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Abstract

A positive functional x* on the space £~ of all bounded sequences is called a Banach-Mazur limit if
lx*] = 1 and x*x = x*Tx for all x = (x1,x2,...) € £xo, where T is the forward shift operator on
loos 1e., Tx = (0, x1, xp, ...). The set of all Banach-Mazur limits is denoted by BM and a collection of
extreme points of BM is denoted by ext BM. Let

acy = {x € €oo : x*x = 0 forall x* € BM}.

The following sequence spaces

D(acyo) ={x € b : x -aco S aco} and Z(acy) = aca' — acg

are studied. In particular, if z € £oo then z € D(acy) iff z — Tz € Z(acy); moreover, z € D(acy) iff x*{n :
lzn — x*z] > €} = 0forall ¢ > 0 and x* € ext BM. Order properties of Banach-Mazur limits are consid-
ered. Some properties of ext BM are derived. We used the representation of functionals x* € BM as Borel
measures on SN\ N. The cardinalities of some subset of BM are given. We also consider some questions of
the probability theory for finite additive measures. E.g., for every x* € BM there exists an element x € £
such that the distribution function Fyx , (f) = x*{n : x, < t} is continuous on R. Two definitions of a vari-
ance are suggested. It is shown that Radon—Nikodym theorem is not valid for finite additive measures: the re-
lations 0 < x* < y* € £%, do not imply the existence of w € £« satisfying x*x = y*(wx) forall x € £oo.
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1. Introduction and preliminaries

Let £ be the linear space of all (real) bounded sequences x = (x1, x2, ...) under the natural
algebraic operations. Under the sup norm ||x|| = sup, |x,|, the space £ is a Banach space. As
usual, for two sequences x,y € fo0, We write x > y (or y < x) if x, > y, for all n. Under
this ordering, £, is a Riesz space and, moreover, is even a Banach lattice with positive cone
¢t = {x € €x : x > 0}. Furthermore, for any x, y € £ the multiplication can be defined by
xy = (x1y1, X2¥2, . ..). Therefore, £, is a commutative Banach algebra with unite = (1, 1, ...).

As usual, the norm dual space £}, of £« is a collection of all (linear, bounded) functionals
on . The space £ is a Banach lattice. It is well known (see [2, p. 539]) that the band (£}),]
of all order continuous functionals on £, is lattice isometric onto the space £; of all absolutely
summable sequences. Therefore, the decomposition

=0 @0 =0 @ (x* e £, x*(co) = (0}

holds, where ¢ is the space of all sequences converging to zero (for another representation of
2%, see (20) and (28)).

A linear functional x* on £, is called a Banach—Mazur limit (see, e.g., [2, Section 16.10]) if

(a) x™* is a positive functional, i.e., x*x > 0 for each x € E;ro;

(b) x*(x1, x2, x3,...) = x*(0, x1, x2,...) foreach x € £;

(c) x*e = 1.

The set of all Banach—-Mazur limits is denoted by BM. Other names used for Banach—-Mazur
limits are Banach limits and generalized limits. In 1929, Mazur has proved that BM # (. Since
then Banach—Mazur limits have been investigated in various ways by many authors (see, e.g.,
[1,4,5,8-13,15,16] and the references in them). Our paper extends this line of research.

We recall some results about Banach—Mazur limits which will be used later on. As follows at
once from condition (a) above, every functional x* € BM is bounded, i.e., x* € £3,. Condition
(c), in it turn, implies the equality [|x*[l¢x, = 1, i.e., x* belongs to the positive part of the unit
sphere S;‘oo of £%,. As is easy to see, the set BM is convex and o (£, £ )-compact and, hence, by
Krein—Milman theorem [3, p. 137], it is the o (£}, £o)-closed convex hull of the set ext BM of
its extreme points. On the other hand, the set ext BM is not o (£}, £oo)-closed [11]. For x € £,
we put T(x) = max,=cpM X X = MaXy+cext pM X *X. We have the next identities [15]

n—1

. 1
7(x) = lim sup — Zx'"+i e
n—>00 , n 4
i=0
and

1 n—1

min x*x = min x x = lim inf— E Xm+i-

x*€BM x*eext BM n—oco m n =

Next, as is easy to see, if x € ¢p then x*x = 0 for all x* € BM. A sequence x € £ is said to
be almost converging to zero [9] whenever x*x = 0 for all x* € BM. G. Lorentz proved in [9]
that a sequence x € £, almost converging to zero iff

. Xm + o+ Xmtn—1
lim

n— 00 n

=0

uniformly in m. The collection of all sequences almost converging to zero is denoted by acy.
Obviously, acy is a closed subspace of £+, and the inclusion cp € acp holds. This inclusion is
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proper. Indeed, if {n;} is a subsequence of N and ngy; — nxy — o0 as k — oo then [1] the
characteristic sequence X{n, n,,..)} € aco.

If T is the forward shift operator on £, i.e., Tx = (0, x1, x2, .. .), then condition (b) of the
definition of a Banach—-Mazur limit is equivalent to x* = T*x*, where T* is the adjoint operator
of T. In particular, the space acg is T-invariant and the inclusion BM C N (I — T*) holds, where
N(I — T*) is the null space of I — T*. Moreover, the set BM is the positive part of the unit
sphere of the AL-space N(I —T*), whence, for z* € BM, we have z* € ext BM iff z* is an atom
in N(I — T*) (see Section 4 for the detailed discussion). If U is the backward shift operator on
loos 1.8., Ux = (x2, X3, X4, .. .), then for the ranges of the operators I — T and I — U, we have
R(I —T) = R(I — U) = bs, where bs is the space of bounded series defined by

n
2%
i=1
and, hence N(I — T*) = N(I — U*). The relation bs = acp holds (see, e.g., [1]), where the
closure was taken in the norm topology of €.

The paper is organized as follows. In Section 2, the stabilizer D(acp) of the space acp is
studied. In Section 3, Banach—-Mazur limits are considered as measures on the Stone—Cech
compactification BN. Section 4 discusses, in particular, the cardinalities of some subsets of BM.
In the last section, the results obtained in the preceding ones are considered from the viewpoint
of the probability theory. It allows, on the one hand, in a new fashion to look at some properties
of Banach—Mazur limits and, on the other hand, to take a step in the study of finite additive
probability measures.

For any unexplained terminology, notions, and elementary properties on ordered linear spaces,
we refer to [2,3]. For information on the Stone—Cech compactification, we suggest [7]. More de-
tails on weak topologies on Banach spaces can be found in [3, Chapter 3] (see also [6, Chapter 5]
and [2, Chapters 5-7]). We refer the reader to [14] for necessary information from the probabil-
ity theory. In the sequel, unless stated otherwise, considering some topology, we will assume the
norm topology of a given normed space. Furthermore, the case of a sequence x as an element of
the space ¢, (or, more generally, of the space s of all real sequences) and the case of a sequence
of elements {x,} in some set A of an arbitrary nature should differ. The support of an arbitrary
function f : A — Risthesetsupp f = {a € A: f(a) # 0}. Next, we put e, = xu), where
n € N. For a subset B of N the operator Pg on {, is defined by Ppx = ypx. For an arbitrary
(linear) subspace X of s and a subset B of N the expression B € X (B ¢ X) means the validity of
the relation xp € X (xp & X); if x™ is a functional on X and B € X then we put x*B = x* xp.

bs:{xeﬁoo:sup <oo},
n

2. The sequence space D(acy)

The stabilizer of the space acy is called the set
D(aco) ={z €s:z-acy C acp}.

The stabilizer was introduced in [10]; see also [1]. This section is a continuation of research
which was begun in these two papers.
For an arbitrary functional x* € BM, we put

Dy ={ze€s:z-aco € Nx™J.

where N (x*) is the null space of the functional x*.
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Obviously, e € Dy+. The inclusion Dyx < {o holds. Indeed, if z €
D+ \ fo then for some subsequence {ny} of indexes, the relation z,, — 0
is valid. We can assume that the set {n1,ny, ...}
€ acop. Thus, the sequence z - X{n, n,,...} € N(x¥) and, in particular, is bounded, a contradic-
tion. Next, the subspace Dy« is T-invariant. To see this, for arbitrary sequences z € D+ and
y € acy, we have

x*(Tz-y) =x*(U(Tz-y) =x"(z-Uy) =0,
as required. Using the identities

acy = m N(x*) = ﬂ N(x"),

x*eBM x*eext BM
we obtain
D@aco)= () Der= () Du ©)
x*eBM x*eext BM

and, hence, D(acy) is a closed T -invariant subspace of £.
We need the next variant of the classical Chebyshev’s inequality.

Lemma 1. For x € {o, x* € £}, and a number % > 0, we have the following inequalities
s el = 2 < 27 et L] 3)
and

I o, — x%x] > A} < minfA ™ e x — (x*x)el, AT |((x — (Fx)e)D)).

Proof. The first inequality follows at once from the next relations
LX) = X [ Ppcpy =y 16 ] = A [{n s xa] > 2}
and the second inequality is a simple consequence of the former. [J

Corollary 2. If x € £oo, x* € £}, and |x*| |x — (x*x)e| = O then for every € > 0 the equality
|x*|{n : |x, — x*x| > €} = 0 holds.

