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1. Introduction

Let a and b be two nonzero elements of a unique factorization domain (UFD) K. In this paper we 
investigate the problem on searching for shortest division chains (DC)

ri = ri−2 − qiri−1, i = 1,2, . . . ,k, (1)

where q1, . . . , qk ∈ K, r−1 = a, r0 = b, r1, . . . , rk−1 ∈ K, rk = 0. If there exists finite DC (1), then it may 
be considered as a version of the Euclidean Algorithm (EA) and rk−1 = gcd(a, b).

Vahlen (1895) and Kronecker (1901) (see Bach and Shallit, 1996, p. 80) have proved that the least 
remainder EA requires no more division steps than any other EA which chooses between a remainder 
of (a mod b) or ((a mod b) − b) at each step. Lazard (1977) has extended the Kronecker–Vahlen 
theorem on the case where any remainder is chosen at each step and also has proved the analogue 
of this theorem for polynomials over a field. Kaltofen and Rolletschek (1985) and Rolletschek (1986)
have established the Lazard theorem analogue for special cases of imaginary quadratic domain Z[√d], 
d is a negative integer. Rolletschek (1990) has given a complete solution to the problem on shortest 
Euclidean algorithm in arbitrary imaginary quadratic domains Z[√d]: the Lazard theorem analogue is 
valid in Z[√d], d < 0, if and only if d �= −11c2, c ∈ N. Up to present the question on the validity of 
the Lazard theorem analogue is still open for all rings Z[√d] with d > 1. Vaskouski and Kondratyonok
(2013) have found a class of Euclidean domains, for which the Lazard theorem analogue holds. The 
main purpose of this paper is to enlarge the class of unique factorization domain, for which the Lazard 
theorem analogue is valid, and estimate the length of chain (1) for fixed a and b.

The present paper is organized by the following way. Section 2 contains basic definitions and state-
ments of main results. In section 3 we give general methods of main results proofs. Detailed proofs 
are given in section 4. Methods for validation of conditions in main theorems are given in section 5. 
Finally, section 6 is devoted to discuss the results, more precisely we provide some counterexam-
ples to show essentiality of the conditions in main theorems. Also there is given an application to 
optimization of algorithm for solution of linear Diophantine equation in general UFD.

2. Main results

In this section we introduce some definitions and notation and give statements of the main results.

Definition 1. A function υ : K →N ∪ {0, −∞} is called a norm in a UFD K, if the following conditions 
hold:

1. υ(x) = −∞ iff x = 0;
2. υ(xy) ≥ υ(y) for any x, y ∈K∗;
3. If x, y ∈K∗ , then υ(xy) = υ(x) iff y ∈ I, where I is the set of all invertible elements of K.

Remark 1. Let K be a UFD, take an arbitrary element x ∈ K∗ . There exists a unique (up to multiplying 
of pi by invertible elements of the domain K) representation x = εpα1

1 · · · pαk
k , where ε ∈ I, p1, . . . , pk

are prime elements of K, α1, . . . , αk ∈ N, k ≥ 0 (if k = 0, then x = ε). It’s clear that the function 
υ : K → N ∪ {0, −∞}, defined as υ(x) = ∑k

i=1 αi , x = εpα1
1 . . . pαk

k ∈ K∗ , υ(0) = −∞, is a norm in the 
UFD K, where 

∑k
i=1 αi = 0 for k = 0.

Remark 2. It’s easy to check that any Euclidean norm υ(·) is also norm in the sense of Definition 1.

Definition 2. Let F be the field of fractions of a UFD K with a norm υ . A function fr : F → F is called 
a fractional part in F if the following holds:

1. fr(α + q) = fr(α) for any α ∈ F, q ∈K;
2. If m/n ∈ F, gcd(m, n) = 1, then fr(m/n) = r/n, where r ∈ K, (m −r)/n ∈K, and υ(r) = min{υ(s)|s ∈

K, (m − s)/n ∈K}.
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If fr : F → F is a fractional part, then the function int : F → K,

int(α) = α − fr(α),α ∈ F,

is called an integer part in F.

For any K being a UFD with a norm υ one can define integer and fractional parts in the field of 
fractions F by the following. Consider an arbitrary element X ∈ F/K, X = {m/n + t|t ∈ K}, where m, 
n are coprime elements of K, n �= 0. There exists t0 ∈K such that υ(m + nt0) = min{υ(m + nt)|t ∈K}. 
Then for any x ∈ K we put fr(x) = m/n + t0. Let int(x) = x − fr(x). It’s clear that fr(·) and int(·) are 
fractional and integer parts in F with respect to the norm υ .

We shall assume that any UFD K is equipped with a norm υ(·) and the field of fractions F of the 
domain K is equipped with a fractional part fr(·) and an integer part int(·).

Definition 3. Let K be a UFD, a and b be two nonzero elements of K. For any k ∈ N and q1, . . . , qk ∈ K

denote

Da,b(q1, . . . ,qk) = (r−1, r0, . . . , rk−1, rk) ∈Kk+2,

where r−1 = a, r0 = b, ri = ri−2 − qiri−1, i = 1, 2, . . . , k.
Denote by Ea,b the set

{Da,b(q1, . . . ,qk) = (r−1, . . . , rk)|k ∈N,q1, . . . ,qk ∈K, r1, . . . , rk−1 ∈K∗, rk = 0},
it is possible that Ea,b = ∅.

Definition 4. The Least Remainder DC of a, b is DC

Da,b(q1, . . . ,qk) = ga,b ∈ Ea,b

such that qi = int(ri−2/ri−1) for any i = 1, . . . , k. If there exists the Least Remainder DC for (a, b), then 
denote by La,b the length k of the Least Remainder DC, otherwise we set La,b = ∞.

Let us give an example of UFD for which the Least Remainder DC may not exist.

Example 1. Let K = Z[t]. Define the fractional part in F = Z(t) by the following. Let the map A :
F/K → F be defined as A(A) = m(t)/n(t), where A = {m(t)/n(t) + q(t)|q(t) ∈ Z[t]}. For any A ∈ F/K, 
α ∈A set int(α) = r(t), fr(α) =A(A) − r(t), where r(t) ∈ Z[t], limt→+∞

∣∣∣ A(A)−r(t)
A(A)−p(t)

∣∣∣ ≤ 1 ∀p(t) ∈ Z[t].
Take polynomials a(t) = t , b(t) = 2. Suppose that there exists ga(t),b(t) . Then there exist polynomials 

f (t), g(t) such that

1 = gcd(a(t),b(t)) = t f (t) + 2g(t).

