " in notation referring to Lebesgue spaces
signify that the coresponding functions (vector-functions or matrix-functions) are analytically contin-
ued into 4+ - or * —"-domains with boundary functions {vector-functions or matrix-functions) in the
coresponding Lebesgue spaces, the operator

FPr=1/2({+5r)
is a projector, and the operator

e =~ (L% rer.
?Tfj_ T

15 the singular mtegral operator on I

If the matrix & admis the @-factorization, then the partial indices & .., ay, are also defined
uniquely up to their order. The results on d-factorzation (as well as on their generalizations) are
discussed m several monographs (see, e.g. Bart ef af. (2008), Clancey & Gohberg ( 1987), Litvinchuk &
Spitkovsky ( 1987), Speck (1985)) and survey papers (see, e.g., Bitcher & Spitkovsky (2013), Castro er
al. (20035), Gohberg et al. (2003)). In particular, in Castro et af. (2005), it has been proposed a critenion
for some classes of continuous matrix functions on the real line with a jump at infinity to be fctorzed as
in the classical sense as in the sense of the asymmetnic factonzation. Under asymmetric (antisymimetric)
factorization it is understood the representation ¢ = G- AGE (G = G- AGY), where & 1s even on the
real line (G715 odd on the real line). The result of Castro of al (2005) yields the existence of general-
ized inverses of matnx Wiener-Hopf plus Hankel operators and provides precise information about the
asymptotic behavior of the factors at infinity and of the solutions to the corresponding equation at the
origin.

*Here [.'_",""[r'l]-“"". [(L™(C) "™ mean sets of » % n matrices with entres in the cormsponding Lebespue spaces which
possess andlytic continuation into comesponding domains, [t follows, in particular, that & (=), &' (2} need to be non-singular in
¥, mspectively.

“Which is. in fact. not necessarily orthogomal.
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The factorzzation problem has various formulations, numerous aspects, and is linked to many prob-
lems of Analysis. We will now point out some books dedicated 1o the different points of view in studies
of the factorization problem.

To begin, the classical book by Vekua (1957) presented the method of the systems of the singular
integral equations to study the factonzation. The most extended variant of this theory 1s presented in the
second Russian edition (1970}, see alko Muskhelishyvili (1968) (Enghish translation of Vekua's book 1s
based on the first Russian edition of 1950).

The factorization problem for continuous or piccewise continuous mawix functions {and, in gen-
eral, for measurable matnx functions) was thoroughly studied and was presented, for example in the
book by Litvinchuk & Spitkovsky (1987). This presentation touches both the classical and genermlized
factorizations, and deals mainly with theoretical development in the subject area.

The book by Clancey & Gohberg (1987) presents a systematic study of the factorization problem
from the point of view of the theory of singular mtegral operators (see Gohberg & Krupnik (1991-
19923y, In this book the emphasis is on the connections between factorization relative 1o a contour and
singular integral operators. To see these connections in more detail the authors consider on L(17) the
singular mtegral operator of the form T = Bf 4+ CSp, where 8. C are given n % 7 matrices defined on
I, and [ 51 are, respectively, unity and singular integral operators on 7. The main focus of the book
is on generalized factorization, but the classical version {referred 1o as “continuous factorization’™) also
features in the discussion,

Based on the ideas of Clancey & Gohberg (1987), the book Bant er af (2008) considers various
types of the factorization problems for matrix and operator functions. The problems appear n different
areas of mathematics, its applications, and a unified approach to treat them is developed. The main
theorems yield the explicit necessary and sulficient conditions for the factonzations to exist and explicnt
formulas for the coresponding factors, stability of the factors relative to o small perturbation of the
onginal function 15 also studied. The unifying theory developed in the book i1s based on a geometne
approach which has its origins in different fields. A number of mnitial steps can be found in: (1) the
theory of non self-adjoint operators, where the study of ivadant subspaces of an operator is related to
factorization of the charactensue matrix or operator function of the opertor involved, (2) mathematical
systems theory and electrical network theory, where a cascade decomposition of an input-output system
or a network 1s related to a factorization of the associated transfer function, and (1) the factorzation
theory of matrix polynomials in teoms of mvariant subspaces of a corresponding lincanzation. 1o all
three cases a state space representation of the function o be factorized 15 used, and the factors are also
expressed m tenms of state space form.

We also mention a few specialized books, namely Speck (1985, which considers the Wiener-Hopf
method and Wiener-Hopl factorization (see also Noble ( 1988)), and Bottcher et af. (2002) which exam-
ines the factorization of almost periodic matnx functions.

1t seems almost impossible o discuss all the questions related to the factorization problem. There-
fore, i this survey paper we restrict our attention to the constructive methods of factorization m its
classical formulation. This area 15 less developed with respeet to theoretical development ofthe subject,
but it 15 one of the great prctical importance. We present most of the known results 1o this area, and
acknowledge that the desenption could be extended in many directions (see Sec. 11,).

The paper is orzanized as follows. In Sec. 2. we present a number of general results known in
the factorization theory, Later in the paper we classily the constructive results either by the developed
methods or by the speeific classes of matnx functions o which these methods are applied. The corre-
sponding Sections constitute the main pant of the paper. We conclude in Sec. 11, with the discussion
ol the perspectives of the constructive approaches and of further developments in the area of the matnx
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functions factorization. We present a large but non-exhaunstive list of references, and note that many
other sources can be found via cross-references.

2. Few general results

Some general results exist for classical-type factorization. We formulate them here for readers” conve-
nience.

o |. The necessary condition for a continuous matrix-function & : 7 — T 1o be factored 1s its
non-singularity:
det Gl #0, el

e 2 Ifthe matnx admits a factorization, then the partial indices are defined uniquely up to the order
{see, ez, Vekua (1967)). Thus one can always suppose &) = --- 2 @y,

e 3 Il a continuous matrix & admits a factorization, then the sum of partial indices is equal o the
index (winding number) of the determmant of the matnx (see, e.g., Gakhov (1950)):

@) + -+ @y = indrdet Gif) = windr det Gt ).

