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Abstract

Asymptotic analysis of the Hele-Shaw flow with a small moving obsta-
cle is performed. The method of solution utilises the uniform asymp-
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1 Introduction

The paper is devoted to the asymptotic study of the flow in the Hele-Shaw
cell with presence of moving obstacle in the flow.

The Hele-Shaw problem ([18]) deals with the description of the free
boundary encircling the domain occupied by incompressible fluid in the so
called Hele-Shaw cell (see, e.g. [16], [37]), i.e. in a narrow space between two
parallel plates. Different driving mechanisms can be considered for the fluid
flow, e.g. presence of a source/sink in the fluid domain.

Various physical assumptions lead to different formulations of the respec-
tive boundary value problems. A comprehensive discussion on this topic can
be found in the recent book by Gustafsson and Vasil’ev [16].

There exist two basic mathematical models for the flow in the Hele-Shaw
cell. The complex-analytic model is formulated as a nonlinear mixed bound-
ary value problem with respect to a family of conformal mappings of the
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canonical domain onto the domain occupied by the fluid. This approach
goes back to the work by Polubarinova-Kochina [31] and Galin [11]. The
proof of the existence (locally in time) and uniqueness of analytic solutions
to this model was done by Kufarev & Vinogradov [21] (rediscovered later
by Richardson [36]) on the basis of the method of successive approximations.
Simplified proof of existence and uniqueness of an analytic solution was given
by Reissig & von Wolfersdorf [33] (see also [32], [35]). In this work the model
was interpreted as a special case of an abstract Cauchy-Kovalevsky problem,
which was solved by a variant of the Cauchy-Kovalevsky theorem ([27], [28],
[29]). See also [5] and references therein for the survey of recent results on
the complex-analytic Hele-Shaw problem in doubly connected domains. Let
us note that there are some similarities between movement of the rigid body
and movement of bubbles in the flow (for the discussion of the latter process
we refer, e.g., to the article [8] and references therein).

In our study we use the real-variable model proposed by Gustafsson [14]
the flow is described by a family of parametrizations of the boundary of fluid
domain (see also [19]). This model was generalized to multi-dimensional
case by Begehr & Gilbert [4]. Among variants of the proof of existence and
uniqueness for this model we have to point out the papers by Reissig [34]
and by Escher & Simonett [10]. In the most general form, the proof of the
existence, uniqueness of the classical solution and the regularity of the fluid
boundary was given by Antontsev, Gonçalves and Meirmanov [1], [2].

Variational formulation of the Hele-Shaw model was proposed by Gustafs-
son [15], who proved the weak solvability of the problem (see also [3], [16]).

The classical (real-variable) Hele-Shaw model can be reinterpreted as a
mixed boundary value problem for Laplace equation with respect to unknown
parametrization of the boundary and corresponding Green’s function of this
problem in the reference domain. When assuming the presence of a moving
obstacle in the flow, we have to add an additional equation describing this
movement. The aim of our work is to perform an asymptotic analysis for
such a variant of the model and to construct an efficient and robust numerical
routine to tackle the problem.

Application of asymptotic methods to approximation of Green’s function
goes back to the classical paper by J. Hadamard [17], where the method of
regular perturbation was performed. Recently, V. Maz’ya and A. Movchan
obtained a number of asymptotic formulas for Green’s function related to
different boundary value problems for a number of differential operators in
the case of singular perturbations of the domains (see [22], [23], [25] and
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references therein).
Those results were used in [26] to model the Hele-Shaw flow with a fixed

circular obstacle. To construct the computational scheme, we choose Green’s
formula with the Neumann condition on the external boundary of doubly
connected domain, and with Dirichlet condition on its internal boundary.
Then a preliminary transformation ζ = ε/z was made, which led to creation
of a system of differential equations for the original problem approximation.
The existence of the reformulated Hele-Shaw problem follows immediately
from the results of the paper Escher-Simonett (1997b).

The approximate system defined in this way was reduced to the system
of first order ODEs, and tackled by a proposed numerical scheme. This ap-
proach proved its ability to solve the analyzed Hele-Shaw problem, providing
sufficiently good accuracy of computations.

However, the scheme itself exhibited some disadvantages:
1) in the case of sink the life-time of the approximate process was very short;
2) in the case of source we get numerical result only on a bounded interval
of time.

The first difficulty could have been expected from the theory of the Hele-
Shaw problem, but the second one is a consequence of the numerical scheme
instability. In the case of moving obstacle this led to even worse results.

In this paper we consider the Hele-Shaw flow with a rigid inclusion moving
in the direction of the flow without rotation. The friction between the limiting
planes and the obstacle is accounted for. To avoid problems appeared in the
case of the fixed obstacle, we use here the same Maz’ya-Movchan approach,
but with different uniform asymptotic formula for Green’s function (without
making any preliminary transformations, and thus interchanging the role of
boundary conditions).