Theorem 3. For an element 7 € £ and a functional x* € ext BM the following statements are

equivalent:

(a) yAIS] Dx*;

(b) z- N(x*) € N(x¥);

(c) For every x € £, we have
x*(xz) = (%) (x*2); 4)

(d) x*|z = (x*z)e| = 0;

(e) Forevery y € Dy, we have x*

v =zl = Ly = zhe| = 0;
(f) For every y € Dy, we have x*

(g) x*lz—Tz| =0;
(h) For every € > 0, we have

(FlzDly — 2l = |y — ZI)IZI’ =0

x*{n |z, —x*z] > €} =0.
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Proof. The implication (b) = (a) is obvious.
(a) = (c) If x*|z| = O then the assertion is clear. Let x*|z| > 0. Define the functional x} on
£ via the formula

® ok
xix = x*(xz). ®)
The relations [1] |x]| < [|lz[lx* and ||x}]l¢x, = x*|z| are valid. Since z € Dy, we obtain x; (aco)

= {0} and so x} € N(/ — T"), whence ;f—;;ll € BM. Now, taking into account the inclu-
sion x* € ext BM, we infer |x}| = (x*|z])x*. Choose a scalar « satisfying z + ae > 0.
Since 7z + we € Dy+, the last equality implies x*(x(z + «e)) = x*x - x*(z + «e) and so
x*(xz) = (x*x)(x*z) forall x € €.

(¢c) = (b) For every x € N(x*), we have x*(xz) = x*x - x*z = 0, i.e.,, xz € N(x*).

Thus, the equivalence of the first three statements has been established. It follows from (b)
that D= is a closed subalgebra of {~,. Consequently, as every closed subalgebra of the space
£~ containing the unit e or, in general, of the space C(K) of all continuous functions on some
(Hausdorff) compact space K, D, is a Riesz subspace of £.

Now we verify that the equivalent statements (a)—(c) imply the validity of each of the state-
ments (d)—(g). To this end, if an element z € D, then, in view of (c), for an arbitrary element
X € Lo the relation

x*(x(z — (x*2)e)) =0 (6)
holds. From this, (d) follows at once. Therefore, if y € D, then, since |y — z| € Dy*, we have

x*

ly —z] — (x*|y — zl)e‘ = 0 and (e) has been proved. On the other hand, using (c) once

more, we obtain x*(x|z|) - x*|y — z] = x*|z| - x*(x|y — z|) for every element x € £o,. Thus,

x| x*zDly =zl — (Fly — z|)|z|‘ = 0 and (f) is proven. Next, since Tz € D,*, we have

x*x(z—=T2) =x"(xz) = x*(x - Tz) =x*x - x*z —x*x - x*(Tz) =0

and (g) has been established.

(d) = (b) In view of (6), for y € N(x*), we have x*(yz) = 0,1i.e.,z- N(x*) C N(x™).

(e) = (a) Using the preceding implication, we obtain |y — z| € D+ for y € D,+. In partic-
ular, for y = —||z||e the relations z + ||z||le = | — ||z]|e — z| € Dy hold, whence z € Djx.

(f) = (e) If x*|z|] = 0 then z € Dy+ and, as showed above, (e) is valid. Let x*|z| > 0. For
every > ||z|| the equality

(x*|z)(Be — 2) — (x*(Be — 2)Iz|| =0

x*

holds and, consequently, x*

(x*|z])e — %z — |zl + %Id = 0. Letting 8 — +00, we have

x*

lz] — (x* Izl)e) = 0. Whence, using our condition once more and the last identity, for every
y € Dy+, we obtain

1
by =2l = 7y = 2be| = |Gl = 2l = @l — 2l 2 e
< — |ty = 2Dlel = @y — 2l 1 zDe]
x*|z]
x*y —z
= T oy - tiene] =o.
x*|z]

as desired.
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(g) = (a) For an arbitrary element x € £, we have the equalities

0=x"(x(z = Tz)) =x"(x2) —x*(U(x - T2))
= x*(xz) = x*(Ux)2) = x* (I — U)x)2),

i.e.,z+-bs € N(x™) and, hence, z - aco C N(x*). Finally, z € Dy+.
The implication (d) = (h) follows at once from Corollary 2.
(h) = (b) For an arbitrary element x € N (x*) and a number € > 0, we have

x*(xz) = x*(x(z — (x*2)e))
= X*(Ppn:jzp—x*z2e}X (2 — (x72)€)) 4+ X (Pn:jzy—x*z]<e)X (2 — (x¥2)€)) < €x™|x].

Letting € | 0, we obtain xz € N(x*). O

We note that the identity x*‘ le — z| — (x*|e — z])e| = 0 with z € €o does not imply the

inclusion z € Dy«. To see this, it suffices to consider an arbitrary element z such that, on the one
hand, |e — z| = e and, on the other hand, z ¢ N (x*) (e.g., z = (0, 2,0, 2,...)).

Corollary 4. The restriction of x* € ext BM on Dy is a lattice and algebraic homomorphism.

Proof. As was mentioned in the preceding theorem, the space D, is a closed subalgebra and a
Riesz subspace of £,. According to part (c) of this theorem, x* is multiplicative on D,+. Next,
consider an element z € D, and find a sequence x € £, satisfying xz = |z| and |x| = e. Using
(4), we get x*|z| = |x*x]||x*z] < |x*z| < x*|z|. Consequently, x* is a lattice homomorphism.
As a matter of fact, the next result holds: If J is a closed subalgebra of £~ (or, in general,
of the space C(K)) and the unit e € J then a functional x* € J* with x*e = 1 is a lattice
homomorphism iff x* is an algebraic homomorphism. [

Corollary 5. For x* € ext BM and a subset D of N the equality x*(D A (D + 1)) = 0 implies
x*D € {0, 1}.

Proof. We recall first that the symmetric difference AA B of sets A and B defined via the formula
AAB = (A\B)U(B\ A). The relations 0 = x*(D A (D 4+ 1)) = x*|xp — T xp| hold. In
view of Theorem 3(g), D € Dy+. Whence, taking into account the preceding corollary, we infer
x*D = (x*D)?>andso x*D € {0,1}. O

Before proceeding further, we recall that in the space ¢+, the notions of algebraic ideal and
of order ideal coincide (see, e.g., [1]). Thus, in the sequel, we shall simply use the term ideal.
On the other hand, the space acp is not an ideal in €,. There exists (see [1]) the maximal (by
inclusion) ideal in aco which is called an ideal stabilizer of aco and will be denoted by Z (acyp).
For a sequence z € ¢ the inclusion z € Z(acp) holds iff

. |Zm| =+ -+ |Zmgn—1l
lim =

n— 00 n

0 @
uniformly in m. Moreover, the equality
I(acy) ={x —y:x,y €acopand x, y > 0}

is valid and, in particular, the ideal Z (acg) is T -invariant. Obviously, Z (acp) is a closed ideal and
the relations co & Z(aco) & D(acp) hold.
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Theorem 3'. For an element 7 € L, the following statements are equivalent:

(a) z € D(aco);
(b) For every x* € ext BM, we have z - N(x*) C N(x*);
(¢) Forevery x € £o and x™ € ext BM, we have
x*(xz) = (x*x)(x"2); ®)
(d) For every x* € ext BM, we have x*|z — (x*z)e| = 0;
(e) Forevery y € D(acy) and x* € ext BM, we have x*’ ly —z] — (x*|y — z|)e‘ =0

(f) For every y € D(aco) and x* € ext BM, we have x*

(&) z — Tz € Z(acy);
(h) For every € > 0 and x* € ext BM, we have

(FlzDly — 2l = (Fly — ZI)IZI‘ =0

xnilzn —x"zl = €} =0 ©)
(i.e., the sequence 7 converges “scatterly” with respect of x* to x*z).

Proof. It follows immediately from the preceding theorem and the equalities (2) that the
statement (a) implies each of the statements (b)—(h) and each of the statements (b)—(d), (g),
and (h) implies (a). The implications (f) = (e) = (a) can be checked as analogous
implications of Theorem 3. [

The equivalence of parts (a), (c), and (d) of the preceding theorem was earlier established
in [1] (see also [10]). As follows from part (c), every functional x* € BM which belongs to

ext BM (€201 £e0) is multiplicative on D(acy). It is not known if the converse holds.

Now we will discuss the question about the validity of the inclusion D € D(acp) for some
subset D of N. Obviously, if a subset D is finite then D, N\ D € D(acq). The next result was
obtained in [13].

Corollary 6. Suppose that D is a subset of N defined by D = U,fil [dok—1, doy — 1] withdy, € N
and dy < di41 for allk € N. Then D € D(acy) iff

. digj—1 —di
lim ———— =0

(10)

uniformly in k.

Proof. In view of part (g) of the preceding theorem, we have that the set D € D(acy) iff the set
B = {d|,d>, ...} € I(acp). The latter implies lim;_, o ‘#ll_dk = 0 uniformly in & and the
necessity follows. For the converse, let (10) hold. Put dy = 0. For arbitrary numbers m,n € N,
we define indexes k,, € N and j,, , € {—1, 0} UN by the following manner. Find an index k,,

satisfying dy,,—1 < m < dy,,. Next,if m +n — 1 < di, (e.g.,n =1 and m < dy,) then we put

Jmpn = —1L.Ifm+n—1 > dg, then we pick j » suchthatdy, j,, <m+n—1<dg,+j,,+1.
Evidently,

n=m + n— 1 —m + 1 Z dkm+j)11.n - dkm + l 2 dkm"l‘jm,n - dkm' (ll)
On the other hand,

1 et card (BO[m,m+n—11)  jun+ 1

LIS i = - |

n o — n n
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Consequently, it suffices to check the equality lim,_, » @ = 0 uniformly in m, which, in
view of (7), implies the inclusion B € Z(acy). To this end, proceeding by contradiction, we find
€ > 0 and subsequences {m,} and {n,} of N satisfying the relations M > ¢ for all » and
n, — 0o asr — oo, whence j,, ,, — oo. Taking into account the relatlons (11), we have

_ Jmrnr®l e atter contradicts (10). [

€<
dkmr +jmy ,ny —d, mpr

Corollary 7. Suppose that {d; } and {d}'} are two sequences in N satisfying d;. < d;’ and limy_, oo
(d — dp) = oo. Then the next statements hold:

(a) The subset D = | Ji2,[d; ., d}] of N belongs to D(ac);
(b) If x € Lo and d < d;_, for sufficiently large k then the element z = Y ;2 Xk X{dy dy'
belongs to D(acy).