e 4. The panial indices are stable iff & —wy, £ 1. o particular, if one approximates a given
matrix 7 by factorizable sequence of matrices G, then in the mit, as & — <=, the factors G,
7, (as well as corresponding partial indices 21y do not necessanly give a factonzation of the
initial matnx (and its partial indices &), This eaterion for the stability was proved for special
classes of matrices in Shmulian (1933), Shmuban (1954), Chebotarey (1956), and in general form
in Bojarsky (1958), Gohberg & Kreimn (1958b), see also Litvinchuk (1967), Spitkovskij (1974),
Tishin ( 1988),

o 5. 111t exists, the factorization of a marix-function (e, the factors G, G7) 18 defined non-
umgquely, The fctors are determined up to certan rational block-triangular matnx-functions (see,
e.g., Ehrhardt & Spitkovsky (2001)).

o . The factors of a canonical factorization are determined uniquely up to a constant multiple (see,
e.g., Gohberz & Krem (1958a)).

e 7. In =1, then any piece-wise Holder-continuous matrix {(function) can be factonzed explicitly
{see, e.g., Gakhov (1977)).

e 8. Any non-singular Holder-continuous matix function admits a continuous factonzation (see,
e.g., Clancey & Gohberg (1987), Vekua ( 1967)).

o Y. Ifany 2 x 2 matrix function that is positive and Hilder continuous on I” admits the (contmuous)
canonical fctormzation, then 15 a cirele (see Markus & Matsacey ( 1994)).

¢ 10. The continuous factorization of a continuous matrix-function G € ({1 ))""™" may not exist
since the algebra of continuous functions is not decomposable (see, e.g, Clancey & Gohberg
(1987)).

1
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e 11. Let n = 2. Given any two vectorss p, A € 27, such that ¥p, = ¥4, there exists a matnx
Al e (@ (Le. inverible on [T possessing rational extension o the whole complex
plane), whose vectors of partial indices for the right- and lefi-factonzation (right and left partial
indices) are equal to p. &, respectively (see Feldman & Markus ( 1998)).

e 12 A nonsingular continuous matrx-function always admits a fctorization n L7(17). 1 < p < e
and this factornzation can be made ndependent of p.l < p < == (see, e.g., Clancey & Gohberg
(19870,

3. Triangular matrix functions

Trangular matrix functions are supposed o form the most simplest class of matrices for which it 15
possible to obtain explicit factorizations (see, e.g. (Clancey & Gohberg, 1987, Ch. 4)), Two main
methods are described in Clancey & Gohberg (1987). One of them is a constructive procedure, which 1s
due to Gohberg & Krein ( 1958a), to obtain a continuous factorzation of a non-singular triangular matrix
function with the continuous entries from a decomposing algebra. Another approach i1s the general rule
of Chebotarey (1956) to get the partial indices of a 2 x 2 mangular matnx function (which is descnbed
above in See. 4. In fact, apart from the factonzation procedure applied to triangular matnees, the
mieresting question is how to single out a class of matnees which can be reduced o the triangular form
by using rational ransformation. As a matter of fact, the class of matdx lunctions G which can be
transformed by a (more general) transformation of the form

G(1) — G{t) = UGV, Ued®™, vedw™, (3.1)

into a triangular matrix coincides with the class deseribed in Spitkovski) & Tashbaev (1989,
More generally, it 1s important with respect to all factorization problems to descnbe transformations
of the form
Git)— G(1) = U_(NGIOV.D), U_ec4R*2, V. ecgx>2, (3.2)

provided that & belongs to a class of matrix functions for which a factorization theory is known (see
Ehrhardt & Speck (2002)). Here #7277 are classes of rational 2 » 2 matrix functions with no pole in D=,

The ea of systematically considenng transformations (3..2) in factorization theory was first taken
up by Spitkovskij & Tashbaev (1989). They gave a description of all 2 x 2 matrix functions which can
be transformed by certam transformation (3.2) into a triangular matnx. Such matrix functions have
at most three muonally independent entries, and the mtional dependence between the entries is of a
specific nature.

4. Chebotarev-Gakhov method

The factorization problem is tightly connected o the (vector-matrix) Riemann boundary value problem
(see, e.g., Gakhov (1977), Muskhelishvili ( 1968))° for several unknown functions. This consists of the
determination of two vector-functions @ (=), @ (=), analytic in domains 07 07 respectively, whose
boundary value satisfy the linear relation

D =Gl )+, reln, 4.1

“This problem is also knvwn as the Hilbent boundary value problem or C-linear conjugation problem.

§l| T
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where Gt and g(t) are given matrix- and vector-function on the contour ', The homogencous prob-
lem (i, when gir) = 0015 very similar o the factorzation problem (1., 1) even in its form. A special
case of problem (4..1) was posed by Riemann (15876) i his work on (complex) differential equations
with algebraic coeflicients in connection with the construction of a differenial equation whose solutions
admit a given linear substitution when its variable 1s encircling a given family of (“singular™) points (Le.
an equation with a given monodromy group). This question on possibility to construet differential equa-
tions with a given monodromy group s known as the Riemann-Hilbert problem or 21-st Hilbert problem
(for a more exact formulation of this problem and an extended description of corresponding results see
Bolibrukh (2009), Ehrhardt & Spatkovsky (2001)).

1t 15 well-known that in the classical settng (for Hélder continuous &g and & + ) the scalar
Riemann boundary value problem (i.e. forn = 1) possesses an explicit solution. The so-called canonical
Sunetion X7 (z) takes a central role m this solution,

X)) =expy(z), X (z)=z"Texpy (2),

1 logl 726G )|
Fr== e b ]'u'r,

2, T—=
r

where i
@ =indrGlt) = windrGit) = z—z_‘nr argGir)
s

15 the index of the coefficient Gie) (or its winding number). For nonnegative index the homogeneous
problem has &+ | linear independent solutions

D) =N, k=01, =

but for negative index the homogeneous problem has no analytic solution.  Sometimes the solution
formulas (both for homogeneous and inhomogeneous problems) are called Galhov's formulas.

Using the canonical function and Sokhotsky-Plemel) formulas (see, eg., Gakhov (1977), Muskhel-
ishvili (1968)), one can immediately construct a solution of the factorization problem

2 2.,
-

bl A6, 1 flatie26(r)

G{t) =exp dr 3 Alt) =" (4.2)

T—4{

Gakhov (see Gakhov (1952)) posed the question of how to descobe an as large as possible class
of matnx-functions for which the homogeneous Riemann boundary problem can be solved by using
formulas similar o (4..2)

di':i_:] — exp L /’IUHG{T]

_ ars . (4.3)
2mi T—=z
I

To begin, we mntroduce a swtable definition for a function ol a matrix.  Since we have no advance
knowledge of the behaviour of solution at ==, this solution 15 "weaker” than that of the case n=1. Finally,
it 1s necessary that the involved matnees (say A(r), B{t)) satisfy the relation

expl Al )} -exp]{ Bl = expl{d(t)+ Bli )},

“Here we consider only the case when the contour I is a simple bounded closed curve.
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which is cleady not always the case for matrix-functions.