The paper is organized as follows. Sec. 2 describes the problem’s ge-
ometry and presents the (real-variable) Hele-Shaw model in a domain with
a moving obstacle. The model is further reduced to the form containing
an unknown parametrization of the boundary of the fluid domain, an un-
known Green’s function of the corresponding mixed boundary value problem
for the Laplace operator and unknown trajectory of the inclusion. There-
fore we have to consider a system of equations consisting of the equation for
the free boundary (the standard Hele-Shaw equation) and the equation of
motion for the obstacle. In Sec. 3 we present uniform asymptotic formula
by Maz’ya-Movchan and describe its components. In Sec. 4 we determine
the values of the components of the Maz’ya-Movchan formula correspond-
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ing to the considered model. The final form of the approximate system of
differential equations is presented in Subsec. 4.4. Finally, in Sec. 5 the afore-
mentioned system is implemented in a numerical scheme which illustrates the
obtained results. The numerical scheme to obtain the solution employs re-
duction of the system of governing equations to the system of ODEs of the
first order, where the velocity of the inclusion is introduced as an additional
dependent variable. In order to solve the dynamic system we utilize the stan-
dard ODE solver of Matlab package: ode45. Respective conformal mappings
of the boundary curve are performed by means of the Schwartz-Christoffel
Toolbox. The derivatives of the mapping along the free boundary are com-
puted by our own subroutines, based on the spline approximation. We show
that the used asymptotic expansion for the Green function is effective and
the computations based on that approach are stable and robust.

2 Problem formulation

We consider the slow flow in the Hele-Shaw cell (i.e. in the narrow gap be-
tween to parallel plates of distance h). The flow is caused by a source/sink
(situated at the origin O = (0, 0)0 of intensity Q. The fluid of the vis-
cosity µ occupies the bounded doubly connected domain D1(t) at the time
instant t ≥ 0 that takes the form D1(t) = D(t) F , where D(t) is a bounded
simply-connected domain, and the compact set F ⊂ D(t) is a small obstacle
embedded within the fluid. The obstacle is moving in the direction of flow
rotation free and with friction coefficient κ. To avoid technical difficulties,
we accept a circular shape of the obstacle of the radius ε and of center z0(t)
at each instant of time t.

Suppose that our initial geometry satisfies the following conditions1

c ≤ min dist {O,D(0)} ≤ max dist {O,D(0)} ≤ 1,

dist {∂F, ∂D(0)} = d > ε, d+ 2ε > c. (2.1)

Following [2], the initial free boundary ∂D(0) is to satisfy the smoothness
assumptions

∂D(0) ∈ C2,α, (2.2)

with certain fixed α, 0 < α < 1.

1Note that both constants c and d do not depend on δ.
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Omitting the standard description of the (real-variable) Hele-Shaw model
(see, e.g. [16], [19], cf. [26]) we arrive at the following problem with respect
to unknown parametrization w(s, t) of the free boundary Γ(t) = ∂D(t) (i.e.
the boundary value of the conformal mapping of the unit disc U onto the
fluid domain D1(t)), Green’s function G(z; ζ ; t) of the domain D1(t) and the
center z0(t) of the obstacle.2

Problem (HSmove). Find a triple {w(s, t) = (w1(s, t), w2(s, t));G(z; ζ ; t);
z0(t) = (z0,1(t), z0,2(t))}, satisfying the following conditions

(i) w(s, t) ∈ Γ(t) for all (s, t) ∈ ∂ U× I;
(ii) w(·, t) : ∂ U → Γ(t) is a C2-diffeomorphism for each fixed t ∈ I;
(iii) w(0)(s) = w(s, 0) is a given C2-diffeomorphism of the unit circle ∂ U,

which describes the boundary Γ(0) of initial domain D1(0);
(iv) G(z; ζ ; t) is Green’s function of the operator −△ in the doubly con-

nected domain D1(t) with the homogeneous Neumann condition on ∂ F and
the homogeneous Dirichlet condition on Γ(t);

(v) ∂t w(s, t) = −Qh2

12µ
· ∇G(w(s, t);O; t) for all (s, t) ∈ ∂ U× I;

(vi) z′′0 +
κπδ2

m
z′0 =

Qδ

m

2π
∫

0

G(z0,1 + δ cos θ, z0,2 + δ sin θ;O; t) · n(in)(θ)dθ,

(vii) z0(0) = z(0), z′0(0) = z(1).
The aim of our study is to get an approximate solution to the problem

HSmove.

3 Uniform representation of Green’s function

In order to replace the system of equation (i)−(vii) of the Problem (HSmove)
by the approximate system we use one the results by Maz’ya and Movchan.
For further convenience, we introduce here a small parameter ε equal to
the radius of the inclusion, and denote by F0 = F0(t) the rescaled obstacle
F0(t) = {x : 1

ε
(x− z0(t)) ∈ F}. Note that for each t ∈ I we have F0(t) =

B(O; 1).
For the reader’s convenience, we reformulate in our notation the theorem

by V. Maz’ya and A. Movchan providing uniform asymptotic approximation

2Unknown magnitudes w, G, z0 depend on time t from a right-sided neighborhood I

of t = 0. In fact, for our problem we need to determine the value of G(z; ζ; t) only at the
point ζ = O, but we keep the extra variable ζ for computational reasons.
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of Green’s function with the Neumann data on the boundary of the obstacle
F = B(z0, ε) and the Dirichlet data on the boundary of the domain D.