But this is impossible, since the equality 1 = 2g(0) fails for any g(t) ∈ Z[t]. Hence, there doesn’t exist 
ga(t),b(t) .

Definition 5. Denote by la,b the smallest positive integer k such that there exists Da,b(q1, . . . , qk) ∈ Ea,b
if Ea,b �= ∅, and put la,b = ∞ if Ea,b = ∅. Let

Oa,b = {D(q1, . . . ,qk) ∈ Ea,b|k = la,b}
for Ea,b �= ∅ and Oa,b = ∅ for Ea,b = ∅.

Definition 6. Define number of steps of the Least Remainder DC by the following:

ln(K) = max{La,b|(a,b) ∈K∗ ×K∗,n ≥ υ(a) ≥ υ(b)},n ∈N.
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Definition 7. Denote by F1 the set of all regular irreducible fractions of F, i.e., F1 = {α ∈ F|α = fr(α)}, 
F∗

1 = F1\{0}. Define the function ω : F1 → F1 by the following: ω(α) = fr(α−1) for α �= 0, ω(0) = 0.

Definition 8. A triple (x0, α, n) ∈K∗ × F∗
1 ×N is called regular if there exist natural numbers p and l, 

p ≤ n, l ≤ p + 1, such that there exist εi ∈ I, bi, ci ∈ K, i = 1, l − 1, satisfying the relations β1 =
ω(p)(fr((α − x0)

−1)), βi+1 = (εiβi + ci)
−1 + bi , i = 1, l − 1, βl = α(−1)ε , where ε ∈ {0, 1}, ω(p) is the 

p-multiple composition of ω.

Definition 9. Let T be the set of all UFD K such that there exists DK ∈ N such that the following 
conditions hold:

1. For every x0 ∈K∗ , α ∈ F∗
1, the triple (x0, α, DK) is regular.

2. If DK ≥ 3, then for any natural k ∈ [3, DK] and x0 ∈ K∗ , α ∈ F∗
1 the triple (x0, α, k − 2) is regular, 

assuming that ω(k−2)(fr((α − x0)
−1)) = 0.

Definition 10. Let �K = supm/n∈F1
|m/n|, where |m/n| = υ(m)/υ(n) for m/n ∈ F∗

1, gcd(m, n) = 1, and 
|0| = 0.

Let d �= 1 be an integer squarefree number. We recall that the quadratic domain Z[√d] is the do-
main of all integer algebraic elements of the quadratic field Q[√d]. It is known (see, e.g., Rolletschek, 
1986) that Z[√d] = {a + b

√
d|a, b ∈ Z} if d �≡ 1(mod 4), and Z[√d] = {(a + b

√
d)/2|a, b ∈ Z,

a ≡ b(mod 2)} if d ≡ 1(mod 4). Let the norm in Z[√d] be defined as

υ(a + b
√

d) = |a2 − db2| for a + b
√

d ∈ Z[√d] \ {0},a,b ∈Q,υ(0) = −∞. (2)

Let the fractional part in Q[√d] for d < 0 be defined by the following

fr(q1 + q2

√
d) = q1 − [q1 + 1/2] + (q2 − [q2 + 1/2])√d, (3)

where q1, q2 ∈Q, [x] = max{k ∈ Z|k ≤ x}.
Now we are ready to state the main results.

Theorem 1. Suppose that K ∈ T . Then the Least Remainder DC is Shortest DC, i.e. La,b = la,b for any a, b ∈K∗ .

Theorem 2. The following statements are valid.

1. If K is a Euclidean domain with respect to the given norm υ , then �K ∈ [0, 1].
2. If K is a UFD with a norm υ and �K ∈ [0, 1), then the domain (K, υ) is Euclidean, and the following 

inequality holds ln(K) ≤ [log
�−1

K

n] + 2 for any n ∈N, where log∞ n = 0.

Theorem 3. Let d �= 1 be an integer squarefree number. If the domain Z[√d] is Euclidean, then the following 
holds ln(Z[√d]) = O (log n).

3. General strategy of proofs

Let’s present main ideas of Theorem 1 proof.
For any DC Da,b(q1, . . . , qk) ∈ Ea,b we consider reference finite continued fraction

a

b
= x1 + 1

x2 + 1

x3 + 1

. . . + 1

:= [x1 : x2 : . . . : xk]. (4)
xk
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It’s clear that xi = qi , i = 1, . . . , k.
Lemma 1 has key role in the proof of Theorem 1 and gives existence criterion to represent an 

element a/b of fraction field F in the form of continued fraction (4) of a fixed length. Next step is to 
express the length of the Least Remainder DC in terms of functions of fractional part (Proposition 2). 
The final step is to consider the length of the Shortest DC as minimal length of finite continued 
fraction such that Eq. (4) has a solution with respect to variables x1, . . . , xk . We need to require the 
condition K ∈ T to enable validity of Lemma 1. Induction on the length of finite continued fraction 
(4) is applied. Condition K ∈ T gives the ability to reconstruct continued fraction (4) in proper way 
for validation of the inductive step. In further we’ll prove that both Lemma 1 and Theorem 1 fail if 
we omit condition K ∈ T .

Let’s proceed to the main ideas of Theorems 2 and 3 proofs.
Firstly, we give necessary and sufficient conditions for UFD K to be Euclidean in terms of charac-

teristic �K (see Definition 10). If �K < 1, then definition of �K and basic properties of integer and 
fractional parts imply the logarithmic length O (log n) of the Least Remainder DC for any a, b ∈ K∗
with υ(a) ≤ n, υ(b) ≤ n. In further we’ll see that condition �K < 1 can’t be replaced by weaker 
condition �K ≤ 1 without loss of logarithmic length O (log n) of the Least Remainder DC.

To obtain the logarithmic length O (log n) of the Least Remainder DC for any a, b ∈ K∗ with υ(a) ≤
n, υ(b) ≤ n, in any Euclidean quadratic domain Z[√d] we use sufficient condition �K < 1 to have 
logarithmic length O (log n) of the Least Remainder DC and the following characterization of quadratic 
Euclidean domains, obtained in the paper Selfridge et al. (1992).