Proof. (a) As is easy to see, we can assume that the sets [d;, d}'] are pairwise disjoint and
d/ +1 < d; 4 for all k. Consequently, lim o0 dy = limg_ood}’ = 00 and, hence, both
sets {d{,d5, ...}, {d],d}, ...} € I(acp). Thus,

xp = TXD = Xal.d}...}y — Xia/+1.a}+1...} € L(aco).

In view of Theorem 3'(g), D € D(acy).
The statement (b) can be proved in a similar manner. [

It should be noted that the relation (9) does not hold for an arbitrary functional x* € BM
and z € D(acy). In fact, consider the sequence z = (1,0,1,1,0,0,1,1,1,...). According to
the preceding corollary, z € D(acp). Fix a number A € (0, 1). As follows easily from (1), there
exists a functional x; € BM satisfying x;z = . Next, for every € € (0, min{A, 1 — 1}), we have
xi{n |z — Al =€} =xiN=1

Corollary 8. The inclusion Z(acg) @ {re : A € R} C D(acy) is proper:

Proof. This result was obtained in [1]. Below we suggest the proof which, on the one hand, is
more simple and, on the other hand, distinguishes a wide class of elements belonging to D(acy)
while not representing in the form of y + Xe with y € Z(acy).

Let {d;} and {d}'} be two sequences in N such that d| = 1,d; < d}/ < d12+1 for all k, and
limg_, oo (d} — d}) = o0o. Then, in view of Corollary 7(a), the set D = Uk:l b Ayl € D(aco).
On the other hand, using the relation (1), we have t(xp) = (xnp) = 1, whence there exist
functionals x}, x5 € BM satisfying x; D = 1 and x; D = 0. Now if xp = y+Ae with y € T(aco)
and A € Rthen xD = A fori = 1, 2, a contradiction (the arguments above are also valid for the

set B = U2 ldy_ dy_ - O
Part (g) of Theorem 3’ suggests the definition of the following sequence space
Do={z€loo:z2—=Tz€co}={z €Lloo: lim (zp41 —20) = 0}
n—o00

and a possible connection of it with Banach—-Mazur limits. As is easy to see, Dy is a closed
subalgebra of £, while is not an ideal in £,. Evidently, Dy € D(acp) and (see, e.g., [16, p. 139])
Do Nacy = co. The space D = {z € s : z— Tz € ¢o} also can be considered, but D Z £o.. We
can go some more further and, for an arbitrary ideal J in £, consider the space Dy = {z : 7 —
Tz € J}. As far as the author knows, spaces D, and, in particular, Dy have not explored in detail.
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The next result tells us when a positive functional z* € D(acp)* extends to a functional on
£~ which belongs to BM. By £(z*), we shall denote the set

EENY ={x" el :x*>0and x*z = "z forall z € D(acy)}.

Theorem 9. For a functional 7* € S&aco)* the following statements are equivalent:
(a) BMNE(Z*) £ 0;
(b) The equality z*z = z*(Tz) holds for all z € D(acy);
(c) z*(Z(aco)) = {0}.
If, in addition, z* is multiplicative on D(acy) then the statements (a)—(c) are equivalent to the
next:

(d) (ext BM) N E(z*) # .

Proof. The implications (d) = (a) = (c) are obvious.

(b) = (a) By Kantorovi¢ theorem [3, p. 26], £(z*) # @. Moreover, as is easy to see, the
set £(z*) is convex, o (£}, £oo)-compact, and T *-invariant. Now the desired assertion follows
immediately from Schauder—Tychonoff Fixed Point Theorem [2, p. 583] (the given argument is
valid for every T -invariant subspace D of £, which contains e).

(¢) = (b) In view of Theorem 3’(g), for an arbitrary element z € D(acg) the inclusion
z — Tz € I(acp) holds. Now the statement (b) is clear.

The proof of the implication (¢) = (d) will be given in the next section. [

3. Banach—-Mazur limits as measures on SN

We recall first that a compactification [2, p. 56] of a (Hausdorff) topological space X is a com-
pact space Y where X is homeomorphic to a dense subset of ¥, so we may treat X as an actual
dense subset of Y. A space X has a compactification iff X is completely regular. Moreover, in
this case, X has a compactification X with the following property: every continuous bounded
real function f on X has a (unique) continuous extension f# from X to R. Furthermore, 8 X
is unique, in the following sense: if a compactification Y of X satisfies this property then there
exists a homeomorphism of §X onto Y that leaves X pointwise fixed. This compactification 8 X
is called the Stone—Cech compactification of X (see [7, Chapter 6] and [2, Sections 2.17, 2.18]
for details). Obviously, the mapping f — f# defines an isometric isomorphism from the space
Cp(X) of all continuous bounded functions on X onto the space C(8X) which preserves alge-
braic operations and lattice operations. We also mention the next properties of X which will
be used below. A completely regular space X is extremally disconnected, i.e., every pair of dis-
joint open subsets of X have disjoint open closures, iff X is extremally disconnected [7, p. 96,
Exercise 6M.1]. Next, for every infinite discrete space X the identity [7, p. 130]

card X = 22" (12)

holds. Moreover, if X is a Lindelof space, i.e., every open cover has a countable subcover, and
is also locally compact then [7, pp. 115, 133] the cardinality of every infinite closed subset of
BX \ X is at least 2°.

The set N with the discrete topology is a completely regular space and, hence, it has the
Stone—Cech compactification AN. In view of the remarks above, BN is extremally disconnected.

Moreover, [7, p. 99, Exercise 65.3] every open-and-closed subset of SN is of the form a’ N for
some A C N and the sets of this form constitute a base for the topology on SN.
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Every sequence x € £ can be considered as a continuous bounded function on the set N with
the discrete topology. Therefore, this function extends uniquely to the continuous function X from
BN to R. The mapping x — X is a lattice isometry from £, onto C(8N). Consequently, every
functional on C (BN) defines a functional on £.. In particular, for every point # € BN there exists
a functional x;* € £} such that x;x = §,x = X(¢) for all x € £. A functional x* € S;& can be
represented in the form x* = x; for some ¢ € BN iff x* is a lattice (algebraic) homomorphism
on {«. Moreover, for a point t € SN, we have the inclusion t € N = BN\ N iff x;"(cp) = {0}.
Next, by Riesz Representation Theorem [2, p. 497], for every functional x* € £} there exists
a unique regular signed Borel (countable additive) measure w,» (of bounded variation) on SN
satisfying

x*x:f Xdyr (13)
BN

for all x € fo. As usual, the support of a measure p,+ (see, e.g., [2, Section 12.3]) will be
denoted by supp fLy+. R

The operator T on £ is lattice homomorphism. Therefore, for an arbitrary point t € N
the functional T*x/ is also a lattice homomorphism, whence T*x/ = x7,, for some point

() € N. Analogously, U*x} = x;/k/(t) for some point ¥ (¢) € N. As s easy to see, the mappings
o, N — N which have been constructed satisfy (¥ (1)) = ¥ (¢(t)) =t forallt € N and so

PIG) _
=5 x}, the mappings

¢ = ¥~ L. Next, since a net {t,} in BN converges to a point ¢ iff x;;
¢ and ¢ are continuous. Finally, ¢ and v are homeomorphisms.

It is well known (see, e.g., [8]) that a functional x* € €% is a Banach-Mazur limit iff 4+ is
a probability measure, the inclusion supp g+ C N holds, and uy+(B) = px+(¢(B)) (px+(B) =
(¥ (B))) for every Borel subset B of N. As is easy to see, the mapping i extends to a con-
tinuous mapping from BN into BN via the formula v (n) = n + 1 for all n € N. In this case, for
x* e}, we have x* € BM iff pu,+ is a probability measure being v-invariant, i.e., py«(B) =
wes (Y~ 1(B)) for every Borel subset B of SN.

Theorem 10. Let x* € BM. Then supp ftyx = @(SUpp fhyx) = Y (Supp py+).

Proof. We will verify the g-invariance of the set supp py+, i.e., the validity of the inclusion
@(supp pmy*) C supp iy. Proceeding by contradiction, we find a point

t € Supp fiy+ (14)

such that ¢ () & supp p.+. There exists a neighborhood U, () of the point ¢(t) satisfying Uy N
supp py+ = #. By Urysohn’s lemma [7, p. 44], for some element x € £}, we have X(¢(z)) > 0
and supp x C Uy(r)- Then, on the one hand, 0 = x*x = x*(Tx), whence

supp Tx N supp pux+ = 9, (15)

on the other hand, 0 < X(¢(¢)) = 8¢(t)3? = 8,(7/"\)6), whence t € supp T x. The latter contradicts
(14) and (15). The inclusion ¥ (supp px+) < supp = can be checked by a similar manner. Now
the required assertion is obvious. [J

For an arbitrary subset D of BN, we define the subspace Lp of €% as the span of the set
{x/ :t € D} (ift D = @, we put Lp = {0}). Since for every t € SN the functional x;" is an atom
in the Banach lattice £}, the subspace Lp is an ideal in £}.
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Lemma 11. For a subset D of N the following statements hold:

(@) If D is ¢ (or ¥ )-invariant then the bipolar L and the set L3N Szr

®) If (D) = D then
T*Ly =U'Ly =Ly and T*(LFNS,L)=U"LENSS)=LENS,.

is T* (or U*)-invariant;

*
o0

Proof. (a) Let D be g-invariant (the case of ¢ is analogous). The bipolar L}; was taken, of
course, with respect to the dual system (£, £5,). By the Bipolar Theorem [3, p. 140], L is
the o (£3,, £xo)-closure of Lp. On the other hand, since the set D is g-invariant, the subspace
L p is T*-invariant and, hence, L%, is also T*-invariant. Using the inclusion D C N, we get the
T*-invariance of L35 N S;F .