Theorem 3.1. [25, Thm. 2.1] Let D1 be a bounded doubly connected domain
in R

2 with a smooth boundary, D1 = D \ F , where D is a simply connected
domain and F ⊂ D is a compact set (obstacle) with diameter smaller than
the distance of ∂F to ∂D.

Green’s function Gε(x,y) of the Laplace operator −∆ with the Neumann
zero-data on ∂F and the Dirichlet zero-data on ∂D has the following uniform
asymptotic representation

Gε(x,y) = G(x,y)+N

(

1

ε
(x− z0),

1

ε
(y − z0)

)

+
1

2π
log

∣

∣

∣

∣

1

ε
(x− y)

∣

∣

∣

∣

+ (3.1)

+εD

(

1

ε
(x− z0)

)

· ∇xH(z0,y) + εD

(

1

ε
(y − z0)

)

· ∇yH(x, z0) + rε(x,y),

where |rε(x,y)| ≤ Const · ε2.

In what follows we use this formula in the fluid domain D1(t) for all
t ∈ I = [0, T ], for which the solution to the Hele-Shaw problem exists. In
the case of the flow without obstacle or with a fixed obstacle we refer for the
existence to [1]. In our case there is no rigorous proof of the existence, but
it can be obtained similarly to that for the flow of bubbles (see, e.g. [8] and
references therein).

In our case we accept in this Theorem the following notation for each
instant of time t ∈ I. G(x,y) = G(x,y; t) is Green’s function of the Laplace
operator −∆ for the simply connected domain D = D(t) with zero Dirichlet
data on ∂D(t):

G(x,y) =
1

2π
log

∣

∣

∣

∣

1

x− y

∣

∣

∣

∣

−H(x,y), (3.2)

with H being the regular part of Green’s function, i.e. harmonic function
solving the following boundary value problem

∆xH(x,y) = 0, x,y ∈ D(t), (3.3)

H(x,y) =
1

2π
log

∣

∣

∣

∣

1

x− y

∣

∣

∣

∣

, x ∈ ∂D(t),y ∈ D(t). (3.4)

6



N (ξ, η) is the Neumann function for the exterior of the re-scaled obstacle
F0 = F0(t):

N (ξ, η) =
1

2π
log |ξ − η|−1 − hN (ξ, η), ξ, η ∈ R

2 \ F0(t), (3.5)

where hN (ξ, η) is the regular part of this function satisfying

∆ξhN (ξ, η) = 0, ξ, η ∈ R
2 \ F0(t), (3.6)

∂hN (ξ, η)

∂nξ

=
1

2π

∂

∂nξ

(

log |ξ − η|−1) , ξ ∈ ∂F0(t), η ∈ R
2 \ F0(t), (3.7)

hN (ξ, η) → 0, |ξ| → ∞, η ∈ R
2 \ F0(t). (3.8)

The vector-function D(ξ) = (D1(ξ),D2(ξ))
T is the solution of the following

boundary value problems in the exterior of the re-scaled obstacle F0 = F0(t):

∆Dj(ξ) = 0, ξ ∈ R
2 \ F0(t), j = 1, 2, (3.9)

∂Dj(ξ)

∂n
= nj , ξ ∈ ∂F0(t), j = 1, 2, (3.10)

Dj(ξ) → 0, |ξ| → ∞, j = 1, 2. (3.11)

Here nj are components of the inward unit vector normal to the boundary
of disc F0(t).

4 System of equations for the problem HSmove

4.1 Green’s function Gε for the problem HSmove

In this subsection we analyze the components of the representation (3.1).
Let us first consider the Neumann function N (ξ, η) having in this case an
explicit representation (see, e.g., [30, p. 68]):

N (ξ, η) = −
1

4π
log |ξ − η|2 −

1

4π
log

[

(|ξ|2 − 1)(|η|2 − 1) + |ξ − η|2

|ξ|2|η|2

]

. (4.1)

satisfying the conditions (3.5), (3.6)–(3.8) and symmetric N (ξ, η) = N (η, ξ).
Its regular part hN (ξ, η) is also symmetric and calculated explicitly yields

hN (ξ, η) =
1

4π
log

[

(|ξ|2 − 1)(|η|2 − 1) + |ξ − η|2

|ξ|2|η|2

]

. (4.2)
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Green’s function G(x;y; t) for the interior simply connected domain D(t)
can be represented in the form

G(x;y; t) = −
1

2π
log |g(x,y)|, (4.3)

where g(x,y) = (g1(x,y), g2(x,y)) : D(t) → U is the conformal mapping
of D(t) onto the unit disc U, satisfying the following normalizing conditions
g(x,y)

∣

∣

x=y
= 0, and g′(x,y)

∣

∣

x=y
> 0. In our case, y = O stands for the

source/sink point (we again note that from computational point of view it is
better to keep extra-variable y up to the final formula). From the numerical
point of view it is customary to start with an arbitrary conformal mapping
g0(x) : D(t) → U and determine the normalized one:

g(x,y) =
g0(x)− g0(y)

1− g0(y)g0(x)
.