Proposition 1. Let d �= 1 be an integer squarefree number. The quadratic domain Z[√d] is Euclidean iff 
there exists λ = λ1 + λ2

√
d ∈ Z[√d], λ1 , λ2 ∈ Q, such that the fundamental region F (d) is contained in 

the unitary open ball U (λ, 1) in Q[√d] with the center in λ, where F (d) = ([0, 1/2] × [0, 1/2]) ∩ (Q × Q)

if d �≡ 1(mod 4), and F (d) = ([0, 1/2] × [0, 1/4]) ∩ (Q × Q) if d ≡ 1(mod 4), U (λ, r) = {q1 + q2
√

d ∈
Q[√d]∣∣q1, q2 ∈ Q, |(q1 − λ1)

2 − d(q2 − λ2)
2| < r}, r > 0.

4. Proofs of main results

4.1. Theorem 1

Lemma 1. Let K ∈ T . If α ∈ F1 , k ∈ N, then Eq. (4) is (α, k)-solvable, i.e., there exist x1, . . . , xk ∈ K such that 
α = [x1 : x2 : . . . : xk], iff one has ω(k−1)(α) = 0.

Proof. Let α = m/n ∈ F1, gcd(m, n) = 1, k ∈ N. If α = 0 or k = 1, then the statement of the lemma 
is obvious. Suppose that α �= 0, k ≥ 2. Consider the case k = 2. It’s easy to see that Eq. (4) is 
(α, 2)-solvable iff the following congruence holds m ≡ ε(mod n) for some ε ∈ I. Let m = qn + ε, 
q ∈ K, then m/n = fr(m/n) = fr(q + ε/n) = fr(ε/n). Since the norm υ takes the minimal finite value 
only at invertible elements of the domain K, so fr(ε/n) = δ/n, where δ ∈ I ∪ {0}.

Suppose that DK ≥ 3. Let’s prove the lemma for all k ≤ DK by induction on k. The base of in-
duction is validity of the lemma for k = 1 and k = 2. It’s easy to see that Eq. (4) is (α, k)-solvable 
iff there exists z ∈ K such that Eq. (4) is ((α − z)−1, k − 1)-solvable. That is why we need to 
prove that for any k ∈ [3, DK] the following holds: ω(k−1)(α) = 0 iff there exists z ∈ K such that 
ω(k−2)(fr((α − z)−1)) = 0.

Let ω(k−1)(α) = 0. By the definition of ω, we get ω(k−2)(fr(α−1)) = 0.
Suppose that there exists z ∈ K such that ω(k−2)(fr((α − z)−1)) = 0. If z = 0, then the definition 

of the function ω implies the equality ω(k−1)(α) = 0. Let z �= 0. By assumption (2) in the definition 
of the class T , we obtain that the triple (z, α, k − 2) is regular. Hence, there exist natural numbers 
p and l, p ≤ k − 2, l ≤ p + 1, such that there exist invertible elements εi ∈ I and elements bi, ci ∈ K

(i = 1, . . . , l − 1), for which the following relations hold:

β1 = ω(p)(fr((α − z)−1)),βi+1 = (εiβi + ci)
−1 + bi, i = 1, l − 1, βl = α(−1)ε , (5)

where ε ∈ {0, 1}.
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Since ω(k−p−2)(β1) = 0, so by the inductive assumption, Eq. (4) is (β1, k − p −1)-solvable. It follows 
from (5) that for any i = 1, . . . , l − 1 and j ∈ N Eq. (4) is (βi, j)-solvable iff Eq. (4) is (βi+1, j + 1)-
solvable. Hence, Eq. (4) is (α(−1)ε , k − p + l −2)-solvable. Since k − p + l −2 ≤ k −1, so, by the inductive 
assumption, we receive that ω(k−p+l−3)(fr(α(−1)ε )) = 0. Consequently, ω(k−2)(fr(α(−1)ε )) = 0. The last 
equality and the definition of ω imply that ω(k−1)(α) = 0. So, the lemma is proved for all k ≤ DK .

Let’s prove the lemma for any k by induction on k. The base of induction is validity of the lemma 
for all k ≤ DK . Let k be a natural number, k > DK . It is sufficiently to prove that ω(k−1)(α) = 0 iff 
there exists z ∈K such that ω(k−2)(fr((α − z)−1)) = 0.

The necessity is obvious. Let there exist z ∈ K such that the following holds

ω(k−2)(fr((α − z)−1)) = 0.

If z = 0, then, by the definition of ω, we get ω(k−1)(α) = 0.
Suppose that z �= 0. By assumption (1) in the definition of the class T , we receive that the triple 

(z, α, DK) is regular, i.e., there exist natural numbers q and m, q ≤ DK , m ≤ q + 1, such that there 
exist invertible elements pi ∈ I and elements f i, gi ∈K (i = 1, . . . , m − 1), satisfying the relations

γ1 = ω(q)(fr((α − z)−1)), γi+1 = (piγi + qi)
−1 + f i,

i = 1,m − 1, γm = α(−1)ε , (6)

where ε ∈ {0, 1}.
Since ω(k−q−2)(γ1) = 0, so the inductive assumption implies that Eq. (4) is (γ1, k − q − 1)-solvable.
Relations (6) imply that Eq. (4) is (α(−1)ε , k −q +m −2)-solvable. Since k −q +m −2 ≤ k −1, so, by 

the inductive assumption, we obtain that ω(k−q+m−3)(fr(α(−1)ε )) = 0. The definition of the function ω
implies the equality ω(k−1)(α) = 0. The lemma is proved. �
Proposition 2. Let K be a UFD. Then for any two elements (a, b) ∈K∗ ×K∗ the following equality holds

La,b = min{k ∈N|ω(k−1)(fr(a/b)) = 0},
where min ∅ = ∞.