(b) For an arbitrary functional x* € L5y there exists a net {x}} in the space Lp such that
o (€%, €00)

. x*. Using our condition, we find a net {y}} in Lp satisfying T*y} = x}. Conse-

quently, y¥ = U*T*y> — U*x* and so U*x* € L}, whence x* = T*U*x* € T*(L}) and
so Ly € T*(L$). According to part (a), we have L}y = T*L%). The equality U*L}) = LY
follows from the identity U*T* = I on the band €{ in the Banach lattice £

Now let x* € L3 N SZZ . As showed above, there exists a functional y* € L9 such that
T*y* = x*. Since T is an interval preserving operator, the adjoint operator T* is [3, p. 92] a lat-
tice homomorphism, whence T*|y*| = x* = T*y*. Therefore, T*(y*)~ = 0 and so (y*)~ = 0.
Thus, y* > 0. Then 1 = [x*|lx, = y*(Te) = y*e = ||y*|l¢x,. Finally, T*(Ly N Sz;m) =
Ly N Szt . The case of U* is analogous. [

Theorem 12. For every nonempty ¢ (or )-invariant subset D of ﬁ, we have the relation
(ext BM) N LG # .

Proof. Let D be p-invariant. In view of part (a) of the preceding lemma, the convex o (£}, £o0)-
compact set L3 N Slfﬁ is T*-invariant. Consequently, by Schauder-Tychonoff Fixed Point
Theorem [2, p. 583], the set N(/ — T*) N Ly N SZ* is nonempty. Moreover, this set is also
convex o (£}, £s)-compact. By Krein—Milman theorem [3, p. 137], it has an extreme point
Feext (NI —TNLyNS). (16)
Clearly, z* € BM. We claim that z* & ext BM. To this end, let z* = 252 with z¥, z5 € BM,
Since Lp is an ideal in the Banach lattice £%_, the bipolar L is a band and, in particular, is an

ideal in £7,. Consequently, the last equality implies the inclusion z7}, z5 € L}5. Thus, in view of
(16), we have z} = z} and, hence, z* € ext BM. [

Lemma 13. For x* € £}, and a subset D of BN, we have the next statements:
(a) The relation x* € LSS holds iff ,qu(ﬁ) = pp+(BN), i.e., supp py+ € D;
(b) The relation x* L L holds iff p|x+|(D) = 0.

Proof. (a) For the necessity, consider a point 7 € BN which does not belong to the closure D
of D. Pick a neighborhood U; of ¢ such that i/, N D = (. By Urysohn’s lemma [7, p. 44], there
exists an element x € ¢} satisfying X(t) > 0 and supp X < U;. Using our condition, we find

0 (£3,.60)

anet {x}} in Lp with the property x; ———— x*. Then 0 = x}x — x*x and so x*x = 0,
whence t & supp fyx.
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For the converse, proceeding by contradiction and using the classical Separation Theorem
[3, p. 136], we find an element y € £ satisfying x*y # 0 and y*y = 0 for all y* € L. Thus,
¥(s) = 0forall s € D. Consequently, we obtain x*y = 5V du,+ = 0, a contradiction.

(b) Let x* L L. Define the measure ,uf* on the o -algebra B(BN) of all Borel sets of SN via
the formula 2. (B) = (D N B) for all B € B(BN). As is easy to see, u2. is regular. Thus,
for some y* € £, we have pLxD* = [y+. Moreover, the inclusion supp p,+ C D holds. Whence,
in view of part (a), we get y* € L% . On the other hand, using the inequalities ptjy+| > wy+ > 0,
we have [x*| > y* > 0. Therefore, y* L L5. Finally, y* = 0 and so mx*\(ﬁ) =0.

For the converse, consider an arbitrary functional z* € [0, [x*|] N L5. Then, on the one hand,
the inequality g+ < p|x+| implies w+(D) = 0, on the other hand, supp .+ € D, whence
pzx = 0and so z* = 0. Finally, x* L L. [

The preceding lemma is valid for an arbitrary subset D of some compact space K, a functional
x* € C(K)*, and the span Lp of {8; : d € D}.
From Theorem 12 and Lemma 13(a), the next result [4] follows.

Corollary 14. For every nonempty ¢ (or yr)-invariant subset D of N there exists a functional
z* € ext BM satisfying supp u+ < D.

As is well known, every closed (algebraic or order) ideal J in the space C(K), where K is
compact, can be represented in the form J = {x € C(K) : x(A) = {0}} for some closed subset A
of K; the converse is obvious. Consequently, the ideal Z(acg) in the space £, can be represented
in the form Z(acp) = {x € {w : X(A) = {0}} for some closed subset A of BN. As is easy to see,
AGN

Next, the orbit (with respect to the mapping ¢ or ¥) of a point ¢ € N is the set

O, ={"(t) :neZy={"@) :n e}
It is not difficult to show that ¢(O;,) = ¥ (O;) = O;.

Theorem 15. The following statements hold:

(a) The equalities p(A) = Y (A) = A are valid and, in particular, for every point t € A, we
have O, C A;

(b) A= Ux*eBM SUPPpUyx* = Ux*eextBM SUPPMy*y .

(¢) For every nonempty ¢ (or Y )-invariant subset D of N the relation DN A # @ is valid and,
in particular, for every point t € N, we have O; N A # ;

(d) For an arbitrary element 7 € D(acy) and a point t € A the function 7 is constant on the
set Oy.

Proof. (a) Consider an arbitrary point s € A and an element x € Z(acp). We have the equalities
x;(s x = (T*x})x = x}(Tx) = 0 and, hence, ¢(s) € A. Therefore, p(A) € A. Analogously,
Y (A) € A. Finally, p(A) = ¢ (A) = A.

(b) The inclusions [ J «cex pm SUPPHx* S U, +epm SUPPUy+ S A are obvious. We verify the

inclusion A C A" = [ .« cexi pM SUPP/+- To this end, we consider an arbitrary point s ¢ A’ and
find a neighborhood U of s such that U, NA" = @. By Urysohn’s lemma [7, p. 44], there exists an
element y € £} satisfying y(s) > 0 and supp y < Uy. Therefore, x*y = 0 for all x* € ext BM
and so y € acg. Thus, we obtain y € Z(acp) as y > 0. Finally, s &€ A.
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(c) This statement follows at once from Corollary 14 and part (b) above.

(d) In view of Theorem 3/(g), we have 0 = x*(z — Tz) = Z(t) — Z(¢(t)). Whence, using part
(a) above, we obtain easily the identity Z(¢" (1)) = Z(¢) for all n € Z. Thus, Z(w) = Z(¢) for all
w e O;. O

The set |J,«cpm SUPPix+ Was earlier considered, e.g., in [4] (where it was denoted by K©),
but from another viewpoint.

Now we are ready to prove the implication (c) = (d) of Theorem 9. To this end, let z* be
a positive multiplicative functional on D(acg) such that z*e = 1 and z*(Z(aco)) = {0}. Since
D(acy) is a closed subalgebra of £, z* is a lattice homomorphism. Therefore, by Lipecki—
Luxemburg—Schep theorem [3, p. 99], z* extends to all of £, as a lattice homomorphism. Thus,
there exists a point ¢ € SN satisfying the relation

xfz=2"z a7

for all z € D(acp). The inclusion ¢ € A holds as z*(Z(aco)) = {0}. In view of part (d) of the
preceding theorem, z*z = Z(s) for all s € O;. On the other hand, Theorem 12 guarantees the
existence of a functional x* € (ext BM) N L?Qi. A glance at Lemma 13(a) yields the relation

supp py+ € O; and, hence, x*z = f@?dﬂx* =7(t) = z*z for all z € D(acy). Thus, x* = z*
on D(acy), i.e., x* € £(z*). O

Lemma 16. If the identity T*x* = x™* holds with x* € £} then T*Byx = By».

Proof. First of all, we recall that By is the band generated by x* in the Banach lattice £%. Next,
the operator T is one-to-one with closed range R(T'), whence R(T*) = £%,.

Using the identities 7*|x*| = |x*| and Bjyx| = B+, we can assume x* > 0. Evidently,
T*By+ C Byx. Let us verify the converse inclusion. To this end, let y* € By. In view of the
remarks above, there exists a functional z* € £} satisfying 7%z* = y*. Clearly, z* can be rep-
resented in the form z* = z] + 23, where z] € B, and 25 L B,+. Since z5 L x* and T* is a
lattice homomorphism, we have 7%z L x*. Whence, using the equality y* = T*z] + T*z3, we
obtain y* = T*z] € T*By+. [

Now we are ready to derive the next characterization of extreme points of BM.

Theorem 17. For a functional z* € BM the following statements are equivalent:

(a) z* € ext BM;
(b) For every band B in £}, such that T* B = B, we have either z* € B or z* L B;

(c) For every principal band By« in £}, where y* € €%, such that T* By = Byx, we have either
7* € By« or ¥ L By

Proof. (a) = (b) The element z* can be represented in the form

=1 +7, (18)
where z’l‘ € B and z%‘ 1 B. Evidently, z;" > 0 and T*z’f € B. Moreover,

T*z; L B. (19)

Indeed, if x* € B then T*x;j = x* for some x; € B, whence (T*z}) A |x*| = T*(Z5 Alx§)) =0
and (19) has been checked. Using (18), we have z] + 25 = z* = T*z* = T*z] + T*75. Thus, in
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View of (19), zf = T*z}. If zf > O fori = 1, 2 then, on the one hand, the last equality implies
€ BM, on the other hand,

[ ”(
* >s<

7
= llzj ||eoo*— + 1125 llez,
27 1lex, llz 2||

€ ext BM.

* *

Consequently, , which is impossible. Therefore, either z} = 0 or z5 = 0.

Iz} Hz* ||22|| %

The implication (b) - (c) is obvious.