Such a class of functions was found and completely chameterized in Chebotarey (1936), Chebotarey
{1956a). These are functionally-commutative matnx-functions, i.c. those matnx functions which satisfy
the following relation

G(G(T) = G(T)G(), Wt.teT. (4.4)

In particular, it was shown that by linear transformation (with constant matriees) a 2 » 2 functionally-
commutative matrix can be reduced o a triangular form. Moreover, by such reduction the functionally-
commutative matrix can be transformed to one of the simplest form (containing the lowest number
of arbitrary independent entries). In particular, for lower order matrices, these simplest forms are the
following (for general deseription we refer to Chebotarey ( 1956a) ):

- 10 the casen = 2:

o @il 0 v [ te) 0 .
ir) = ( 0 Pal1) ) i) = ( () o) )

- in the casen = 3:

oit) 0 0 @i(t) 0 0

G(t) = 0 @ity 0 G =] el ey 0
0 0 i) 0 0 i)

@ity 0 0 @ity 0 0

Git)= | anit) @) Bealt) |.Gl)=| @it) eft) 0O
apit) 0 @) @it) gir) eit)

For the piece-wise continuous functionally-commutative matrices, a finite algorithm for the solution
of the homogeneous Riemann boundary value problem was proposed consisting of the following steps:
1) ransformation to a block-triangular form;

2 detemination of the proper branches of the solution (4..3);
3) refinement of the above solution by polynomial transformation to 4 quasi-bounded (1.e. possibly
having logarithmie singulanties) analytic soluton.

In particular, i the coefficient Gt ) of the problem is & continuous functionally-commutative matrix,
then by this algorithm we arfve at the so-called canonical family of solutions to the homogeneous
Riemann boundary value problem. This means that il we take all the solutions as columns, then this
malrix 15 non-singular at any finite point and the maximal order at infinity of elements of a column 15
equal to one of the partial indices of the coeflicient matrix, e b = —).

In Chebotarey (1956) this algonthm was realized for all possible situations o the case of 2 x 2
matrices and the partial indices were explicitly calculated (this approach was recently generalized for
matrices of the higher order by Ponmachuk (2015)).

In principle, Chebotarey’s approach s 15 consistent with the general theory of of solving the vector-
matrix boundary value problem (see Muskhelishvili (1968), Vekua (1967)). Specifically, if we know the
normal family of solutions w the problem (e, the consttuent non-singular matrix at each finite point),
then it 15 possible to construct a canonical family by polynomial transformation. In the case considered
by Chebotarev (functionally-commutative matrices), the normal system of solutions 15 constructed by
Gakhov's formula, and the partial indices (for 2 = 2 matnees) caleulated explicitly.

The Chebotarev-Gakhov method was suecessfully developed in Kivasov (2008), Kiyasov (2012) (as
well as in Primachuk (20135)). In Kivasov (2013) this method was combined with the method used in
theory of nonlinear boundary value problems.

1

_I_

09/05/2016 11:52



9 of 25

https://www.pdf escape.com/open/RadPdf .axd?rt=c& dk=05F17ABE...

Constructive fctonization of matnx-functions Qolf29

5 Analytic matrix functions

In Adukov (1999, a new method for caleulation of the partial indices and the Wiener-Hopf factonzation
of analytic matnx-valued functions was proposed. [t has computational advantages with respect to an
carier method proposed by the author. This method is used  find the divisors of an analytic matrix-
valued function A(¢) that generate the zeros of detA(t).

The following elass of the matrix functions is considered, where Air) 15 a matrix-valued function that
is continuous and invertible on the curve I and 15 analytic in the domain 07 Denoting A(r) = detA(r)
it 15 supposed that the Wiener-Hop{ factonzation of this detenminant exists

A{) =A_(1FA).

The following assertions follow ffom Adukoy (1993):

1. the partial indices of left-factorization (left partaal indices) &, ... A, and the night partial indices
iy Py of A1) are not negative;

2. the row rlt) :=A_(1)[RZ : (t)] ;18 a vector-valued polynomial in t ! whose degree is not greater
than & — py; here B (1) 1s the factor of the nght-factoration A{r) = B_{1)A (R (1);

3. the column /,(f) == z.'.-{r]{L_"{r]i" is a vector-valued polynomial in ' whose degree is not
greater than @ — A here L_{r) is the factor of the lefi-factorization A(r) = Lo () A )L_(1).

In Adukov (1999, the partial mdices of the matax function A(r) are caleulated o terms of moments
of the matax-valued function A~ (r)4(r), with respect to the curve I, i.e.,

1

2mi,
s

P AT DAl j= -, ... 0., ...,

and to the degrees of polynomials
Lo Wty =rylt), L) =~ 4 W), j=1,..., fi

In Rodriguez & Campos (2013) a new approach to obtain factorization of a polynomial matrix
functions & & 9 (% (T))"™" was proposed. It 1s based on the relation between the general solution
of the homogeneous Riemann boundary value problem and a solution to a linear system of difference
equations with constant coefficients.

Considenng a polynomial matrix function & inthe form

Git)= Gu* + ... +Git+ Gy, teT, (5.1)

where G, s = 0.1, ..k are constant matrices, the authors associate with this matrix a homogeneous
Riemann boundary value problem

@7 =0(t)p (), reT. (5.2
It was shown that the pair of vector functions ¢~ is the solution 1o (5. 2) where
O ) =do+ 3 @,
=1
ilT the coefficients @, 7 = (0. L... ., of the above series satisty the following (infinite) system of hnear

difference equations
Gedpop+ ...+ Grdyei +Gody =0, j=0,1,.... (5.3)
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The system (5.3) is analyzed by using the Z-transform method. Upon finding the solution to (5..3) the
authors obtain the general solution to boundary value problem (5. 2). In order to construct the canonical
family of solutions {and thus the corresponding solution of the factorization problem) the authors appeal
to the procedure desenbed in Muskhelishvili (1968).