Proof. Take arbitrary a, b ∈K∗ . Suppose that La,b < ∞. Let

ga,b = Da,b(q1, . . . ,qk) = (r−1, r0, r1, . . . , rk−1, rk),

where r−1 = a, r0 = b, rk = 0, ri �= 0 for any i = 1,k − 1.
It follows from the relations

a

b
= q1 + r1

b
,

b

r1
= q2 + r2

r1
, . . . ,

rk−3

rk−2
= qk−1 + rk−1

rk−2
,

rk−2

rk−1
= qk

and the definitions of the function ω and the Least Remainder DC that the following equalities hold

ω
(

fr
(a

b

))
= fr

(
b

r1

)
,ω(2)

(
fr

(a

b

))
= fr

(
r1

r2

)
, . . . ,ω(k−1)

(
fr

(a

b

))
= fr

(
rk−2

rk−1

)
= 0. (7)

It follows from (7) that one has ω(k−1)(fr(a/b)) = 0.
Since ω( j−1)(fr(a/b)) = r j/r j−1 �= 0 for any j = 1, . . . , k − 1, so

La,b = k = min{n ∈N|ω(n−1)(fr(a/b)) = 0}.
Let La,b = ∞. Suppose that there exists k ∈ N such that ω(k−1)(fr(a/b)) = 0 (choose the smallest 

natural k with this property).
Let int(a/b) = q1, fr(a/b) = r1/b. If r1 = 0, then La,b = 1, this is a contradiction. Hence r1 �= 0. By 

the definition of ω, we obtain the equality ω(k−2)(fr(b/r1)) = 0. Let int(b/r1) = q2, fr(b/r1) = r2/r1. 
If r2 = 0, then La,b = 2, this is a contradiction. We deduce that r2 �= 0 and ω(k−3)(fr(r1/r2)) = 0. 
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Applying the analogous arguments, we construct the elements r3, . . . , rk , q3, . . . , qk such that 
int(ri−2/ri−1) = qi , fr(ri−2/ri−1) = ri/ri−1 for any i = 3,k and ω(0)(fr(rk−2/rk−1)) = rk/rk−1 = 0. Hence 
rk = 0. The last one contradicts with La,b = ∞. The proposition is proved. �

Let (a, b) ∈K∗ ×K∗ . Suppose that la,b = k < ∞. Let

Da,b(q1, . . . ,qk) = (r−1, r0, r1, . . . , rk−1, rk) ∈ Oa,b,

where r−1 = a, r0 = b, rk = 0, ri �= 0 for any i = 1,k − 1.
Since ı(Da,b(q1, . . . , qk)) = [q1 : q2 : . . . : qk], so, by Lemma 1, we get ω(k−1)(fr(a/b)) = 0. It follows 

from Proposition 2 that

La,b = min{r ∈N|ω(r−1)(fr(a/b)) = 0} ≤ k = la,b.

Hence, La,b = la,b .
If la,b = ∞, then Ea,b = ∅. Consequently, La,b = ∞. This finishes the proof of Theorem 1.

4.2. Theorem 2

1. Let (K, υ) be a Euclidean domain, then for any a and b ∈ K∗ there exist q and r ∈ K such that 
a = bq + r and υ(r) < υ(b). Consider an arbitrary element a/b ∈ F∗

1, a, b ∈ K, gcd(a, b) = 1. Let a =
bq +r and υ(r) < υ(b), where q, r ∈ K. Since a/b = fr(a/b), so υ(a) ≤ υ(r). Hence, |a/b| = υ(a)/υ(b) ≤
υ(r)/υ(b) < 1. Consequently, �K ∈ [0, 1].

2. Let’s fix an arbitrary natural number n.
Suppose that �K ∈ [0, 1). Then for any a/b ∈ F∗

1, a, b ∈ K, gcd(a, b) = 1, we have |a/b| =
υ(a)/υ(b) < 1. Take arbitrary a, b ∈ K, b �= 0. Let q = int(a/b), r = b fr(a/b), then a = bq + r and 
υ(r) ≤ �Kυ(b). If υ(b) > 0, then υ(r) ≤ �Kυ(b) < υ(b). If υ(b) = 0, then b is an invertible element 
of K and, consequently, a = 0 and r = 0. As υ(r) < υ(b), so the domain (K, υ) is Euclidean.

Consequently, for each (a, b) ∈ K∗ × K∗ with n ≥ υ(a) ≥ υ(b) one has Ea,b �= ∅ and there exists 
ga,b = Da,b(q1, . . . , qk) = (r−1, r0, r1, . . . , rk−1, rk), where r−1 = a, r0 = b, rk = 0, ri �= 0 for any i =
1,k − 1.

Without loss of generality we may assume that gcd(a, b) = 1. This assumption implies the equality 
gcd(ri−1, ri) = 1 for any i = 1, . . . , k. Since fr(ri−2/ri−1) = ri/ri−1 �= 0, i = 1, . . . , k − 1, so

|ri/ri−1| = υ(ri)/υ(ri−1) ≤ �K

for i = 1, . . . , k − 1. Consequently,

υ(ri) ≤ υ(b)�i
K

≤ n�i
K

for i = 1, . . . , k − 1. Since rk−2 /∈ I ∪ {0}, so υ(rk−1) > υ(1) ≥ 0. Hence, we get 1 ≤ υ(rk−2) ≤ n�k−2
K

. 
The last one implies the inequality k ≤ log

�−1
K

n + 2. Consequently, ln(K) ≤ [log
�−1

K

n] + 2. Theorem 2
is proved.

4.3. Theorem 3

By Proposition 1, there exists λ = λ1 +λ2
√

d ∈ Z[√d], λ1, λ2 ∈ Q, such that the following inclusion 
holds F (d) ⊂ U (λ, 1), where the sets F (d) and U (λ, 1) are defined in Proposition 1.

Let E(d) = [0, 1/2] × [0, 1/4] if d ≡ 1(mod 4) and E(d) = [0, 1/2] × [0, 1/2] if d �≡ 1(mod 4). For 
any r > 0 define the set

V (λ, r) = {(x, y) ∈R×R
∣∣|(x − λ1)

2 − d(y − λ2)
2| < r}.

Let’s prove validity of the inclusion E(d) ⊂ V (λ, 1). Suppose that there exists (x0, y0) ∈ E(d)\V (λ, 1). 
Since F (d)\U (λ, 1) = ∅, so x0 /∈ Q or y0 /∈ Q. Let x0 /∈Q. Then there exists ε > 0 such that one has

{(x, y0)|x ∈ [x0 − ε, x0 + ε]} ∈ E(d)\V (λ,1).
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If y0 ∈ Q, then there exists ε0 ∈ (0, ε) such that the point (x0 + ε0, y0) has rational coordinates and 
belongs to E(d)\V (λ, 1), and hence

(x0 + ε0, y0) ∈ F (d)\U (λ,1) = ∅,

that is impossible. If y0 /∈Q, then there exists ε > 0 such that

{(x, y)|x ∈ [x0 − ε, x0 + ε], y ∈ [y0 − ε, y0 + ε]} ∈ E(d)\V (λ,1).