The vector-function D(ξ) can be found by using integral representation of
the solution to the exterior Neumann problem for the unit disc (see, e.g., [30,
p. 68]). First we note that the inward unit normal vector on the boundary
of the unit disc F0(t) is

n(in) =
(

n
(in)
1 , n

(in)
2

)

= −(cosϕ, sinϕ), (4.4)

where ϕ is the angular coordinate of polar system on the unit circle ∂F0(t).
Then the solutions to the problems (3.9)–(3.11) (j = 1, 2) are represented in
the form

Dj(ξ) =
1

2π

2π
∫

0

log

(

1

r2
+ 1−

2

r
cos(θ − ϕ)

)

n
(in)
j dϕ, j = 1, 2, (4.5)

where ξ = (r cos θ, r sin θ), r > 1. It is easy to see that the above func-
tions satisfy all conditions (3.9)–(3.11). We calculate (4.5) using formula [13,
(4.397.6)]:

D1(ξ) =
1

2

ξ1
ξ21 + ξ22

, D2(ξ) =
1

2

ξ2
ξ21 + ξ22

. (4.6)
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4.2 Derivatives of Green’s function

Here we calculate derivatives of Green’s function which are used in equation
(v) of the Problem (HSmove). We start with Green’s function G(x;y) =
G(x;y; t). By applying representation (4.3) we have (j = 1, 2)

∂xj
G(x;y) = −

1

2π

g1(x;y)∂xj
g1(x;y) + g2(x;y)∂xj

g2(x;y)

g21(x;y) + g22(x;y)
. (4.7)

Substituting x = (w1(s, t), w2(s, t)), y = (0, 0) and taking into account the
properties of the function g(x;y) we finally obtain

∂xj
G(w1(s, t), w2(s, t); 0, 0) = (4.8)

= −
1

2π

(

g1(w1(s, t), w2(s, t); 0, 0)∂wj
g1(w1(s, t), w2(s, t); 0, 0)+

+g2(w1(s, t), w2(s, t); 0, 0)∂wj
g2(w1(s, t), w2(s, t); 0, 0)

)

.

The Neumann function N (ξ; η) depends on the “scaled” variables

ξ =
1

ε
(x− z0(t)) , η =

1

ε
(y − z0(t)) . (4.9)

Hence

∂xj
N (ξ; η) = ∂ξjN (ξ; η)

∂ξj
∂xj

=
1

ε
∂ξjN (ξ; η).

Using explicit representation of the Neumann function (4.1) we get the fol-
lowing value of the derivatives (j = 1, 2)

∂xj
N (ξ; η) = −

1

2πε

ξj − ηj
(ξ1 − η1)2 + (ξ2 − η2)2

+
1

2πε

ξj
ξ21 + ξ22

− (4.10)

−
1

2πε

[

ξj(η
2
1 + η22)− ηj

(ξ21 + ξ22 − 1)(η21 + η22 − 1) + (ξ1 − η1)2 + (ξ2 − η2)2

]

.

Now substitute ξj = 1
ε
(wj(s, t)− z0,j(t)), ηj = −1

ε
z0,j(t), j = 1, 2 (in order

to simplify representation we omit internal variables s and t in the right
hand-side of this relation) and calculate derivatives of two terms of Maz’ya-
Movchan asymptotic formula (see (3.1)) at x = (w1, w2) with y = (0, 0)

∂

∂xj

(

N (ξ, η) +
1

4π
log |

1

ε
(x− y)|2

)

.
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These derivatives (denoted Kj) are are equal

Kj =
∂

∂xj

(

N (ξ, η) +
1

4π
log |

1

ε
(x− y)|2

)

= (4.11)

= −
1

2π

{

(wj − z0,j)[z
2
0,1 + z20,2 − ε2] + ε2wj

[(w1 − z0,1)2 + (w2 − z0,2)2 − ε2][z20,1 + z20,2 − ε2] + ε2(w2
1 + w2

2)
−

−
wj − z0,j

(w1 − z0,1)2 + (w2 − z0,2)2

}

.

Thus for ε = 0 we have Kj = 0.
For regular part H(x;y) of Green’s function G(x;y) we have the repre-

sentation (3.2), i.e.

H(x;y) =
1

2π
log

∣

∣

∣

∣

g(x;y)

x− y

∣

∣

∣

∣

.

Therefore

∂xj
H(w;O) = +

1

2π

g1(z0;O)∂z0,jg1(z0;O) + g2(z0;O)∂z0,jg2(z0;O)

g21(z0;O) + g22(z0; ))
− (4.12)

−
1

2π

z0,j
z20,1 + z20,2

=

=
1

2π

(

g1(w;O)∂wj
g1(w;O) + g2(w;O)∂wj

g2(w;O)−
wj

w2
1 + w2

2

)

.

Analogously,

∂yjH(x; z0) = +
1

2π

g1(x; z0)∂yjg1(x; z0) + g2(x; z0)∂yjg2(x; z0)

g21(x; z0) + g22(x; z0)
+ (4.13)

+
1

2π

xj − z0,j
(x1 − z0,1)2 + (x2 − z0,2)2

.