6. Rational matrix functions

Two man methods are considered for the factorization of rational matrix functions. The first method,
coming back o the works by Gakhov (see Gakhov (1950), Gakhov (1952) and also Muskhelshyili
(1968), Vekua ( 1967)), 15 related o the corresponding homogeneous Riemann boundary value problem

D =Gind (1), 1T (6..1)

In the case of a non-singular matax function Gif) (Le, det Gl ) # 0% € 1) rationally continued in the
whole complex plane we separate the poles and zeroes of Giz) and present it in the form

Giz) =Uz)-¥F(z),
where some entries of matrices Ulz), Fiz) have (a finite number of) zeroes and poles in the domains
D7 07 and the determmants detU{z), detl{z) can be equal to zero or mfinity in these domams,
respectively.

Gakhov's idea was to find a polynomial matrix L(z) with constant determinant, such that the matrix
functions (L{z){/~ L)Y s L{z)¥(z) are analytic in D™, 07 respectively, and their determinants have
no zeroes in the finite part of D and in 07 respectively. Moreover, the matnx L(=) can be chosen in
such a way, that the order of the determinant det (L{z)U ~(z)) L infinity 15 equal to the sum of the

orders of the rows of this matrix (the order of a row at infinity s the smallest order ﬂf_l— at infinity).”
Onee found, the matrix functions

G (1) = (Lin)t~ I {t)) _l_ G ()= LD

satisly the relation
G ()G (1) = Glr).
It now remains to separate the diagonal matrix A(t) and obtain the final factorization formula

G(t) = G (NA{)G™, (6..2)

whene
Alt) =diag{r™ ..., T

and K. .. .. K, are the orders of the rows of G () at infinity,
G (t)=G () (A, GT =G (1)
Therefore, the partial indices a:; are equal to —K;.

"Thus the zeto of @ entry at infinity hasa positive order, and the pole hasa negative. Thisis an original terminology by Gakhov
fsee Gakhov { [952)). Sometimes an opposite convention is used {see Muskhel ishvili { 196R), Vekuad F967)).
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In the articles Gakhov (1950), Gakhov (1952), the finite algorthm for construction of the matrix L(z)
chminates “had points™ (poles of the entries and poles/zeros of the determinants) of components U1, ¥
of the given matrix & and makes their rows “canonical at infinity™ (see Sec. 4.). 1t should be noted that
this approach has to be shightly changed when contour I crosses the infinite pomt (in particular, when
" = ) due to the fact that in this case components of factonzation .G play o more symmetric role.

Another approach to the factorization of a rational matnx function 1s by using the machinery of inear
algebra. In Adukov (1991), Adukov (1993) the Wiener-Hopf factorization problem of a meromormphic
matrix (1.e. a matnx mtonally extended from the contour onto the whole complex plane) 15 reduced to
the investigation of a finite system of linear homogeneous algebraie equations with matrix coeflicients
written in an explieit form. In particular, the exact formulas for partial indices are given in tenms of the
ranks of these matnx coefficients. The main result has the following form (see comresponding notation

m Sec. 5.).

The right partial indices py.. .., P, P1L= .. = Py, and left partial indices A .. .., P -
of the right- and lefi-factorization of the mevomorphic matrix fimction G{1), having N poles at points
lyenes ty & D7 af multiplicity by, ... ky, respectively, are caleulated by the following formulas

pi=card{bp+rp i —rasji-1k=2p2y—1.. .0} -N-1, (6.3)
Ay=2y —N+l—card{flrop 1 —rpe s /-1 k=2y2y—1...., 0}, (6.4)

for j=1,....p. Here card { B} is the number of elements in B, ¥ = indr detGit)+ Np. r_25 ) =07,
are ranks of the matrices

1
1 A=l ; dt
Py —[ £ L (r"f_rlf_____rlr-ff) _ (6..5)
2, T 1 o O | S
r ri:l.‘r
where bk =2y 2y —1,....0, and [ is the unit matrix of order p.

The idea to use the mnks of the above matrices is similar to that used in Gohberg ef al. (1980) (see
also Ball & Clancey (1990)).

The factonzation procedure of Adukov (1991), Adukov (1993) is applied in Adukov & Patrushey
{2010} to create the alponthm employed to find the exact solution of the four-clement generalized Rie-
mann boundary value problem with rational coeflicients on the unit cirele. The algorithm is realized in
the form of Maple routine.

In Adukov (2009) this procedure 1s generalized to the case of piece-wise meromorphic matrix func-
tons (1.e. when [ 15 a multiply connected domain encircled by a finite number of the smooth closed
CUrves).

In the case of generalized factorization (factonzation i L -setting) the corresponding formulas Tor
partial indices are obtained in Amirjanyan & Kamalyan (2007),

A left canonical factonzation theorem for rational mamx functions relative o the umt circle 15
presented in Frazho & Kaashoek (2012). The result 1s a tme myvanant version of a recently proved the
stomet LU factorization theorem for cettain semi-separable operators, due to Dewilde (2012) (see also
Bart et af. (2008) and references therem), Explicit formulas for the fctors are given too.

7. Symmeliric matrix functions

It is known (see, e.g., Gohberg & Krein ( 1958a)) that any nonsingular Hélder continuous positive defi-
nite matax function given on the real line or on the unit cirele admits a canonical factorization. More-
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over, inthe case I' = T or I = | the positive definiteness is o necessary and sufficient condition for a
nonsingular Hélder continuous matrix function w be factonzed in the form

Git) =G (1) (GT (1)) . (7..1)
Taking this mto account, as well as the polar decomposition of an arbitrary invenible matrix
Gir) = S(r)Li(r ).

where 8(1 ) 1s positive definite matax and U'{¢) 15 unitary matrix, the problem of determination of partial
indices of an unitary matrix function given on the unit cirele is discussed in Janashia & Lagvilava (1997).
In particular, it was shown that a unitary matrix U (#), det Uir) =1

OE aj_:.{r’,l, tyy (1) = ;;;E l=<isn—1,1<j<n,

(with polynomials g, ) admits a canonical factonzation iff

L

Y lay (0)F =0.

=1
In the case n = 2 the partial indices are caleulated via the orders ma; of zeros ol az,(z) at =z =k
) = min{my Mo}, w = —x).

Discussion over the existence of factonzations of the type (7..1) date back to the work of Wiener {see
Wiener (1955)). He showed that the sufficient condition for such a factorization of a positive definite
matrix, with mtegrable entries given on the unit cirele, has the followng form

logdet Gir) = £(T). {71.2)

Later it was proved that condition (7..2) (called the Wiener-Paley condition) 1s the necessary one.