(¢) = (a) As was mentioned in Section 1, the inclusion z* € ext BM holds iff z* is an atom
in the AL-space N(I — T*). Consequently, assuming z* ¢ ext BM, we find non-zero function-
als y{ and y3 satisfying yi' L y3, 7"y = yf, and y{ + yJ = ¥, in particular, z* & B for
i = 1, 2. In view of the preceding lemma, T *Byl_* = By Whence, using our condition, we infer

= BS* N B;i* and, hence, z* = 0, a contradiction. O
1 2

The assertions which are analogous to Lemma 16 and Theorem 17 also hold for the case of
the operator U.

Corollary 18. Ler 7* € ext BM. Then for every subset D of N such that ¢(D) = D, we have
either 7* € Ly, ie, u;x(D) =1, or L Ly, ie., uzx(D) =0.

The preceding corollary follows at once from Theorem 17(b), Lemma 11(b), and Lemma 13.
As a matter of fact, in view of Lemma 13, it is also a simple consequence of well-known results
about ergodic measures (see, e.g., [2, Section 19.5]). Nevertheless, Theorem 17 allows us to look
at these results from the viewpoint of the theory of ordered linear spaces. Unfortunately, the
converse to Corollary 18 is false, i.e., there exists a functional x* € BM such that the relation
wxx (D) € {0, 1} holds for every closed subset D of SN satisfying ¢(D) = D while x* ¢ ext BM.
In fact, there exists ([12]; see also remarks in the next section) a functional x* € BM\ ext BM
such that supp wy+ is a minimal (by inclusion) closed g-invariant subset of N. Consequently,
if (D) = D for a closed subset D of N then either supp py+ S D, ie., uyx(D) = 1, or
supp uxx N D =@, 1.e., (D) = 0.

4. Some cardinalities

This section is devoted to the discussion of the question about the cardinality of some subsets
of BM and of some notions which are closed to it.

Recall that €3, is an AL-space, i.e., [3, p. 187] [lx* + y*|lex, = [x*[lex, + [ly*[lex, for all
positive functionals x*, y* € £} . By Kakutani—-Bohnenblust-Nakano theorem [3, p. 192], €% is
lattice isometric onto a space Lj({2) of all integrable functions on some set {2 with the measure
w. In it turn, the set {2 can be represented in the form of a disjoint union of measurable subsets
£2; and {2, such that the measure p on the first one is purely atomic and on the second one is
nonatomic. Therefore, the representation

E?;O =L1(2)=L1(f2) & L1(12) (20)

holds, where the bands L{({2;) and L({2.) are disjoint. A function x € L1({2) is an extreme
point of the positive part Szrl ) of a unit sphere iff it can be represented in the form x = l%,
where A is an atom of the measure . Thus, there is a one-to-one correspondence between the
set ext SZ ) and the set of atoms of w on 2. In it turn, there is a one-to-one correspondence
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between the set ext S (D) and the set ext S C(BN)* which is the collection of algebraic homomor-
phisms on C(8N) and hence can be identified with BN. Using the identity card (8N) = 2° (see
(12)), we have

card (ext S () = card (atoms of u) = 2°.

On the other hand, there is a one-to-one correspondence between the set of the atoms of ¢ on (2
and the set of atoms in the Riesz space L ({2;) which is a maximal (by inclusion) disjoint system
(md-system) in L ({2;) (the existence of such system in an arbitrary Riesz space E is a simple
consequence of Zorn’s lemma). Since in an arbitrary Banach lattice F with order continuous
norm and, in particular, in an A L-space, every two infinite md-system have the same cardinality,
we obtain that the cardinality of an md-system in L;({2;) is equal to 2¢. The cardinality of an
md-system in L;({2.) is also equal to 2° (see remarks below). Since ext Sz'] ) = @, the band
L1(§2;) is not o (L%, £oo)-closed.

Next, the space N(I — T™) is (see, e.g., [1]) a Riesz subspace of £} and, hence, is also an
AL-space under the norm and the order induced by £}_. Therefore, extreme points of the set BM
are also pairwise disjoint in £} . Analogously, we have the representation

NI —T% = Li(2%M) = L1 (28™) @ L (25M), (20)

where the set 2™ with the measure uBM satisfies 2BM = BM U BM and ;BM on 0BM js
purely atomic and on QE‘M is nonatomic. It should be noted that Ll(QBM) and Ll(QfM) are
bands in N (I — T*) while are not bands in £}_.

As was shown in [5] (see also Theorem 21(a)),

card (ext BM) = card (atoms of uBM) = 2°.

Thus, in view of the relation N (I —T*) L L1(£2y) (see, e.g., [1]), the cardinality of an md-system
in L1(f2) is equal to 2°. There exists ([4]; see also remarks after the proof of Theorem 21) a
functional x* € BM satisfying x* 1 ext BM and so MBM(QCBM) > 0, 1i.e., measure ,uBM on 2BM
is not purely atomic. As a matter of fact, it will be shown below (see Theorem 21(b)) that the
cardlnahty of an md-system in L (QBM) is also equal 2° and, in particular, the restriction /LBM
of uBM .QBM is not a o -finite measure.

Let us consider two operators Q1 and Q2 on £, defined by

X2 + X3 X3+ X4+ X5

2 7 3
Obviously, Q1 Q2 = I and Q5Q7 = I. Since the range R(Q1) = £, Q7 is one-to-one. Using
the inclusion Q;(bs) C c¢g, we have QT(E?) C NI —T%) and Q7 (S d) C BM. As is easy to
see, the operator Q1 is interval preserving and, hence, [3, p. 92] Q7 is lattlce homomorphism.
Therefore, for any md-system {y} in the/Pand K‘li of £%,, the collection { Q7 y;} is a disjont system
in L (£28M). In particular, {Q%x; : r € N} is a disjoint system in BM.

O1x = (xl,

) and Qrx = (x1, x2, X2, X3, X3, X3, .. .).

Next, fix a natural number & > 2 and define the subsets D'l‘, e, D,’; of N as follows. For
i=1,...,kand j € N, we put

=Dy

v _[G=-DJj
Dw—[ Lkt G—1)j+1, .

k+ﬁ}
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Evidently, for every i the subsets Dll‘l, Df‘z, ... of N are pairwise disjoint. Now, let Df =
U?’;l lej For instance, for k = 2, we have

Xp? = (1,0,1,1,0,0,1,1,1,0,0,0,...) and

Xp2 = 0,1,0,0,1,1,0,0,0,1, 1,1, ...).

In view of Corollary 7(a), Df‘ € D(acg) foralli =1, ...,k.

Let us also define the subsets A, of Nby A, = [(”_21)" +1, "(";1)], where n € N. The next
results will be needed latter.

Lemma 19. Letk € Nandleti € {1,...,k}. If k > 2 then for every n € N there exists at most
one index j € N such that A, N Dl{‘j # 0.

Proof. Proceeding by contradiction, we find an index jj satisfying the relations A, N ijo * 0
and A, N Dl{f ot # (). Therefore, we have
-1 jo — 1) Ji
(n—Dn 1< (Jo — Djo
2 2

. 1
< PO D ot n+1 =D

k+1ijo
(21)

Hence, using the identity n = w - (w + 1) +1,wegetn > jo(k—1)+i+ 1. Taking into

account the first inequality in (21) once more, we get Mk%—ijo > (jO(kfl)Jri)(éO(k*lHiH) +1
and so

(o — Dok + 2ijo = ok — 1) +i)* + jotk — 1) +i +2. (22)

Since k > 2, the inequalities (jo — 1)jok < ji(k — 1)? and 2ijo < 2ijo(k — 1) hold, which
contradicts (22). O

The preceding lemma does not hold in the case of k = 2.

Lemma 20. Foreveryk € N,k > 2, andi € {1, ..., k} the inequality limsup,,_, ..(Q1Xpi)n <

1
7 holds.

Proof. First of all, we mention the identity (Q1x), = % > jeA, Xj which is valid for all x € £
and n € N. Therefore, if A, N Df‘ = { then (Q1xpk)n = 0. Now assume that the set N =

fneN:A,N D;‘ = (1} is infinite. In view of Lemma 19, for every n € N there exists a unique
index j, satisfying A, N ijn # ( and, in particular, A, N D¥ | = 9. Thus,

i,jn+
i —1)]j ) ) nn+1 jin(Jn + 1 . .
wk+(z—l)]n+1§ ( )51"(1”2 kG- DG+ D+1. (23)
The second inequality in (23) implies
lim sup j, = oo. 24)

n—00
neN

On the other hand, from the first inequality in (23), we obtain the inequality n?4+n— m, >0,
where m, = (j, — Djuk + 2( — 1)j, + 2, and, hence, n > —l dmy, V21+4m”. Consequently,
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(Qixpin < /n—" < —1+\2/++W Finally, using (24), we infer
limsup(Q1xpt)n < lim L = L
n—00 bin = nn:ﬁlo -1+ m \/%’

neN

and the proof is complete. [

As can be shown, the preceding lemma also holds in the case of k = 2.
Now we are ready to prove the main result of this section.

Theorem 21. The following statements hold:
(a) An md-system in L (Q‘?M) has the cardinality 2° and, in particular, card (ext BM) = 2¢;

(b) An md-system in L (Q?M) has the cardinality 2°;
(c) An md-system in the band (L1(27) ® L1(2BM))4 has the cardinality 2°.

Proof. (a) We mentioned earlier that this statement was established in [5]' (see also the identity
(26)). We will suggest another proof.