In this case the right hand-side of the last relation does depend on x.
Now we have to calculate the derivatives with respect to x of the following

expression

J1(x,y) := J1 = εD

(

1

ε
(x− z0)

)

· ∇xH(z0;y) =

10



= εD1

(

1

ε
(x− z0)

)

∂x1
H(z0;y) + εD2

(

1

ε
(x− z0)

)

∂x2
H(z0;y),

where only first multiplier in each summand depends on x. Derivatives of
Dk in xj is connected with that in ξj

∂xj

(

εDk

(

1

ε
(x− z0)

))

= (Dk)
′

ξj

(

1

ε
(x− z0)

)

, j, k = 1, 2.

By the direct calculation we have

∂x1
J1(w, O) =

ε2

2

(

(w2 − z0,2)
2 − (w1 − z0,1)

2

((w1 − z0,1)2 + (w2 − z0,2)2)2
· ∂x1

H(z0;O)− (4.14)

−
2(w1 − z0,1)(w2 − z0,2)

((w1 − z0,1)2 + (w2 − z0,2)2)2
· ∂x2

H(z0;O)

)

,

and

∂x2
J1(w, O) =

ε2

2

(

−
2(w1 − z0,1)(w2 − z0,2)

((w1 − z0,1)2 + (w2 − z0,2)2)2
· ∂x1

H(z0;O)− (4.15)

−
(w2 − z0,2)

2 − (w1 − z0,1)
2

((w1 − z0,1)2 + (w2 − z0,2)2)2
· ∂x2

H(z0;O)

)

,

where the derivatives ∂xj
H(z0;y) are presented in (4.12).

At last we have

J2(x,y) = J2 = εD

(

1

ε
(y − z0)

)

· ∇yH(x; z0) =

εD1

(

1

ε
(y − z0)

)

F1(x; z0) + εD2

(

1

ε
(y − z0)

)

F2(x; z0).

Here, only second multiplier in each summand depends on x, and

Fi = ∂yiH(x; z0) =
1

2π
∂yi log

∣

∣

∣

∣

g(x;y)

x− y

∣

∣

∣

∣

y=z0

, i = 1, 2.

Hence

∂xj
J2 =

ε

2

η1
η21 + η22

∂xj
F1 +

ε

2

η2
η21 + η22

∂xj
F2, j = 1, 2.

Therefore, since ηi = −1
ε
z0,i, i = 1, 2, and using (4.6) we have

∂xj
J2(w, O) = −

ε2

2

z0,1
z20,1 + z20,1

· ∂xj
F1(w; z0)−

ε2

2

z0,2
z20,1 + z20,1

· ∂xj
F2(w; z0).

(4.16)
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4.3 Integrals of Green’s function

In this subsection we calculate integrals from the right hand-side of the equa-
tion (vi) in the representation of Problem (HSmove):

Pj =
Qε

m

2π
∫

0

G(x;y; t)n(in)
j (θ)dθ, j = 1, 2, (4.17)

were x = (z0,1 + ε cos θ, z0,2 + ε sin θ), y = (0, 0).
In our calculations we use components of formula (3.1) and their repre-

sentations obtained in Subsec. 4.1. First we calculate the integral

I1,1 :=

2π
∫

0

G(x;y; t) cos θdθ |y=O (4.18)

employing representation (4.3):

I1,1 = −
1

2π

2π
∫

0

log |g(x;O)| cos θdθ = −
1

2π
Re

2π
∫

0

log g(x;O) cos θdθ.

Note that for each fixed t ∈ I the function log g(x;O) is an analytic function
with respect to variable x = (x1, x2) in the disc B(z0, ε). Hence using Taylor
expansion of log g(x;O) at x = z0 we have

I1,1 = −
ε

2
Re c1 +O(ε3) = −

ε

2
Re

g′(z0, O)

g(z0, O)
+O(ε3). (4.19)

Similar calculations can be performed for the integral

Ĩ1,1 :=

2π
∫

0

G(x;y; t) sin θdθ |y=O = −
ε

2
Re ic1+O(ε3) = −

ε

2
Re

ig′(z0, O)

g(z0, O)
+O(ε3).

(4.20)
In the integral

I1,2 :=

2π
∫

0

[

N

(

1

ε
(x− z0,y − z0)

)

+
1

2π
log

∣

∣

∣

∣

1

ε
(x− y)

∣

∣

∣

∣

]

cos θdθ |y=O ,

(4.21)
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we use representation (4.1)

I1,2 :=

2π
∫

0

[

N

(

1

ε
(x− z0,−z0)

)

+
1

2π
log

∣

∣

∣

x

ε

∣

∣

∣

]

cos θdθ = (4.22)

= −
1

4π

2π
∫

0

log

{(

|x− z0|2

ε2
− 1

)(

|z0|2

ε2
− 1

)

+
|x|2

ε2

}

cos θdθ+

+
1

4π

2π
∫

0

log

(

|x− z0|
2|z0|

2

ε4

)

cos θdθ.