The coefficients of the analytic functions in the factor 7 are imponant for many applications, in
particular, for prediction theory for stationary stochastic processes.® Some of the methods of approx-
unate caleulation (under ceam additional conditions) were descnbed i Masam (1960), Wiener &
Masani (1958). In Janashia & Lagvilava (1999), a new effective approximation algonthm for the deter-
mination of the above coefficients was proposed, 10 the case of 2 x 2 matrices, where the only condition
used was (7.2).

In Ephremidee er af (201 1) this approach 1s applied to the positive definite matnces ol arbitrary order
(see also Ephremidee ef af. (2004), Janashia er afl (2011) and Ephremidze er af. (20135)). The proposed
algorithim consists of several steps. First, any positive definite matrix 7 satsfying the Wiener-Paley
condition (7..2) was represented in the form of a product of a lower tnangular matnx M € (T and
its conjugate. Second, the matrie M{s) was approximated by the sequence of mataces My(r) in £2(T)
keeping only finite number of negative mdices in the Fourier expansion of the under-diagonal entries
of Mit). Third, the spectral Tactor S (t) of Syir) = My (t) M}, (1) was explicitly computed. Fourth, the

*See the pioneering paper by Kolmogoroy: Eolmogoroy, AN, Stationary sequences in Hilbert spaces, Werrn Maosk Gos. Univ,
Mo 2, 1-40{ 194 1) (in Russian).
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sequence of canonical spectral factors (8 ) (z) = 8, (z) (S,(0)) = 1IhII,-',S.': (0) (S5 (0))" was determined,
and it was shown that (S} (z) convergeto (S7)_(z) in Ha.

A similar approach to that described above presented in Foster ef all (2010) (see also McWhirter
et al. (2007)) where an algorithm for caleulation of the so called QR-factorization and singular value
decomposition of polynomial matrix function 15 proposed based on the Gram-Schmidt decomposition.
The QR-factorization of a matrix 4 15 is representation in the form 4 = O/, where (1 an orthogonal
matrix ( for real valued 4) or unitary matrx (for complex valued 4), and R is an upper- (or a lower-)
rrangular matrix.

There s a long history of nterest in construction of the factonzation under certain symmetry con-
ditions. We mention here the article Shmulian (1954, in which a method for an effective factonzation
of the Hermitian matax on the unit cirele was proposed. In Nikolajehuk & Spitkovskiy (1975) it was
shown that any self-adjoint (1.e. &' (1) = Git)) matnx function on the unit circle possesses so-called
self-adjoint factorization, Le.

Gir) = (G* ()" Do(r)G (1),

where Dy(1) is a block-diagonal matnx

I, 0
Dylt) = diag g ™"y, 7%, | ] B ufd (TR v F M, B
' 2t Ul ) '

In Krupnik et af (1996) it was proved that any dissipative continuous matax function of the form
Alty =(t—zp) "o+ B.(1) (t € "), zp € D7, where Ap is a constant matnx and 8. (z) is analytic in
07 admats a canonical factonzation, Also, 1t was shown that for any non-simple contour I there exist
2 2 rational dissipative matrix functions and 2 x 2 Hélder continuous positive matrix functions which
admit non-canonical factonzation.

The canonical factonzation of a rational matr function W (A ) which is analytic but may be not
mvertible at infinity 15 the subject of Gohberg & Zucker (1996). The factors were obtained explicitly
in terms of the realization of the onginal matrix funetion. The cases of the symmetric factorization for
self~adjoint and positive rational matrix functions are considered separately.

Some classes of continuous matrix functions with extra symmetry properties were studied in Voronin
{20113

8. Piece-wise constant matrix functions and the Riemann-Hilbert problem

The vector-matrix Riemann boundary value problem with prece-wise continuous algebraie coefficients
was first solved by Hilbert ( 1912) by using Green's function method and later by Plemelj by reduction
o a system of Fredholm mtegral equations, for which he proved existence of meromorphic solutions
(which is of great relevance 1o the the Riemann-Hilbert problem). 1t was thought that Plemelj had found
acomplete and positive answer to the question of existence of the complex differential equation with a
aven monodromy group. However, in the late 1980s Bolibrukh (see c.g. Bolibrukh (1990)) showed that
the proof of Plemelj is incomplete and that the negative answer is also possible. In Muskhelishvili &
Vekua (1943) the authors studied problem (4..1) from the pomnt of view of its application to the system
of singular mtegral equations, considenng only analytic solutions for (4..1), effectively picking up from
where Plemelj had ceased.

The paper Ehrhardt & Spitkovsky (2001 is devoted to the connection between the factonzation
of plece-wise constant n x n matrix functions with m jumps and the Riemann-Hilbert problem. In
studying these related problems, some results for the partial indices for general n and m were obtained,
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including complete answers forn =2 m = dand for n = m = 3. ln some cases, the parial indices can be
determined explicitly, while in the remaining cases, there remain two possibilities. The determination
ofthe correct possibility is equivalent 1o the deseription of the monodromy of s-th order inear Fuchsian
differential equations with m singular points. The simplest non-trivial case (n = 2, m = 3) was first
studied by Zverovich & Khvoschinskaya (1985) in a shightly different setting. The problem was reduced
to the boundary value problem on the Riemann surface, which was analyzed by using the Abel-type
differentials of this surface.
Consider the system of linear differential equations in the complex domain

dy

= = Al{z)» 5.1

= =4 1 (8.1)
Let A{=) be a given n % a analytic matrix in Y {ay .. .., a,, } {m singular points), & be a universal covering

manifoldof § = T\ {ay,... .an}. p :S— 8§, £ be a group of covering automorphisms a: §— 8. poo =
p. Let ¥(2)=(3(2).....3(2)). 2 §, be an analytic matrix, consisting of n linear independent solutions
o (8..1), 1.e. the solution vectors to the system

¥iZ)=A(z)¥(Z). (8..2)
There then exists a unique representation (matrix) ¥ (o) such that

Yiz) =Y{o(Z))¥io).

A elass of mutually conjugated representations is called the monodromy of system (8. 2) (or of sys-

term(8..1)), This class is genemted by matrices My, .. My M- -My, = 1, and is denoted (M), .., Mi)....

and “~*" stands for similarity of matrices.
A singular point ag is called Fuchsian i 4(z) has at = = ag only a simple pole. A smgular point a;
15 called regudar if the fundamental matrix ¥ (z) does not have an essential singularity at = = a;.