Consequently, there exists a point (x1, y1) ∈ E(d)\V (λ, 1) with rational coordinates. Hence, (x1, y1) ∈
F (d)\U (λ, 1) = ∅.

So, we have E(d) ⊂ V (λ, 1).
Let’s prove the existence of a number r0 < 1 such that the inclusion F (d) ⊂ U (λ, r0) is valid. It is 

sufficient to prove that E(d) ⊂ V (λ, r0) for some r0 < 1.
Suppose a contrary, i.e., for any r ∈ (0, 1) the set Xr = E(d)\V (λ, r) is not empty. Take an ar-

bitrary sequence rn → 1 − 0 as n → ∞ and choose a point qrn ∈ Xrn for any natural number n. 
Since the sequence (qrn ), n ∈ N, is bounded, so there exists a convergence subsequence qrnm

→ q
if m → ∞. As V (λ, 1) = ⋃

m∈N V (λ, rnm ), so the following holds E(d)\V (λ, 1) = ⋂
m∈N Xrnm

. Since 
qrnm

∈ Xrnm
⊂ E(d)\V (λ, 1) for any m ∈ N and the set E(d)\V (λ, 1) is closed in R × R, so the inclu-

sion q ∈ E(d)\V (λ, 1) is valid. But the last one contradicts with the inclusion E(d) ⊂ V (λ, 1).
So, we have F (d) ⊂ U (λ, r0) for some r0 < 1 and λ ∈ Z[√d]. We deduce that for any γ , δ ∈ Z[√d], 

δ �= 0 there exists an element q ∈ Z[√d], such that N
( γ

δ
− q

) ≤ r0, where N
(

a+b
√

d
c

)
= |a2−db2|

c2 , 
a, b, c ∈ Z, c �= 0. Since N

( γ
δ

− q
) = N(γ −qδ)

N(δ)
, so for any δ, γ ∈ Z[√d], δ �= 0, there exist q, r ∈ Z[√d]

such that γ = qδ + r and N(r) ≤ r0N(δ). Consequently, one has �
Z[√d] ≤ r0.

So, by Theorem 2, we obtain the inequality ln(Z[√d]) ≤ [log−1
r0

n] + 2 for any n ∈ N. Theorem is 
proved.

5. Methods to prove the inclusion KKK ∈ T

Let us give the first method of checking of the inclusion K ∈ T .

Definition 11. Let S be the set of all UFD K such that for any x ∈ K∗ and α ∈ F∗
1 one of the following 

conditions holds:

1. int((α − x)−1) ∈ I ∪ {0};
2. x int((α − x)−1) + 1 ∈ I.

Proposition 3. The inclusion S ⊆ T holds.

Proof. Let a UFD K belong to S . Take DK = 1. We need to prove that for any x0 ∈ K∗ , α ∈ F∗
1 the 

triple (x0, α, DK) is regular. Choose p = 1 in the definition of regular triple. Denote b = int((α− x)−1).

Suppose that b ∈ I ∪ {0}. We have β1 = ω(fr((α − x)−1)) = ω((α − x)−1 − b) = fr
(

α−x
1−bα+bx

)
. There 

exists c ∈ K such that β1 = α−x
1−bα+bx − c. If b = 0, then β2 = α−1 = (β1 + x + c)−1. If b ∈ I, then 

β1 = b−1

1−bα+bx − b−1 − c and β2 = α = (−b2β1 − b − b2c)−1 + b−1 + x.

Denote xb + 1 = ε. Suppose that ε ∈ I. Analogously we receive β1 = fr
(

α−x
1−bα+bx

)
. Then β1 =

α−x
1−bα+bx − c for some c ∈K. Hence,

β2 = α−1 = bβ1 + bc + 1

β1(1 + bx) + c(1 + bx) + x
= bβ1 + bc + 1

β1ε + cε + x
=

= bε−1 + 1 − bε−1x

β1ε + cε + x
= bε−1 + ε−1

β1ε + cε + x
= (β1ε

2 + cε2 + xε)−1 + bε−1.

So, the triple (x0, α, DK) is regular and the proposition is proved. �
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Now we are going to give a semi-decision algorithm to check the condition K ∈ S .

Algorithm 1.

Step 1. Construct the set J = {x ∈K∗|int((α − x)−1) ∈ I ∪ {0} ∀α ∈ F∗
1}.

Step 2. For any x0 ∈ K∗\J construct the value set Y(x0) of the function fx0 (α) = int((α − x0)
−1), 

α ∈ F∗
1.

Step 3. For any x0 ∈K∗\J construct the set U(x0) = { ε−1
x0

∈ K|ε ∈ I} ∪ I.
Step 4. If the inclusion Y(x0) ⊆ U(x0) holds for any x0 ∈ K∗\J, then the answer is “Yes”, i.e. K ∈ S . 

Otherwise, the answer is “Unknown”.

Correctness of Algorithm 1. Suppose that the answer of Algorithm 1 is “Yes”. Take an arbitrary x0 ∈ K. 
If x0 ∈ J, then the first part of the definition holds. Suppose that x0 /∈ J, then x0 ∈K∗ \ J. Consider the 
sets Y(x0) and U(x0). Suppose that y ∈Y(x0), then y = int((α − x0)

−1). On the other hand y ∈U(x0), 
then either y ∈ I and the first item of class S definition holds or y = ε−1

x0
. Then

ε − 1

x0
= int((α − x0)

−1).

So the second part of class S definition holds.

Applying Algorithm 1, we shall give examples of unique factorization domains K from the class S
(assuming that K is equipped with proper norm and fractional part).

Example 2. Let K = Z, υ(a) = |a| ∀a ∈ Z∗ , fr(α) = α − [α + 1/2] ∀α ∈ Q.

1. J = {x ∈ Z
∣∣|x| > 1};

2. Y(1) = {−2, −1}, Y(−1) = {1, 2};
3. U(1) = {−2, −1, 0, 1}, U(−1) = {−1, 0, 1, 2};
4. Y(1) ⊆ U(1), Y(−1) ⊆ U(−1). Hence, Z ∈ S .