Since |x− z0| = ε and
∫ 2π

0
C · cos θdθ = 0, then we have

I1,2 = −
1

2π

2π
∫

0

log |x| cos θdθ = −
1

2π
Re

2π
∫

0

log x cos θdθ.

The function log x is an analytic function with respect to variable x =
(x1, x2) in the disc B(z0, ε). Hence

I1,2 = −
ε

2
Re

1

z0
+O(ε3). (4.23)

Analogously for the integral Ĩ1,2 we have

Ĩ1,2 :=

2π
∫

0

[

N

(

1

ε
(x− z0,y− z0)

)

+
1

2π
log

∣

∣

∣

∣

1

ε
(x− y)

∣

∣

∣

∣

]

sin θdθ |y=O =

(4.24)

= −
1

2π

2π
∫

0

log |x| sin θdθ = −
1

2π
Re

2π
∫

0

log x sin θdθ = −
ε

2
Re

i

z0
+O(ε3).

Next we calculate

I1,3 :=

2π
∫

0

εD

(

1

ε
(x− z0)

)

· ∇xH(z0;y) cos θdθ. (4.25)
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Taking into account exact values (4.6) of the functions D1(ξ), D2(ξ) and
parametrization of the boundary of B(0; 1) (ξ1 = cos θ, ξ2 = sin θ) we obtain

I1,3 =
ε

2
∂x1

H(z0;y)

2π
∫

0

cos2 θdθ+
ε

2
∂x2

H(z0;y)

2π
∫

0

sin θ cos θdθ =
πε

2
∂x1

H(z0;y).

Finally, using (4.12)

I1,3 =
ε

4

(

g1(z0;O)∂x1
g1(z0;O) + g2(z0;O)∂x1

g2(z0;O)

g21(z0;O) + g22(z0;O)
−

z0,1
z20,1 + z20,2

)

.

(4.26)
Similar calculations lead

Ĩ1,3 :=

2π
∫

0

εD

(

1

ε
(x− z0)

)

· ∇xH(z0;y) sin θdθ =
πε

2
∂x2

H(z0;y), (4.27)

Ĩ1,3 =
ε

4

(

g1(z0;O)∂x2
g1(z0;O) + g2(z0;O)∂x2

g2(z0;O)

g21(z0;O) + g22(z0;O)
−

z0,2
z20,1 + z20,2

)

.

(4.28)
The last integral from (4.17) is calculated by using (4.6)

I1,4 :=

2π
∫

0

εD

(

1

ε
(y − z0)

)

· ∇yH(x; z0) cos θdθ = (4.29)

= −
ε2

2(z20,1 + z20,2)

2π
∫

0

[z0,1∂y1H(x; z0) + z0,2∂y2H(x; z0)] cos θdθ.

Since log g(x;z0)
x−z0

is an analytic function with respect to variable x =
(x1, x2) in the disc B(z0, ε) then

−
Qε

m
I1,4 = O(ε4).

Similar result we have for the integral

Ĩ1,4 :=

2π
∫

0

εD

(

1

ε
(y − z0)

)

· ∇yH(x; z0) sin θdθ, (4.30)
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−
Qε

m
Ĩ1,4 = O(ε4).

Note that

Re
g′(z0, O)

g(z0, O)
=

g1(z0;O)∂x1
g1(z0;O) + g2(z0;O)∂x1

g2(z0;O)

g21(z0;O) + g22(z0;O)
,

Re i
g′(z0, O)

g(z0, O)
=

g1(z0;O)∂x2
g1(z0;O) + g2(z0;O)∂x2

g2(z0;O)

g21(z0;O) + g22(z0;O)
,

Re
1

z0
=

z0,1
z20,1 + z20,2

, Re
i

z0
=

z0,2
z20,1 + z20,2

.

Therefore, combining all above calculations we have

−
Qε

m
[I1,1 + I1,2 + I1,3 + I1,4] =

Qε2

4m
I +O(ε4), (4.31)

−
Qε

m

[

Ĩ1,1 + Ĩ1,2 + Ĩ1,3 + Ĩ1,4

]

=
Qε2

4m
Ĩ +O(ε4), (4.32)

I =
g1(z0;O)∂x1

g1(z0;O) + g2(z0;O)∂x1
g2(z0;O)

g21(z0;O) + g22(z0;O)
+ 3

z0,1
z20,1 + z20,2

,

Ĩ =
g1(z0;O)∂x2

g1(z0;O) + g2(z0;O)∂x2
g2(z0;O)

g21(z0;O) + g22(z0;O)
+ 3

z0,2
z20,1 + z20,2

.

4.4 Final system of differential equations

It follows from the potential theory (see, e.g. [12, Ch. 8], cf. [25, Lemma
2.3]), that for any compact subset Ω,Ω ⊂ D1(t),

∣

∣

∣
(rε(x,y))

′

xj

∣

∣

∣
≤ ε3, j = 1, 2, x,y ∈ Ω.