For any mutually disjoint points a, .. .., dyy © T and matrices M. ... My e T M - - My =1,
there exists the system (8.1 with regular singularities only at @y, ... gy, and with a monodromy of the
class [My,. ... M| (Plemelj®).

Plemelj’s result 1s, in fact, more general: There exists a system with all Fuchsian points, except
possibly one at which the singulanty is not higher than regular

Cuestion: Does there exist a system with prescribed Fuehsian smgularities ay ... ., ay and a given
monodromy”? This 1s called the Riemann-Hiltheri problem or the 2 [-st Hilhert problem, to which Boli-
brukh {2009} has provided a negative answer

Letay,.... dyy be situated on a closed smooth curve I, A matnx £ 15 called non-resonant 1 none
ofthe differences between its eigenvalues equals an entire number, (M) . M), [E1... . £, are called

acmissible data 1l
@M -...-M, =1,
(b) My ~ expl(—2miEy), vh=1,....m,

(¢) matrices £..... Ey,are non-resonant.
The system (8.2) with singular points @q, ..., ay ==, and indexes a..... x, 18 of a standard form
with respect to admissible data [My,..., Ml B Egl, 1= 15 a removable singularity, and YiZ) =

“Plemelj, . Probienys in sense of Riemann and Klein, Tracts in Pure and Appl. Math., 16, New York: 1. Wiley and Sons, 964,
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Zi(z)(Z — a5 C at a neighborthood of =z = a;. ¥(z) = diag (=™ .. .., 5 20200 in a neighborhood of
infinity ( Ehrhardt & Spitkovsky (2001 )).

Let G & AC(IY"™" be a piece-wise constant matrix with jumps only at the points a. ... .a,. We
assume that ¢ admits a @-factorization in L7{17), 1 < p < == and (M. ., M)y [Elsee s E,,| are corre-
spondmg data.

1 there exists a system of a standard form with singular pomts a,. .., s o2, Indexes a2y, ..., 8,

and ¥ and Y5 are solutions of this system in [ and D {e=}, respectively, then there are constant
nonsmgular matrices €, Ca, such that the pair & (z), G_(z)

Gofz)=Cr' ¥ 2z €Dy G {z)=AT (2NiDG.ze D\ {=}
generates the @-factorization of the matrix & in LF(7):
Git) =G (A NG (1)t e T,

where A(r) = diag {r1 ..., gkl

In this setting, which was considered in Ebrhardt & Spitkovsky (2001), the problem was partly
resolved by Spitkovski) & Tashbaey (1991). Using the appropriate modification of the results from
Zverovich & Khvoschinskaya (1985), they gave explicit formulas for the factors and the partial indices.
In the paper, they had to distinguish several cases, wheremn, apart from the wivial cases (where G can
be reduced to a functionally commuting matrix function), the factors were constructed by using the
hypergeometric functions.

9. Daniele-Khrapkov approeach

The Daniele-Khraphov matrix functions are 2 x 2 matnix funetions which can be written in the form
Git) = a(t)f+bitRir), t €], (9.1}

where g and b are scalar functions, £ 1s the unit matnx and 815 a polynomial 2 » 2 matrix function whose
trace is zero, The polynomial a(t) = —det R{1) 1s called the deviaror polvaomial and contains imponant
information with regard to the factonzation of . The study of Daniele-Khmpkov matrx functions 15
based on the idea of the commutative matrix factonzation in certam subalgebras, and began with the
works of Khrapkov (see Khrapkoy (1971a), Khmpkov (1971b)), and of Daniele (1978). This work
continued with the explicit solution of canonical diffraction problems (see, e.g., the literature eited in the
survey paper Meister & Speck (1989)). Later, Daniele-Khrapkov matnx functions were systematically
considered (see, e.g. the articles deseribed below in this section and references therein), but the general
case of the factorization of the Danie le-Khrapkov matnx functions with deviator polynomial of arbitrary
degree is still open (see, Prissdorf & Speck (19903, and further discussion in Ehrhardt & Speck (2002)).

A charactenzation of the Daniel-Khrpkoyv matnx functions is given in Ehchardt & Speck (2002)
in terms of linear independence with respect o certain ficld K of an infinite characteristic (a classical
example of K is the field of rational functions restricted to I, 1.e. K = #(17)). Let #77 be an algebra
of 2 3 2 matrix-functions with entries from K (e.g. 2877 = f-?'i.%t_f']:ll'l‘.l. Then, by nrg we denote the
mumber of independent entries of 4 € "2 over the field K:

gl A) = dim ling {ayy.a12,921. a2} - (9.2

It has been proved (see Ehrhardt & Speck (2002, ef. also Prissdorl & Speck ( 1990)), that a matnx
A€ #7215 of the Daniel-Khrapkov type iff one of the following conditions is satisfied:
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(a)mrg(d) < 1,
(bynrg(A4) =2 and { £ Z(4), where

Zx(A) = {0 € K¥ : trace(SQ) = 0,¥S € K2, trace(S4) = 0}.

In Ebrhardt & Speck (2002) the aim was to descnbe classes of those mvertible matrices and of those
trans formations of the type (3..1), for which the transformed matrix 7 could be either trangular or of the
Daniele-Krapkov form. The systematic study of mtional transformations into Daniele-Khmpkov matnx
functions in fctorization theory begun by Prissdorl & Speck (19907, 1t was proved, for example, that
an invertible 2 % 2 matrix function (with entries belonging to the Wiener algebra defined on the unit
circle) can be ransformed by an mvertible rational transformation (having no pole on I7) into a Danie le-
Khrapkov matrix function if and only if the matrix function has at most two rational independent entnes.
For the transformations of the type (3..2) the situation is slightly different: an invertible matrix function
(5 can be ransformed by a transformation of the type (3.2) mto a Daniele-Khrapkoy matrix function if
and only if & has at most two rationally independent entries — apart {rom the exceptional case, ln this
exceptional case, a transformation into a Daniele-Khrapkoy matnx function may or may not be possible,
however, in this exceptional case a transfommation into a tnangular matnx function 15 always possible.