Example 3. Let K = P[t], P is a field, υ( f ) = deg f ∀ f ∈ P[t], fr(m(t)/n(t)) = r(t)/n(t), m(t) ≡
r(t)(mod n(t)), deg r < deg n, for any m(t)/n(t) ∈ P(t).

1. J =K∗;
2. The set K∗\J is empty, so P[t] ∈ S .

Example 4. Let K = Z[t], υ( f ) = deg f ∀ f ∈ Z[t]. Define the fractional part in F = Z(t) by the 
following. Let the map A : F/K → F be defined as A(A) = m(t)/n(t), where A = {m(t)/n(t) +
q(t)|q(t) ∈ Z[t]}. For any A ∈ F/K, α ∈ A set int(α) = r(t), fr(α) = A(A) − r(t), where r(t) ∈ Z[t], 
limt→+∞

∣∣∣ A(A)−r(t)
A(A)−p(t)

∣∣∣ ≤ 1 ∀p(t) ∈ Z[t].
1. J ⊇ { f ∈ Z[t]| deg f > 0 or | f (t)| ≡ |x0| > 2}.
Let’s prove it. Take arbitrary A ∈ F/K and α = m(t)/n(t) ∈ A, α = fr(α).
Firstly consider the case deg m > degn. Let’s show that int((α − x0)

−1) = 0 for any x0 ∈ Z[t]. Since 
α = fr(α), so for any x0 ∈ Z[t] the following holds deg m ≤ deg(m − nx0). Suppose that int((α −
x0)

−1) = r(t) �≡ 0 for some x0 ∈ Z[t]. Then fr((α − x0)
−1) = n−r(m−nx0)

m−nx0
. Since degn < deg m ≤ deg(m −

nx0), so deg n < deg(n − r(m −nx0)), but the last one contradicts with the definition of fractional part.
Let deg m ≤ deg n. Let’s show that int((α − x0)

−1) = 0 for any x0 ∈ Z[t], deg x0 > 0. Suppose the 
contrary, i.e., int((α − x0)

−1) = r(t) �≡ 0 for some x0 ∈ Z[t], deg x0 > 0. Since deg(m − nx0) > deg n, so 
deg n < deg(n − r(m − nx0)), that contradicts with the definition of fractional part.

Let’s prove that int((α − x0)
−1) = 0 for any x0 ∈ Z[t], x0(t) ≡ c ∈ Z\{0, ±1, ±2}. Suppose that 

there exists c ∈ Z, |c| > 2, such that int((α − x0)
−1) = r(t) �≡ 0. If deg m < deg n, then deg n <
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deg(n − r(m −nc)) or r = const., hence, limt→+∞
∣∣∣n(t)−r(m(t)−n(t)c)

n(t)

∣∣∣ = |1 + rc| ≥ 2, that contradicts with 
the definition of fractional part. So, we have deg m = deg n. In view of α = fr(α) and deg m = deg n

we obtain that limt→+∞
∣∣∣m(t)

n(t)

∣∣∣ ≤ 0.5. If deg r > 0, then deg n < deg(n − r(m − nc)), a contradiction. So 
r = const. and

lim
t→+∞

∣∣∣∣n(t) − r(m(t) − n(t)c)

n(t)

∣∣∣∣ ≥ |1 + rc| − |r|/2 ≥ |r|(|c| − 1/2) − 1 ≥ 3

2
,

that contradicts with the definition of fractional part.
So J ⊇ { f ∈ Z[t]| deg f > 0 or | f (t)| ≡ |x0| > 2}. If x0 ≡ ±2, then int((α − x0)

−1) = r(t) �≡ 0 iff 
deg m = degn and r(t) ≡ ±1, that implies ±2 ∈ J. It’s easy to see that 0, ±1 /∈ J.

2. K∗\J ⊆ {±1};
3. Y(1) = {−2, −1}, Y(−1) = {1, 2};
4. U(1) = {−2, −1, 0, 1}, U(−1) = {−1, 0, 1, 2}. Hence, Z[t] ∈ S .

Example 5. Let K be a Euclidean domain such that for any a, b ∈ K the following holds a|b or b|a
(e.g., K is one of the following domains: arbitrary field P, the ring of formal power series P[[t]] over 
a field P or the ring Qp of all rational numbers pk m

n , where k ∈N ∪ {0}, the numbers m, n ∈ Z, p are 
pairwise coprime, p is a fixed prime number). In this case F = K ∪ {1/a|a ∈K∗\I}.

1. Let’s prove that J =K∗ .
Take an arbitrary α ∈ F∗

1, then there exists b ∈K∗\I such that α = 1/b. Let x ∈ K∗ . Let’s prove that 
int((α − x)−1) = (α − x)−1. We have (α − x)−1 = b

1−bx . Suppose that fr( b
1−bx ) �= 0, that is equivalent to 

b
1−bx = 1

c for some c ∈ K∗\I. Since the elements b and 1 − bx are coprime, so b ∈ I. Hence, we have 
α − x = b−1 − x ∈K, it means that α ∈K, but this contradicts with the condition α ∈ F∗

1. So, we have 
x int((α − x)−1) + 1 = 1

1−bx . Suppose that 1 −bx ∈ K∗\I. Since the elements b and 1 −bx are coprime, 
so b|(1 − bx). Hence, b ∈ I. The last one implies α − x = b−1 − x ∈ K, but this contradicts with the 
condition α ∈ F∗

1. So, we get 1 − bx ∈ I. That’s why x int((α − x)−1) + 1 ∈ I.
2. The set K∗\J is empty, so K ∈ S .

Let us give an example of UFD that does not belong to S but belongs to T .

Example 6. Let K = Z[i]. Let the norm in Z[i] and the fractional part in Q[i] be defined by relations 
(2), (3). The domain Z[i] doesn’t belong to the class S . Indeed, choose α = 9−4i

20 , x = 1, then int((α −
x)−1) = −2 + i /∈ I ∪ {0} and x int((α − x)−1) + 1 = −1 + i /∈ I.

Let us show that K ∈ T . It’s easy to see that F1 = {z ∈ C|Re(z), Im(z) ∈ Q ∩ [−1/2, 1/2[}. Take 
DK = 3 in the definition of the set T .