Thus, the Problem (HSmove) can be asymptotically approximated by
the following system

∂tw1 = −
Qh2

12µ
(∂x1

G(w;O) +K1 + ∂x1
J1(w;O) + ∂x1

J2(w;O)) , (4.33)

∂tw2 = −
Qh2

12µ
(∂x2

G(w;O) +K2 + ∂x2
J1(w;O) + ∂x2

J2(w;O)) , (4.34)
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z′′0,1 +
κπε2

m
z′0,1 =

Qε2

4m
I, (4.35)

z′′0,2 +
κπε2

m
z′0,2 =

Qε2

4m
Ĩ, (4.36)

with initial conditions z0(0) = z(0), z′0(0) = z(1). Here w = (w1(s, t), w2(s, t))
is an unknown parametrization of the external boundary ∂D(t), z0 =
(z0,1(t), z0,2(t)) is an unknown position of the center of the moving obsta-
cle and Kj , ∂xj

Jk, I, Ĩ are defined in (4.11), (4.14), (4.15), (4.16), (4.31),
(4.32).

5 Numerical examples and discussions

In this section we provide only a short illustration of efficiency of the proposed
methods for applications.

The numerical scheme to obtain the solution employs reduction of the
system of governing equations (4.33)-(4.34) to the system of ODEs of the
first order, where the velocity of the inclusion is introduced as an additional
dependent variable. In order to solve the dynamic system of the first order
derived in this way we utilize the standard ODE solver of Matlab package:
ode45. It is based on an explicit Runge-Kutta formula. Respective conformal
mappings of the boundary curve are performed by means of the Schwartz-
Christoffel Toolbox [6], [7]. The derivatives of the mapping along the free
boundary are computed by our own subroutines, based on the spline approx-
imation.

To investigate the accuracy of the proposed numerical scheme we use the
classical benchmark by Polubarinova-Kochina [16, p. 29], which describes
the fluid domain induced by a source or a sink without inclusion (ε = 0).
Evolution of the free boundary in the considered case is illustrated in Fig.1.
We analyze three different densities of the spatial meshing, described by the
number of the nodes, N , distributed at uniform angular distances: N = 35,
N = 70, N = 120. Moreover, both the fluid source and fluid sink variants
are considered. In the first case the free boundary evolves from the internal
to external shape (see Fig.1). In the second one it moves in reverse direction.
The results of computations illustrated by the relative error of the radius
vector defining the free boundary, δρ, are shown in Fig.2.

It shows that the solution accuracy is of one order of magnitude better
for the expansion (δρ = 10−6) than that for the contraction (δρ = 10−5) of
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−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

source/sink

ρ(θ, t)
θ

1

2

Figure 1: Evolution of the computational domain in time - the limiting
curves. Both cases, contraction from the curve 1 to the curve 2 in case of
the sink and expansion over the same time (from the curve 2 to the curve
1 in case of the source), are considered. Vector ρ(θ, t) defines the boundary
curve.

the domain. Thus, the proposed algorithm is capable of tackling both cases
with a satisfactory solution accuracy.

In the next step we investigate to what degree the presence of an immobile
inclusion inside the domain affects the fluid flow. Now, we restrict ourselves
only to the case of fluid source and consider a circular inclusion of the radius
ε = 0.2 inside the domain encircled by the internal curve 2 from the previous
benchmark. We retain the same source intensity and time interval assuming
zero initial conditions (z(0) = z(1) = 0) in the absence of any forces in the
right-hand sides of (4.35) - (4.36). Two various locations of the inclusion
are considered: z0 = 0.2 + 0.5i and z0 = −1.55 − 0.55i. The graphical
illustration of the problem is shown in Fig. 3, where the final shapes for the
free boundary for both variants are compared with the case of undisturbed
flow depicted with markers.

Relative deviations of the radius vector, δρ, from the one obtained for
the undisturbed flow are shown in Fig. 4. As can be expected, the maximal
distortion of the boundary curve takes place approximately along the direc-
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−3 −2 −1 0 1 2 3

10
−7

10
−6

10
−5

θ

δρ

Figure 2: Relative error of the radius vector ρ(tmax, θ). Blue line corresponds
the source case, while the red one refers to the sink configuration.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

initial shape
inclusion
− second variant

final shape
− first variant

inclusion
− first variantfinal shape

− second variant

Figure 3: Graphical illustration of the problem with an immobile inclusion.
Two locations of the obstacle are considered. The curve with markers corre-
sponds to the results for undisturbed flow (without inclusion).
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0.05

 

 

z0 = 0.2 + 0.5i

z0 = −1.55 − 0.55i

θ

δρ

Figure 4: Relative deviation of the radius-vector for both variants of in-
clusion’s location from Fig. 3. The reference value of ρ corresponds to the
undisturbed flow.

tion source-inclusion. Moreover, the shorter the distance between the source
and inclusion is, the more pronounced deviation from the reference value is
obtained. Since in both cases the source supplies the same volume of fluid
in the considered time, one can check the accuracy of computations in terms
of the fluid balance. The respective areas are:

A =
1

2

∫ π

−π

ρ2(tmax, θ)dθ.