The Daniele-Khrapkov type matrix can be written in the form (see Abrahams ( 1998))

Gl =T+ flr) i), (9.3)
where fi1) is an arbitrary scalar function of ¢ having algebraic behaviour at infimity, Jir) is a square
matrix with polynomial entries such that

f{r‘] =A1{rjf, (9..4)
and thus A%t} is a polynomial in . A commutative product factorization of G(r) is the representation

of the form
Glt)= 0 (1)@ (1), (9.5)

where (. and their inverses possess an analytic continuation in the domains 1. = {z: +lm=z = 0}, It
is known that in the case of the Damele-Khrapkov matrices the factors can be represented as

Quit)=r(t) {umahi_d (8= ()] + ﬁﬂsinh[dqrjﬂ: (A1) } y (9.6)

Note that A(r) has branch-poits in both half-planes, i general, but this does not affect (2. (r) because
they are in fact functions of A%{1).

Thus the factorization problem is reduced to the problem of determination of the scalar functions
Fo (1) 82 (1), It has been shown that they satisfy the equations

re(tir_(t)cosh[A{t)( 0. (1) + 8 (1)) = 1, (9.7)

e {F_ ) o ) )

o el TR | | =
Y] simh [A{) (@ () +8_(1))] = flt). {9..8)
or m maore standard fomm

(ra (Or_ (1) = 1— A% /A1), (9..9)

\ U (e
8. (t)+8_(t) = A0 tanh ™ [A () f{1)]. (9,109
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The solutions of these problems can be wntten explicitly using Gakhov's formulas.
In Camara ef af. (1995a), Chmara et gl (1993b) the facworization problem related to the Daniele-
Khrapkov approach is considered in the following setting, Let & : B — C%7 he of the following form

. a b
fr-—(pzb a )

where a. b € €(R), and p € % {[2) is the square root of the quotient of two second degree polynomials,
such that @ & ph possess a bounded generalized { Simonenko-type) factorization related to Ly (R). p = 1.
In Camara et af. (1995a) the necessary and sufficient conditions for canonical factorization were found,
as were explicit formulas for the parial indices in the non-canonical case Cimara ef al {1995a). In
Cimara et af. (1995b) explicit formulas for the canonical factonzation were derived. As a by-product
of these investigations, a solution was given to the problem posed by Daniele, specifically that of deter-
mining of'a rational matrix function £ in the same group as &, such that the factors in factorization of
R belongs to this group Loo.

In Camara & Malheiro (2000), the authors generalized the Damele-Khrapkov approach, by using
generalized factorization of matrces in the form

" 1 q
G=ol+pN. N=( it )

where g i a non-zero rational function without poles on B, @, § € € ([R). This class of matrices is re-
lated to the group of matrices of the form / + $N, where € % () and N is a rational nilpotent matrix.
For such matrices the necessary and sufficient conditions for the existence of canonical generalized fac-
torization and canonical factorization with factors in the same group, as well as explicit formulas for the
factors, were determined, Non-canonieal factonzation was also studied. This class of matrix functions
presents some interesting characteristics which distinguish it from the Daniele-Khrapkov class, in spite
of the formal similarity. In particular, the conditions for existence of a canonical factorization are quite
different.

Developing the Wiener-Hopf technique, in Jones (1984) (see also Moiseev ( 1989), Moiseey (1993)),
the Damele-Khrapkov class was generalized, specifically, 1o n x n matnees of the form

G=gl +g1f+...+gp1 " (9..11)

were investigated. Here g are arbitrary scalar functions of the complex vanable, analytic in the Wiener-
Hopf stop & with algebraic growth at infinity, . 15 an entire matrix with polynomial entries such that

Fr= A (9..12)

and analogously to Khrapkov case, A" 15 a polynomual in complex variable, A"(z) = {z") as z — e
{with p greater than some constant). Key ingredients of the method i Jones { 1984) were the following
{see also Verteh & Abrahams (2007)).

The matrix 7 was rewritten in the form

G=exp{> b8}, (9.13)
where 8 have the orthogonality property
0 Ser i
Bily = { B, for I= ], (9..14)
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By the Cayley-Hamilton theorem n eigenvalues of J, which we denote by 4, satisfy & = ' A, where
0= i< pand @' = | {excluding the possibility @ = 1), Hence the matnees B, are inear combinations
of {£.J,..../" "'} and are presented by the following formula:

(ol L
B ;; b (9..15)
"z_(l i — 0, p=12.....n—=1, modn (9.16)
o n, p=0, mod n. N

A commutative Wiener-Hopl factorization of the matnx &
Git) = G ()G (1) {9.17)

is then (see Jones (1984), efl Veitch & Abrahams (2007)) given by

w—1
G- = L‘xp{fof} (9..18)

1=l

where [ represents the Cauchy sum split of the functions {; which are given by

1 n—1 n—1 o
h=—= > I{}g{ 3 m'-“a‘g,} 2 (9..19)

j=0 r=i)

Motivated by the results of Jones (1984, a method for factonzing » = r matrix functions ( Wiener-
Hopl kemels) with » = 2 and the commuting factors was presented m Veiteh & Abrahams (2007). The
proposed technique 15 supposed to be applicable to the studying problems of mechamies and mathe-
matical physics, and 15 illustrated by consideration of 3 x 3 matrx functions arising from clastostatic
theory.

1. Non-rational matrix functions

An explicit factonzation of a class of non-rational 2 x 2 matax functions was obtained m Aktosun ef al.
(1992}, These matrices are related to the Wiener-Hopf problem and also appear as modified scattering
matrices for a vadant of the 1-dimensional Schridinger equation.

The authors considered the matrix-functions of the type

[ I Y T g
f;:jﬂ-..ﬂ=( Tk Rik)e ) '

—L{K)ER TR -, -4

dependent on the real parameter x under the following conditions:

1) T'(k) # 0 in the “closed™ upper half-plane apart from the origin (Le. Wk € {c/IT7}\ {0} = {k €
o lmk = 014 {01, 1s meromorphic in 117 with continuous boundary values on B either T(0) # 0 or
the order of zero of T{&) at k = 015 fimite; T(e) = 1;

2y Rik) and L) are meromorphic on [T with contmuous boundary values on the extended real
axisand vanmish as of [T7 3k — oo
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10
4. Glk.x), as a function of & & [, belongs to a suitable Banach algebra of 2 x 2 matrix functions
within which the Wicner-Hopf factonzation is possible.

3) Glkx) ™' = qG{—k.x) q for k € K, where g = ( g ):

The main idea 15 to relate the factonzaton problem to the two auxiliary Riemann boundary value

problems (with a flip'")
ek
mi{ —fk.x) = (:_ —H) SGlkx)-q-mikx), Fe R, (10..2)
c—1i
2y X
n{—kx) = (E) J-Glkx)-J-q-nikx). ke R, (10..3)

where J = diag {1, —1}, and the parameters T, @ are uniquely determined by the coefficients of the
above problems.