For every point ¢ € N, we define the set BM; = {x* € BM : Q7x* = x/}. In view of the
remarks above, the set BM; is nonempty. Moreover, BM; is convex and o (£}, £« )-compact.
By Krein—-Milman theorem [3, p. 137], ext BM; # (. The identity ext BM; = BM; N ext BM
holds. Indeed, if z* € ext BM; and z* = @ with z¥ € BM then x; = w Since
x; € ext S;SC and Q3zf € S;OO, we obtain Q%zF = x; and so z' € BM;. Thus, z] = z}. Finally,
we have z* € ext BM. Next, the relation #; # 7, implies BM;, N BM;, = {J. Consequently, taking
into account the identities card N = card £} = 2°, we infer card (ext BM) = 2°, and the proof
of (a) is completed. R

(b) As was mentioned above, {Q7x/ : t € N} Ais a disjoint system. Therefore, it is enough

to establish that Q*fxt* 1 ext BM for every t € N. To this end, let z* € ext BM, let ¢t € ﬁ
and let ¢ > 0. Pick k € N satisfying \/L]; < €. Using the inclusion Dl]f € D(acyp), the equality

Uf: 1 Df = N, and the multiplicativity of z* on D(acg) (see (8) and remarks after the proof of
Theorem 3'), we find an index ig € {1, ..., k} such that z”‘DfO = 1 and, hence, z*Dl{‘ = (0 for all
i # ig. Taking into account the preceding lemma, we obtain

1
@ A QixN < Z*(N\ D) + (Qix])Df = x’*(QIXDf‘O) < T <e.

Since € is arbitrary, z* L Q7x/, as desired. As a matter of fact, we only used the multiplicativity
of the functional z* € SZ; on D(acp). Therefore, we have, in particular, the relation
o0

(OfxF 11 e N} L ext BM™ ‘=) (25)

(c) Let D = {d1, da, ...} be an infinite subset of N such that D € Z(acp) and d,, < dp41
for all n. Define the operator Tp on the space £, via the formula Tpx = (x4, X4, , . . .) for all
X € Loo. Evidently, the range R(Tp) = £ and Tp is interval preserving. Whence, T} is a
one-to-one lattice homomorphism. Thus, {T;;07x/ : t € N} is a disjoint system and if #; #
then T3 Q*fxt*1 # T} QTx;. Next, as is easy to see, the inclusion x* € BM and the condition
D € I(aco) imply Tjx* L (L1(£22) ® L1(£25M)). This concludes the proof. [

! The author wishes to thank E.M. Semenov and A.S. Usachev for bringing this reference to his attention.
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Since Q> is a lattice homomorphism, the inclusion Q3 (ext Sz; ) C ext SZ; holds. Next, the
o0 o0

relation Q;(ext BMG(Z&’ZOC)) C ext SZ; holds (compare with (25)). Indeed, we mention first

that, in view of Corollary 7(b), the inclusion R(Q2) < D(acp) is valid. Let z* € £% be a
functional which is multiplicative on D(acgp). Then, for every x, y € £, we have

(0329 (xy) = 2*((Q2x)(Q2)) = (Q52%)x - (Q52")y

and, hence, the functional Q3z* is multiplicative on €.
Now we are in a position to give a simple proof of the existence of a functional x* € BM

satisfying x* L ext BM. Indeed, we claim that if y* € SL (2 then Q7y* e SL (BM) and, in

particular, Q7y* L ext BM. Actually, if Q7y* ¢ St Ly (25 then the inequality Q7y* > Az* holds
for some functional z* € ext BM and a number A > 0. Therefore, y* > AQ3z* and, as showed
above, Q37" € L1(f24), which is impossible.

The proof of Theorem 21(a) suggests to consider the following space. For an arbitrary point
t € N, we define the subspace L, of £} by

={x*e NI —T" : Q5x" € B},
where By = {Ax; : A € R} is the band in €3, generated by x;. However, L, is not a Riesz

0 oo
(bo-Leo) \ ext BM. As showed above,

subspace. To see this, pick [11] a functional z] € ext BM
Q3z] = )c;‘l for some #; € N. On the other hand, there exists (see the proof of Theorem 21(a)) a

functlonal zz € ext BM satisfying Q2z2 = le Letzy € N and let z* € ext BM such that #y # 1;
and Q37* = xtO Using Theorem 21(a), we can assume z* L z]+z3. Obviously, z*+z]—z5 € Ly,
while

Q2|Z +Z1 | xto + Q2|Z1 _Zz| Q’er

as required.

We now turn our attention to estimates of the cardinalities of some subsets of the power set
of BN.

Let M be a nonempty closed g-invariant subset of N. Using Zorn’s lemma, it is not difficult to
infer the existence of a nonempty closed minimal (by inclusion) ¢-invariant subset My of M. Ob-
viously, ¢(Mo) = My. In particular, for every point¢ € N there exists a nonempty closed minimal
@-invariant set M, satisfying ¢(M;) = M, C O,. According to Theorem 15(c), M; N A # 0,
whence we have the inclusion M, C A. Next, for every point 71, 1> € N either My = M;, or
M NMpy, =@.PutM = | J, 5 M. If (D) € D with D C N then DNM # (). The relation [4]
M # A holds and, in particular, there exists a point fop € A such that 1o ¢ M,,. Whence O,O
is not a minimal g-invariant set. On the other hand, fg every point t € M, we have M; = a
Next, according to Corollary 14, for every point ¢ € N there exists a functional z*(¢) € ext BM
satisfying supp p.+) € M;. Evidently, if M;, # M,, then z*(t1) L z*(t;). The identity [5]

card {M, : t e N} = 2° (26)

holds. In particular, this implies the identity card (ext BM) = 2°. It should be noted that, as was
shown in [12], for every point # € N there exist at least two functionals zT, zﬁ € ext BM such
that supp Mg = M, fori = 1,2. If, in this case, t € A then, using Theorem 15(d), we obtain
the equality z}z = z;z for all z € D(acp). Consequently, the space D(acy) does not separate the
set ext BM.
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Some more remarks are in order. If for a functional z* € ext BM and a pointz € N the identity
supp uz+ = M; holds then, taking into account Corollary 18, we have z* L Lj\cjlv for every point

s satisfying the relation M # M,. Next, since M # A, there exists a functional y* € ext BM
such that supp .+ \M # . Using the identity ¢ (M) = M, Lemma 13(a), and Corollary 18 once
more, we obtain y* | Lpg. In particular, y* L Lj\‘jlt for every point ¢+ € N. Theorem 10 guaran-

tees the existence of a point 79 € N satisfying My, & supp p . On the other hand, for some func-
tional x* € ext BM, we have supp px+ = My, < supp py+ and x* € Lj\"/[t , whence x* L y*.
0

Consider the space C(K) and an arbitrary nonempty subset R of C(K). We can define an
equivalence relation on K by saying that two points s and 7 in K are equivalent, in symbols
s ~ t,if x(s) = x(t) for all x € R. Let 6; be the equivalence class of the point s € K, i.e.,
Oy = {t € K : s =~ t}. The collection © = {6, : s € K} defines a partition of the set K into
(pairwise disjoint) closed subsets and is called the R-partition of K. If R is a linear subspace of
C(K), we define the mapping ¥ : © — R* via the formula ¥ (6;) = §;|g, where ;| is the
restriction of the functional §; onto R. As is easy to see, the mapping ¥ is well defined, i.e., if
O = O, then ¥(6;) = ¥(6,), and V¥ is one-to-one.

Now let R be a closed subalgebra of C(K) containing the constant function. In this case, the
inclusion ¥(O) C ext S;;* holds. On the other hand, every functional z* € ext S;g* is a lattice
homomorphism. By Lipecki-Luxemburg—Schep theorem [3, p. 99], z* extends to all of C(K) as
a lattice homomorphism. In other words, there exists a point s € K satisfying z* = 8;|g and so
7*x = x(s) for all x € R, whence V is a bijection from © onto ext S;g*. Consequently, the sub-
algebra R can be considered as a subalgebra of the algebra B(©) of all bounded functions on 6.
Since the mapping & from R into B(©) defined by (§x)(6;) = x(s) is isometric, & (R) is closed.

Next, let y* € SEL( K+ and let the identity y*|r = 8s|r hold for some point s € K. By Riesz
Representation Theorem [2, p. 497], there exists a unique regular probability Borel measure v
which defines the functional y*. The inclusion supp v C 6Oy is valid. Indeed, consider a point
t € K\ 6Oy. Clearly, t € 6, and ©; # O,. Thus, for some y € R, we have y(t) > 0 and
y(s) = 0. Hence, y*y = y(s) = 0 and so ¢ ¢ supp v.

Now we consider the case of K = SN and

R ={z€ C(BN) : z € D(acy)}. (27

As is easy to see if ¢+ € A then ©, = {¢}, in particular card {©;, : t € BN\ A} = 2° as every
infinite closed subset of SN has the cardinality 2° (see the remarks at the beginning of Section 3),
andif r € A then O; € O, C A and ¢(O;) = 6, as Z is constant on O; for every z € D(acy)
(see Theorem 15(d)). It is not known if for every points ¢/, " € O, with t € A there exists
a finite collection of orbits Oy, Oy, ..., O, with n € N satisfying ¢ € O_,O, t" e (’)_,n, and
0, N0, #Wforalli =0,1,...,n— 1.

We close this section with some remarks about the cardinality of {©; : t € A}. For every point
t € A the inclusion M; € 6, holds and if ©; # 6, for some s € A then My N M, = @.
Therefore, we have the next estimates

card {O, : t € A} §card{/\/l[:teN} =2°

Next, for every z}, 25 € ext BM there exist points 71, t; € A satisfying x;; [Diacy) = 2} 1D(acy) (se€
the relation (17)). If z{|D(acy) # 251D(acy) then 6 # 6,,. However, as was mentioned above,
D(acp) does not separate the set ext BM and, in the general case, we will give only the estimate
card {©; : t € A} > ¢ (see Theorem 22).
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Before proceeding further, we recall the following well-known fact which will be used in the
future. There exists a collection {Ay : a € J} of infinite subsets of N with the cardinality ¢ which
is almost disjoint, i.e., card (A, N Ayr) < oo for all o’ # . To prove the existence of such
a collection identity the set N with the set Q of rational numbers of R and assign to each real
number A a sequence of rational numbers converging to A. In this way, we get a collection of
subsets of a countable set which has the desired property.