Let’s check assumption (1) of the definition of the set T . Take arbitrary x0 ∈ Z[i] \ {0} and α ∈ F∗
1. 

Denote b = int((α − x0)
−1). Let p be a number from assumption (1) of the definition of the set T . 

If υ(x0) > 5, then for p = 1 we have β1 = α. If b ∈ I ∪ {0}, then for p = 1 we have β1 = fr((α −
x0)/(bx0 + 1 − α)), then β2 = α. In further we suppose that b /∈ I ∪ {0} and υ(x0) ≤ 5. It’s easy to 
obtain that υ(x0) ∈ {1, 2}. It is sufficient to consider only cases x0 = 1 and x0 = 1 + i (since for any x0
with υ(x0) ∈ {1, 2} there exists an element ε ∈ I such that x0 = ε or x0 = (1 + i)ε).

Let x0 = 1 + i, then b = −1 + i. If we set p = 1, then we get

β1 = fr((α − (1 + i))/(α(1 − i) − 1)), β2 = α−1.

Let x0 = 1. Then b ∈ {−2, −1 ± i, −2 ± i}.
If b = −2, then for p = 1 we get

β1 = fr((α − 1)/(2α − 1)), β2 = α−1.

Let b = −1 ± i, then for p = 1 we have

β1 = fr((α − 1)/(α(1 ∓ i) ± i)), β2 = α−1.
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Let b = −2 + i. Consider the element

β = ω(fr((α − 1)−1)) = fr((α − 1)/(α(2 − i) − (1 − i))).

Note that

γ = int((α − 1)/(α(2 − 1) − (1 − i))) ∈ {1 + i,1 + 2i,2 + i,2 + 2i}.
If γ = 1 + i, then

β = (1 − α(2 + i))/(α(2 − i) − (1 − i)).

Take p = 2, then we have

β1 = ω(2)(fr((α − 1)−1)) = fr((α(2 − i) − (1 − i))/(1 − α(2 + i))),

β2 = α/(1 − α(2 + i)), β3 = α−1.

If γ = 1 + 2i, then

β = ((2 + i) − α(3 + 3i))/(α(2 − i) − (1 − i)).

Take p = 2, then we have

β1 = ω(2)(fr((α − 1)−1)) = fr((α(2 − i) − (1 − i))/((2 + i) − α(3 + 3i))),

β2 = α/(1 − α(2 + i)), β3 = α−1.

If γ = 2 + i, then

β = ((2 − i) − 4α)/(α(2 − i) − (1 − i)).

Take p = 2, then we get

β1 = ω(2)(fr((α − 1)−1)) = fr((α(2 − i) − (1 − i))/((2 − i) − 4α)),

β2 = α/(1 − α(2 + i)), β3 = α−1.

If γ = 2 + 2i, then

β = (3 − α(5 + 2i))/(α(2 − i) − (1 − i)).

Take p = 3, then we have

β1 = ω(3)(fr((α − 1)−1)) = fr((3 − α(5 + 2i))/(2 − 2i − α(5 − 2i))),

β2 = α/(1 − α(2i), β3 = α−1.

The case b = −2 − i is analogous to the case b = −2 + i.
Let’s check assumption (2) of the definition of the set T . Take arbitrary x0 ∈ Z[i] \ {0} and α ∈ F∗

1
such that ω(fr((α − x0)

−1)) = 0. Since at all cases, excepting x0 = 1, b = −2 ± i, it is possible to 
get DK = 2 instead of DK = 3, so it is sufficient to consider only the case x0 = 1, b = −2 ± i. Let 
b = −2 + i, then the condition ω(fr((α − x0)

−1)) = 0 implies the inclusion α ∈ {1/(2 + i), (2 + i)/
(3 +3i), (2 − i)/4, 3/(5 +2i)}. For the first, second and third elements the following holds ω(2)(α) = 0, 
for the fourth element the condition α = fr(α) fails. The case b = −2 − i is analogous to the case 
b = −2 + i.

Let’s give a general method (semi-decision algorithm) to prove that K ∈ T .

Algorithm 2.

Step 1. Choose positive integer DK and M .
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Step 2. Construct the set

J=
{

x0 ∈ K

∣∣∣∣∣int

(
1

α − x0

)
∈ I∪ {0}∀α ∈ F∗

}
.

Step 3. Create a list L that will contain elements of Kr where r ∈ {1, . . . , DK − 1}.
Step 4. L = K∗ \ J. We will save all elements of L the number of elements of which is greater than 

2 in list LM .
Step 5. Choose an element (x0, . . . , xl) ∈ L and delete it.

Step 6. Calculate δ =
((

. . .
(
(α − x0)

−1 − x1
)−1 − . . .

)−1 − xl

)−1

.

Step 7. Construct

A= {
b ∈K

∣∣b = int(δ)
}
.

Step 8. For every element xl+1 of A do the following steps.
Step 8.1. Calculate

β1 = ω(l+1)
(

int((α − x0)
−1)

)
= fr((δ − xl+1)

−1).

Step 8.2. Try to find (εi) ∈ I and (ai), (bi) ∈ K, υ(ai), υ(bi) ≤ M such that

βi+1 = 1

εiβi + ai
+ bi

and βl+2 = α or βl+2 = α−1.
Step 8.3. Switch

1) If such elements were not found and l + 1 ≥ DK , then return choose bigger DK and M .
2) If such elements were not found and l + 1 < DK , then add (x0, . . . , xl, xl+1).
3) If such elements were found, then go to the next element in Step 8.

Step 9. Switch
1) If L is not empty, then go to Step 5.
2) If L is empty and DK < 3, then return true.
3) If L is empty and DK ≥ 3, then go to Step 10.

Step 10. For every k ∈ [3, DK] do Steps 11–13.
Step 11. Construct

B=
{
α ∈ F∗∣∣ω(k−2)

{
fr

(
(α − x0)

−1
)}

= 0
}

,

where ω is calculated using the list LM .
Step 12. For every α0 ∈ B try to find (εi) ∈ I and (ai), (bi) ∈K, υ(ai), υ(bi) ≤ M such that

βi+1 = 1

εiβi + ai
+ bi

and βk−1 = α or βk−1 = α−1, where β1 = 0.
Step 13. Switch

1) If such elements were not found, then return choose bigger DK and M .
3) If such elements were found and we checked every x0 ∈ L∗ , then return true.