It was shown that whenever solutions of the problems (10.2), (10.3) are constructed, then the
factorization of the mainx Gk, x) 1s found explicitly m the following special form

W I | TQ {12 ﬁQ G (k.x) (10..4)

iR i k+i i k+i 3l jda <o )
- L1+l y TR g L S

where Q. canbe chosenas Q. = 5 11 cand G (k. x), G (k,x) are just certain combinations

of the components of the solutions to ( 10.2), (10, 3).
In Feldman er af. (1994), the authors proposed an algorithm for the explicit factorzation of 2 x 2

matrix functions
o oalr) Bl 1 &
Git) = ( clt) d(e) ) . =1, [ L0..5)

with entries from the Wiener algebra % = % (T) ofabsolutely convergent Fourier senes. This algorithm
was realized i Feldman er af. (1994}, in the case when at least one of the followmng conditions holds:

10.1) the function b/ admits 4 meromorphic extension mto 7 (the mterior of the unit dise 1| < 1);

(1.2} the function ¢/a admits a meromorphic extension into £ (the exterior of the unit dise [#] = 1).

The algonthm consists of the solution of two scalar homogeneous Riemann boundary value prob-
lems and of a finite system of the linear equations.

The algorithm s applied in Feldman er af. (1994) 1o solve various classes of singular integral equa-
tons and equations with Toeplitz and Hankel matnees. Based on this algorithm, the paper Feldman er
al. (1995) was devoted to two topics connected with factorization of tnangular 2 x 2 matnx functions.
The first application is an explicnt factorization of a class of matrices of Daniel-Khrapkov type and the
second is related to inversion of the finite Toeplitz matrices.

A shight extension of the conditions of Feldman ef af. (1994 15 given in Feldman ef al. (2004), where
application of the algorithm to two types of matrices from #7272 was considered. The first of these types

is
. LB\
Git) = ( c(t) d(e) ) =1, (10)..6)

Hoee, ep Litvinchuk {2000),
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where bit) = pl(t)/q(t), plt) s analytically continued into D7, e, p(t) € W and

&
glt) =Tt —e)™. |eyl <1

J=1

The corresponding scalar boundary value problems are given in an explicit form and the system of
equations presented asu'{a)) = 0,0 = 0,1, ... m;., where (1] is a combination of the components of
the solutions to the above boundary value problem.

The second type of studied matnees 1s

2 1 hir) =
Git) = ( —Ub(e) ) s =1 (10.7)

where b € %, b7 is a mtional function without zeros and poles on T, b = w_w.. . where w. admits a
meromorphic extension into D, and w® 15 a rational function.

A number of other approaches have been proposed o factorize non-rational matnx functions, espe-
cially those related to certam problems appearing in applications.

In Abrahams { 1997) the coupled Wiener-Hop! equations were considered with matrix coeflicients

of the form _
g L byle)
Ka).= ( — /8 | ) ’

where the aim of the article was to demonstrate a new procedure for obtainmg noncommutative matmx
factors which have algebraie growth, Padé approximants were employed 1o obtain an approximate but
explicit noncommutative factorization of the matrix kernel. As well as being simple i application, the
approximants allows mereased accuracy of the fctonzation.

In Camara & dos Santos (2000) a class of 2 x 2 matrix functions was studied in a generalized setting
(with respect to L2(R)). The considered class was motivated by an inverse-scatiering problem and by
the theory of convolution operators on the finite interval, and consists of matriees of the type

s alt) Bt et =y
Git) _( idet alt) ) a.be L”(R). (10.8)

Supposing that the functions a + b admit bounded canonical factorization the authors demonstrated the
possibility of representing the matrin & in the form of the product of three tnangular matriy functions.
Under some additional conditions, an explicit generalized canonical factonzation of & was obtained.
The proposed method was based on an analysis of solvability of a seres of the corresponding boundary
value problems.

In Mishuris & Rogosin (2014), an asymptotic method for canonical factonzation of'a class of matnx
functions of arbitrary order defined on the real line was proposed. This choice of matrices was moti-
vated by eertain problems based in the theory of elasticity. An example 1s construeted to illustrate the
efficiency of the proposed procedure, and the quality of approximation and the role of the chosen small
parameter was discussed.

11. Discussion and further study

In this survey we have collected results mainly related to the construetive factonzation of matnx func-
tions mn classical setting. A few related definitions (generalized Simonenko type factonzation, spectral
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factorization, OR-factorization, symmetrice and antisymmetre factonzation, self-adjoint factorization)
are mentioned only briefly. In our further study we plan o widen our focus to include other general-
teations of classical methods. We will also consider some special factorization procedures which have
been developed o solve specific problems in applied science.

We have here restricted our review to the results dealing only with simple geometries (the considered
matrices are mainly defined either on the unit cirele or on the real line). Despite the fact that this
peometrical restriction allows formulation of results in a clear form, we have to note that from both the
theoretical and applied points of view the study of the factorization problem as it relates to more general
geometry 15 also of interest.

Few challenging questions have a specific answer. First, some of the above results are obtamed only
in the case of 2 x 2 matrees, as discussion of the arbitrary order matnees is either too cumbersome or
even impossible. Much deeper understanding is therelore required m many cases. Second, further inves-
tigation of non-rational matrix functions is required, as the known factorizing procedures are developed
only for certain classes of matrices. Third, the rectangular matnx functions have yet to be considered,
and require the development of a unified approach. Certainly, such an approach will be not as simple as
for square matrices.

A few things must be mentioned about the relationship between the discussed problems and matnx
theory., There are several types of factorization of constant matnees, where the most well known are
diagonalization, Jordan canonical decomposition (see e.g. Gantmacher ( 1967), Hom & Johnson (19835,
Horn & Johnson (1991)). ln many books on matrix theory (see eg. Higham (2008) and references
therem) the notion of matnx functions s also discussed, but it 1s mther functions of matrx than vice
versi, A simulanty clearly exists between these two theones (of functional matrices and of constant
matrices). The most closed aspect of matrx theory to our survey 15 the so called eigendecomposition
of constant matrices, i.e. the representation of a constant matrix A in the form 4 = ZDZ~!, where
D= digg{ A+, where the &, are the eigenvalues of 4, and the columns of Z are the cigenvectors of 4.
The discussion of a unified point of view for both theories is also a challenging and open topic.
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