Now we are in position to prove the next estimate of card {6; : t € A}.

Theorem 22. Let {O; : t € BN} be the R-partition of BN, where R is defined by (27). The next
inequalities ¢ < card {6, : t € A} < 2° hold.

Proof. Let us consider a sequence {I,,} of segments of the set N such that I, = [k, m,] with
kn < my < kyqq for all n and lim,_, oo (m,, — k) = 00. Obviously, I; N I; = B fori # j. Let
{Ay : @ € J} be an arbitrary almost disjoint collection of subsets of N with the cardinality c. Put
D, = jeAy I;. Evidently, the collection {D, : o € J} also has the cardinality ¢ and is also
PN D™ AN = g forall o’ # . Put xq = xp, € £oo and find
a point t, € D_a,ﬁN N N. In view of Corollary 7(a), De € D(acy) for all & and, hence, 5y € R.
Now, using the identities X, (s) = 1 for s € D_O,ﬁN and X, (s) = 0 for s ¢ D_aﬁN, we obtain the
relation #,y ¢ 6, with &’ # « and so 6y, # O,,. Consequently, the mapping Dy — 6, is
one-to-one, and the proof is completed. [J

almost disjoint, whence D

5. A bit of a probability
5.1. General remarks

Some results above (see, e.g., the inequality (3) or Theorem 3'(h)) suggest an idea about
a possibility a glance at some properties of Banach—-Mazur limits from the viewpoint of the
probability theory. On the other hand, as is well-known (see, e.g., [2, p. 496]), the space £} is
lattice isometric onto the A L-space ba(N, 2N ) of all signed finite additive measures (or charges)
of bounded variation defined on the power set 2N of N ,ie.,

¢, =ba(N, 2V). (28)

This isomorphism is defined by the mapping x* — v,x, where v+ (A) = x* x4 for all subsets A
of N. Using our notations, we can simply write vy+(A) = x*A. Thus, elements v,+ of the space
ba(N, 2N) will be identified below with functionals x*. For an element x € £, we have

x*x:/xdvx* =/xdx*. (29)
N N

Below, using the term measure, we mean a countable additive signed measure and using the term
finite additive measure, we mean a signed charge which is not necessarily countable additive
(see [2, Chapter 10]). Furthermore, the case of a measure u,+ on B(SN) which defines x* € £%
via the formula (13) and the case of a finite additive measure v,+ on 2% which defines x* via the
formula (29) should differ.

If x* e Séﬁ (e.g., x* € BM) then v+ is a probability finite additive measure, i.e., vy+ > 0 and
vex(N) = 1.010%5 is well-known, vy« is countable additive iff x* € £1; in particular, if x* € BM
then v+ is not countable additive. Next, if x* € S;‘oo then, as is easy to see, x* € BM iff vy« (A) =

vy (A + 1) for every subset A of N.
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In the probability theory, as a rule, countable additive probability measures were only
considered and the case of finite additive measures was ignored. The principal purpose of this
section is to take a step in this direction. On the other hand, following the line of research
suggested in the preceding sections of the paper, we are only considering finite additive measures
on 2N, Moreover, the main emphasis will be done on those properties of finite additive probability
measures and on notions connected with these measures which can help in a new fashion to take
a glance to some properties of Banach—-Mazur limits and, in particular, to results obtained below
and can be useful for a further research of Banach—Mazur limits.

However, it should be noted that the countable additivity is an important natural assumption
both from the viewpoint of some applications of the probability theory and from the viewpoint of
a number of theoretical constructions. For instance, without the countable additivity, we be allow
seldom to interchange limits and integrals. Moreover, Radon—Nikodym theorem is not valid for
finite additive measures (see Section 5.4).

For the convenience of the exposition, this section will be derived by several subsections.
In the next subsection, the elementary properties of distribution functions for finite additive
measures will be studied. Section 5.3 is devoted to the discussion of possible definitions of a
variance and notions connected with its. Radon—Nikodym theorem in the case of finite additive
measures is discussed in Section 5.4.

Throughout this section, unless stated otherwise, x* will stand for a positive functional (a finite
additive probability measure) on oo With [|x*|[¢x, = 1. For information about the finite additive
integration of functions, we refer the reader to [6, Sections 3.2, 3.3] (see also [2, Section 11.2]).

5.2. Distribution functions

Consider an arbitrary sequence x € s. As in the case of a countable additive probability mea-
sure, a distribution function of the sequence x (in regard to the functional x*) is the function
Fy+  from R into R defined by Fy= () = x*{n € N : x, < t}. Obviously, Fy+ , is increasing
and, hence, is continuous except possibly at countable many points. As can be shown, if x* € £;
then the set of the discontinuities of Fy+ , coincides with the set {x,, : x*{n} > 0} and, in partic-
ular, the function Fy« , is not continuous. On the other hand, the function Fy« e is discontinuous
for every x*. In Theorem 25 the characterization will be given of functionals x* such that the
function Fy+ x is continuous for some sequence x € £

Before we will prove two auxiliary results.

Lemma 23. Let y* € €} such that y* L £1. Then for every infinite subset A of N there exists
an infinite subset B of A satisfying y*B = 0.

Proof. As is easy to see, we can assume y* > 0 and y*A > 0. Pick an arbitrary almost disjoint
collection {Ay : @ € J} of subsets of A with the cardinality c. The condition y* L ¢; implies the
identity y*(Ay N Ayr) = 0 for o’ # «”. Therefore, it is not difficult to show that the inequality
y*Ay > Ocannothold foralle € J. [

Lemma 24. Let numbers €1, ..., €, €, A, and Ao satisfy the relations 0 < €; <€ < X < Ay and

ZLI €; = Ao > 0. Then there exist two disjoint subsets K1 and K of {1, ..., k} such that
Zeifk, Zeifko—k, and Zei+Ze,~zko—e (30)
iekK iekKy ieK iekKy

(if Kj = 0 for some j = 1,2, we put ZieKjei =0).Ife > O0foralli =1,...,k then
card (K1 UKy) =k — 1.
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Proof. Clearly, we can suppose €; > 0 foralli = 1,..., k. Using a finite induction, we will
build the set K; by steps. On the first step, we put K ,1 = (). Next, assume that the first m steps

have been taken, where 1 < m < k, and disjoint subsets K f" and KE” have been built satisfying
KUK C {1, ...,m—1}. IfZieK;" €i+€, < Athen we put K{"'H = K{"U{m} and, otherwise,
if ) ;e Ky €i +é€n < Ao—A then we put K é”“ = K7'U{m}.If both last inequalities do not hold, we
put K;”Jrl = K;” for j = 1, 2. Taking k steps, we either put K; = Kj? if card (K{‘ u Ké‘) =k—1

or, otherwise, take a last additional step and put K; = K;.“H. We claim that the sets K| and
K> obtained by such manner are required. Obviously, the first two inequalities in (30) hold and
card (K1 U K») < k. Next, if card (K1 U K») < k — 1 then we find two different indexes i’, i €
{1...,k} satisfying ZieKl € +e€i > Land ZieKz € +¢€;7 > Ao — A, which is impossible. Thus,
card (K1 UK»>) =k — 1. Pickanindex ip € {1..., k} such thatip ¢ K1 U K». Then ZieK] € +
Yic K, € =0 — €, = Ao — € and the third inequality in (30) has been established. O

Theorem 25. For a functional x* € SZ; the following statements are equivalent:
o0

(a) For some sequence x € Lo the distribution function Fy«  is continuous;
(b) The relation x* 1. L (§2;) holds (see (20));

(c) For every n € N there exists a partition N1, ..., Ny of N such that x*N; = zi,, for all
i=1,...,2"%

(d) For every € > 0 there exists a partition Ny, ..., Ny of N such that x*N; < € for all
i=1,...,k;

(e) Foreverye > Qthere exists a cover Ny, ..., Ny of Nsuchthat x*N; < eforalli =1, ...,k;

(f) For every subset A of N there exists a partition Ay, Ay of A such that x*A; = X*TA for all
i=1,2;

(g) For every subset A of N and a number A € [0, x* A] there exists a subset B of A such that
x*B = A.

Proof. The implications (g) = (f) = (c) = (d) <= (e) are obvious. The implications
(b) <= (d) are the well-known Sobczyk—Hammer’s result (see, e.g., [10]). For the sake of
completeness, we include its proof. We also mention that for the case of an arbitrary countable
additive measure the equivalence of the statements (c)—(f) is the well-known Saks’ results (see,
e.g., [2, Section 10.9] and [6, p. 308]) which characterize nonatomic (or diffuse) measures.

(b) = (e) Fix € € (0, 1). For an arbitrary point r € SN the relation x* L x; holds. Therefore,
there exists a subset A; of N satisfying x*A; + x; (N '\ A;) < €. Consequently, x;(N\ A;) =0
and, hence,

X*A,<e and 1 gN\A" . 31)

On the other hand, N \ AtﬂN U A_,ﬂN = BN and N\ A,ﬁN N A_tﬂN = ) as BN is an extremally

disconnected space. Thus, according to the second relation in (31), the point ¢ belongs to the open
set A, Finally, BN = {,cgn A" Therefore, BN = = A_tl.ﬂ " for some finite collection
of t, ..., t; and, hence, N = Ule A;;. Taking into account the first relation in (31), we have
x*A, <efori=1,... k.