Correctness of Algorithm 2. Suppose that the answer of Algorithm 2 is “Yes”. Take arbitrary x0 ∈ K. If 
x0 ∈ J, then the triple (x0, α, DK) is regular for any α ∈ F∗ and DK ∈N.

Then we want to show that the triple (x0, α, DK) is regular for any x0 ∈ K∗ \ J and α ∈ F∗ . Let 
us consider the set L1 of all elements that were put in L. If (x0, . . . , xk) ∈ L1, (y0, . . . , yl) ∈ L1 and 
xi = yi for any i = 1,k, k ≤ l, then we will delete (x0, . . . , xk) from L1. Let us fix x0 and show that 
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(x0, α, DK) is regular. It is easy to see that if (x0, α, k) is regular, then (x0, α, k + i) is regular for any 
i ∈N.

Let us consider an element (x0, . . . , xl) ∈ L1. This element generates the set of α such that

xl =
((

. . .
(
(α − x0)

−1 − x1

)−1 − . . .

)−1

− xl−1

)−1

.

It is obvious that all such elements of L1 with fixed x0 generate F∗ . Since the answer of Algorithm 2
is “Yes” we can find sequences from the Algorithm for each element of L1 with fixed x0. So the triple 
(x0, α, DK) is regular for any x0, α. And the first part of the definition of the set T holds.

Suppose that DK ≥ 3. Proof of correctness of Steps 10–13 is completely analogous to the proof of 
correctness of Steps 1–9.

6. Discussion of results

6.1. Theorem 1

Let us show that there exists UFD K such that K /∈ T and the Least Remainder DC may not have 
the minimal length.

Let K = Z[√−11], where the norm and fractional part are defined by relations (2) and (3). It is 
easy to see that the set

{6,−2i
√

11,6,−3 + i
√

11,−1 − i
√

11,2,0}
generates the Least Remainder DC for the pair (a, b) = (6, −2i

√
11). Then La,b = 5. On the other hand, 

there exists another division chain for the pair (a, b):

{6,−2i
√

11,−5 + i
√

11,3 + i
√

11,2,0},
hence, la,b ≤ 4 ≤ La,b . Consequently, the statement of Theorem 1 fails. Suppose that Z[i√11] ∈ T , 
then, by Theorem 1, we obtain that for any (c, d) ∈ K∗ ×K∗ the following holds lc,d = Lc,d , a contra-
diction. By analogous arguments, Lemma 1 also fails for UFD Z[√−11].

6.2. Theorem 2

Let us give an example of UFD for which Theorem 2 fails. Let K = P[t] be equipped with the norm 
and fractional part as in Example 3.

Let n be an arbitrary natural number. Define the sequence

gk+2(t) = tgk+1(t) + gk(t),k ≥ 1, g1(t) = 1, g2(t) = t.

It’s obvious that deg gk = k − 1. Let a(t) = gn+1(t), b(t) = gn(t), then La(t),b(t) = n. Since ln(P[t]) ≤ n, 
so we obtain that ln(P[t]) = n.

For any n ∈ N there exists an element α ∈ F1 with |α| = n/(n + 1), hence �K ≥ 1. Since P[t] is a 
Euclidean domain, then, by Theorem 2, we have �K ≤ 1 and ln(P[t]) ≤ n. So �K = 1. Consequently, 
the condition �K ∈ [0, 1) in Theorem 2 can’t be replaced by the condition �K ∈ [0, 1].

6.3. Theorem 3

It is possible to deduce from the proof of Proposition 1 the explicit upper bounds for characteristic 
�K in case of imaginary quadratic Euclidean domains: �Z[i] ≤ 1/2, �

Z[i√2] ≤ 3/4, �
Z[i√3] ≤ 7/16, 

�
Z[i√7] ≤ 11/16, �

Z[i√11] ≤ 15/16.

Remark 3. Dupre (1846) (see Bach and Shallit, 1996, p. 80) has showed that the maximal number 
of divisions of the Least Remainder DC over all pairs (a, b) ∈ Z × Z with n ≥ |a| ≥ |b| > 0 is equal to 
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[logθ n] + Mn , where θ = 1 +√
2, Mn ∈ {0, 1}, and the maximal number of divisions is achieved for two 

largest numbers fk, fk+1 ∈ [1, n], where f1 = 0, f2 = 1, fk+2 = 2 fk+1 + fk , k ≥ 1. Rolletschek (1986)
has found the maximal number of divisions of the Least Remainder DC in the ring Z[i] of Gaussian 
integers over all pairs (a, b) ∈ Z[i] ×Z[i] with n ≥ |a| ≥ |b| > 0, this number is equal to [logψ n2] + Tn , 
where ψ = 2 + √

3, Tn ∈ {0, 1, 2}.

6.4. Application to optimization of the algorithm for solving linear Diophantine equations

Consider a linear Diophantine equation

ax + by = c, (8)

in variables x, y ∈ K, K is a UFD with a norm υ , where a, b, c ∈ K, a, b �= 0. Suppose that there exists 
the Least Remainder DC

ga,b = Da,b(q1, . . . ,qk) = (r−1, r0, r1, . . . , rk−1, rk)

for the pair (a, b). We get gcd(a, b) = rk−1, a/b = [q1 : q2 : . . . : qk]. If rk−1 doesn’t divide the right-hand 
side c of Eq. (8), then there are no solutions to Eq. (8). Let rk−1|c. If

[q1 : q2 : . . . : qk] = Pk/Q k, [q1 : q2 : . . . : qk−1] = Pk−1/Q k−1

are the successive fractions for the continued fraction [q1 : q2 : . . . : qk], then the following relation 
holds Pk Q k−1 − Q k Pk−1 = (−1)k (see, e.g., Davenport, 1965, p. 86). Using the last one, we get a 
formula for solutions to Eq. (8){

x = (−1)k Q k−1 Pkc/a + Q kt,

y = (−1)k−1 Pk−1 Q kc/b − Pkt,
t ∈K.

If K ∈ T , then the length k of the continued fraction [q1 : q2 : . . . : qk] for a/b is minimal. If �K < 1, 
then k ≤ C log(υ(a) + υ(b)), where the constant C doesn’t depend on the coefficients a and b.
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