The relative deviations of A from the benchmark value were: 1.64 · 10−6 and
4.51 · 10−5 for the first and second location of the obstacle, respectively. We
believe that the second value is greater due to the integration error itself, as
the relative deviation of ρ has a much sharper maximum in this case (compare
Fig. 4). However, both obtained results suggest very good accuracy of the
solutions as well as very good quality of the Green’s function approximation
even for relatively large magnitude of the small parameter ε. Note, that
accuracy of the uniform asymptotic formula increase (decrease) with time in
case of source (sink).

Next, we consider the inclusion with two degrees of freedom (translations)
analysing its movement in two cases. In the first of them, the friction term
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in equations (4.35) - (4.36) is neglected. The second variant accounts for the
friction phenomenon. We assume in the computations that κ = Q/(4π/ǫ) and
thus the multipliers in both terms representing forces are the same and equal
to ǫQ/(4m). In both cases we assume that initial position of the inclusion is
z0(0) = 0.1 + 0.1i and its initial velocity is zero.

The evolution of the free boundary and the obstacle movement for the
frictionless variant are shown in Fig. 5. Starting from zero initial velocity,
the obstacle moves rectilinearly along the line: the source - center of the
inclusion. We do not present a respective picture for the second variant of
the problem, as the free boundary shape is hardly distinguishable from the
former. Relative deviations from the benchmark values of ρ(tmax, θ) for both
cases are depicted in Fig. 6. The balance equation was satisfied this time to
the level of 10−8.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5: The domain evolution and obstacle movement for the frictionless
variant of the problem. Dashed lines illustrate selected intermediate posi-
tions.

The influence of friction on the inclusion movement is shown in Fig. 7-
Fig. 8. As the obstacle moves in both cases along the straight line, it is
sufficient to present the evolution in time of: the covered distance (Fig. 7)
-s(t), the absolute value of the velocity (Fig. 8a))-|v(t)|, and the absolute
value of the acceleration (Fig. 8b)) - |a(t)|.
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−0.02
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0.04
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no friction
friction

θ

δρ

Figure 6: Relative deviations of the radius vector from the benchmark value.
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no friction
friction

t

s(t)

Figure 7: The distance covered by the inclusion.

As anticipated, the influence of friction becomes more pronounced along
with the velocity increase, however in the considered time interval it is still far
away from making the inclusion movement uniform. Obviously by increasing
the value of friction coefficient one can obtain the steady state much faster.
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Figure 8: The absolute values of: a) the inclusion velocity, b) the inclusion
acceleration.

In the last part of our analysis we consider the case when the initial
velocity of the inclusion has a non-zero value, and its vector is not collinear
with the line: center of inclusion - source. We investigate the evolution
of obstacle track, velocity and acceleration caused by the fluid flow. It is
assumed that the initial position of the obstacle is z0(0) = −0.5−0.5i, while
its initial velocity yields v(0) = 2i. We consider two variants of the problem
depicted in Fig. 9. In the first one, the fluid flow is driven by the source
and initial shape of the free boundary is described by the internal curve.
The second variant assumes the domain contraction caused by the fluid sink.
Here, the initial domain is defined by the external curve. This time we shall
rather concentrate on the inclusion movement, than on the evolution of the
free boundary. The relative deviations of the radius vector from respective
reference (benchmark) values are shown in Fig. 10. Naturally, the variant
with the sink gives more pronounced deformation of the final shape, as the
distance between the inclusion and the boundary is much smaller than in the
opposite case. The fluid balance equation was satisfied to the level of 10−8

for the variant of domain expansion, and 10−7 for domain contraction.
The traces of inclusion for both considered cases are shown by markers

in Fig. 9. It should be emphasized that the imposed initial conditions do not
imply kinematic equivalence between both variants of the problem. It is a
consequence of different initial accelerations resulting from equations (4.35) -
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Figure 9: Domain configuration and obstacle movement. Markers correspond
to intermediate positions of the inclusion. Depicted boundary curves define
the initial shapes of the domain for respective variants of the problem.
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Figure 10: Relative deviations of the radius vector from the benchmark values
(without inclusion).
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(4.36). As can be seen in Fig. 12, Fig. 14, although the magnitudes of initial
accelerations are very close to each other, their vectors directions are almost
opposite.

The curvatures of the tracks (bend directions) and the signs of respective
components of acceleration are determined by the source/sink activity. In
the case of domain expansion the fluid flow direction magnifies the velocity
of obstacle. Thus the distance covered is greater than that for fluid sink. Ob-
viously, for other configurations of the initial velocity vector one can expect
different trends.
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t

v2(t)

b)

Figure 11: Components of the inclusion velocity: a) horizontal, b) vertical.

Concluding this section, we have shown that the method utilized the
uniform asymptotic expansion for the Green function delivered in [25] is
effective and the computations based on that approach are stable and robust.
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Figure 12: Components of the inclusion acceleration: a) horizontal, b) verti-
cal.
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Figure 13: The distance covered by the inclusion.
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Figure 14: The absolute values of: a) inclusion velocity, b) inclusion acceler-
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Shaw cells, Birkhäuser Verlag, Basel-Boston-Berlin, 2006.

[17] J. Hadamard, Sur le problème d’ánalyse relatif à équilibre des plaques
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