(e) = (b) Proceeding by contradiction, we find a point # € SN and a number y > 0 satisfy-
ing the inequality

x* > yxl. (32)
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There exists a cover Ny, ..., Ny of N such that x*N; < % foralli = 1,..., k. Obviously,
BN = Ule ﬁiﬂN. Therefore, for some index igp, we get t € N_iOﬂN. Whence, using (32), we
obtain & > x*Nj; > yx;Nj, = y, which is absurd.

(d) = (g) Evidently, we can assume x*A > 0 and A € (0, x*A). Let Ay = A and A; = A.
Pick m; € N satisfying mll < X1 and a partition Ny, ..., Ny, of N such that x*Ny; < % for
alli =1,..., k;. Obviously,

k1
1
X*AL =) x*(AINNy) and x*(ANNy) < —.
i=1 mi

Using the preceding lemma, we find two disjoint subsets K11 and K1 of {1, ..., k1} such that
for the sets Aj; = UieK”(Al N Nj;) with j = 1, 2 the inequalities

(1) x*A1 < Aq, (i) x*A12 <x*A; — Ay, and

PP * * 1

(i) x* A1 +x"App = xTA — — (33)
mi

hold. If at least one of the inequalities (i) and (ii) in (33) is not strict then the proof is finished.
Now assume that both inequalities (i) and (ii) in (33) are strict. Put

Ay =A1\ (A1 UAp) and XAy =X —x*Aq > 0.
Obviously, x*Ay < mil Since
A —x* A < x¥A] —x*App —x*A = xF Ay,

we have A, € (0,x*Aj3). Pick my € N satisfying m; < my and m% < A and a partition
Nai, ..., Nog, of N such that x*No; < m% foralli =1, ..., ky. Obviously,

k
1
X*Ay =) x*(A2NNy) and x*(A3NNy) < —.
mj

i=1

Using the preceding lemma once more, we find two disjoint subsets K>; and Koy of {1, ..., k2}
such that for the sets A’2j = Uiesz_ (A2 N Ny;) with j = 1, 2 the inequalities
(i) x* Ay < Ao, (i) x*A5, < x*A; — Ay, and
1

(111/) X*A/ZI + X*A/22 > X*AQ — m_2

hold. Then, taking into account the definition of 1,, we have

X*(Aj1UAS) < (M1 —A2) + A2 = Aq,

x*(ApUAY) < x"Ap+x"Ay — 1y
= x*A1p +xF A —x* A1 —x A — A =xFA] — A,

2 2 2
1
x* (( Alj) U (U A’2j>> =x"A; —x"Ay + x* (U A’zj) > x*A] — —
Jj=1 j=1 j=1

and
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Put Ay; = Ay U A}, and Az; = A U A, Finally, we obtain the following relations

(i) x*Az1 < Ap, (i) x* A2 < x*A; — A, and
1
(iii) x*Ar] +x*Ap > x*A; — —.
mj
Next, using an easy induction argument, we obtain a strictly increasing sequence {m,} in N
and two sequences {A,1} and {A,>} in 2N such that Apj CApg1,j S Aand Ay N App =0 for
alln € Nand j = 1, 2 and the next inequalities hold

1) x*A, < A, (i) x*Ap <x*A — X, and
1
(i) x* A, Fx¥ A > x*A — —. (34)
my

Put Bj = ;2| A,j for j = 1, 2. Evidently,

1
B; C A, BiNB,=0, and x*A>x"B;+x*B, >x"A — —.
nmpy
Letting n — 0o, we have x*A = x* B + x*B;. Now, using the inequalities (i) and (iii) in (34),
we obtain

1
A4+ x"Ap = x Apt + XA = XA — —,
mp

whence x*By > x*A,;p > x*A — % — A for all n. Letting n — 0o once more, we have
n

x*By > x*A — A. (35)
Analogously, using the inequalities (ii) and (iii) in (34), we obtain
1
X¥A XA — A > xTA FxTA, > XA — —.
npy

Therefore, x*B; > x*A,; > A — m%l and, hence, x*B; > A. Now, a glance at (35) yields
x*By = Aand x*By = x*A — A, as required.
(a) = (c) Let the distribution function f = Fy» , be continuous. Fix n € N. Since

min f(#) =0 and max f(r) =1, (36)
teR teR
foreveryi =0, 1, ..., 2" there exists anumber ¢; € R satisfying f(a;) = % Fori =1,...,2",

we define the subsets Ni/ of N by Nl./ = {n:a;_1 < x, < a;}. Obviously, we have the identities
xX*N! = f(a;) — flai-1) = zln Put Ny = N{ U (N'\ Ulzil N})and N; = N/ fori > 1, and we
are done.

(g) = (a) We will show that for an arbitrary increasing (not necessarily continuous) func-
tion [ : R — R satisfying the relations (36) there exists an element x € oo such that Fy« x = f.
To this end, let a and b be two arbitrary numbers with the properties f(a) = 0, f(b) = 1, and
f is continuous at a. Clearly, a < b. As is easy to see, there exists a sequence {¢,} in (a, b] such
that t{ = b, t; # tj fori # j, and the set {t;, 12, ...} contains the (empty, finite, or countable)
collection of all discontinuities of f and is dense in (a, b]. The existence of a sequence x € £
satisfying Fy« » = f can be proved by induction as follows. At the first step, we put Bj; = N,
myy = ki =1, My = {mn}, K1 = {kn}, and x,,, = t,,, = b. We also put x9 = a. Now
assume that for some n the partition of N into infinite subsets Bj yn-1, ..., Byn-1 yn-1 and two
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collections of subsets M1, ... M, and of subsets K, ... K, of N have been constructed satisfying
the properties

(1) My ={mjyn-1,....my-1 gu-t}and m; yu-1 € B u-1 forall j =1,...,2"71,

(2) for indexes m € M, elements x,, of x were defined and satisfy the inequalities a = x¢ <
Xmy gt <o < Xy gy = b,

3) X*Bj,zn—l = f(xmj.znfl) — f(xm,_l,zn—l) for all j = 1., 20 (we put m i = 0 for
j/ =0and every i),

4) Kn =1{kjpn-1, ... k1 pna}and {t; 2 i € Ky} = {x; :i € My}, and if n > 2 then

(5) BZj—l,Z”*l @) B2j,2"71 = Bj,z"*z for allj — 1’ el 2n—2’
(6) Mn—l c Mn and Kn—l - Kn~

Forj=1,..., 211 we put majon = m;j -1, kpjon = kj,zn—l
moj_12mn = mm{k € Bj’2n—l \Mn},
kaj—12» =min{k e N\ K, : 1 € (xm,_l,zn—l’xm_,-,zn—l)}’

and Xy, | ;0 = lky;_, ;- Now we can define
My ={mion,....,mpmox} and K,y ={kion,..., ko on}.

In view of our condition and Lemma 23, for every j = 1,..., 271 there exists a par-
tition of B; on-1 into infinite subsets By;j_1,on and Bpjon satisfying mpj_1on € Bj_1n,
majon € Bojon,

x*BZj—l,Z” = f(xmzjiw,,) — f(xmj—l,Z”*l)’ and
X*BZ./,Z" = f(xmj,Z"_') - f('mej—l,Z”)'

Iterating this procedure, as a result, we define correctly elements x; of a sequence x € £ for

all k € N. Obviously, if an index k € B with j = 1,...,2" then X, < X < Xm

—1,2n jon-

From the latter, we obtain the identity {k : x; < xmi,z,,} = (U/_, Bi2». Thus, Fye x (Xm; 0) =
f(xmjyz,,) and, hence, Fy« x(t,) = f(t,) forall n as Uf;] K, = N. The set {1, 15, ...} is dense
in (a, b] and if a point ¢ does not belong to this set then f is continuous at . Consequently,
Fyxx(t) = f(t) fort € (a, b]. Finally, Fy= x = f on R as the sequence x constructed above
satisfies the inequalities a < x,, < b for all n.

The proof of theorem is now complete. [

The condition x € £, of part (a) of the preceding theorem is essential. Indeed, if a point ¢ € N
then, on the one hand, the functional x; € L({J;), on the other hand, for an arbitrary sequence
x € s satisfying the relation lim,,_, , x,, = +00, we have Fu = 0.

From the relation BM L L{({2;) and the preceding theorem (see the proof of the implication
(g) = (a) and part (g)), we have the following two consequences.

Corollary 26. For every x* € BM and for every increasing function f : R — R satisfying (36)
there exists a sequence x € Lo such that Fyx x = f.

Corollary 27. Forevery x* € BM and for every X € [0, 1] there exists a subset A of N such that
X*A =\
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The atomical part of x* € £} is the set Atom x* = {t € BN : |[x*| A x/ > 0}. As will
be shown in the next theorem, the closure of Atom x* in BN can be characterized in terms of
distribution functions. For a sequence x € £, and a subset M of R, we put, as usual, x~ Y =
{n:x, € M}.

Theorem 28. Let x* € Sz; . The identities

Atom x* = SN\ Ux*l(a, b]‘gN = BN\ Ux*l(a, b)’gN (37)

hold, where the union was taken by all sequences x € Lo, and segments [a, b] such that Fy x is
continuous on [a, b].

Proof. We check first the inclusion
Atom x* C ,BN\Ux—l(a,b]. (38)

If a distribution function Fy= , is continuous on [a, b] for some sequence x then for every
€ > 0, we find a partition By, ..., By, of the set x~! (a, b] satisfying the inequality x*B; < €.
Since x~1(a, b] = Uf;] B; and € is arbitrary, we conclude easily the relation Atom x* C
BN\ Jx~!(a, b]. The set in the right part of the last inclusion is closed and, hence, (38) has
been established.

The proof will be completed if we can verify that SN\ | x~1(a, b) C Atom x*. To see this,
consider a point t & Atom x*. If # € N then we consider x = e, and an interval (a, b) satisfy-
ing 1 € (a, b) C [0, 400). Obviously, Fy= x is continuous on [a, b] and t € x~!(a, b). Now let
te N. There exists a subset D of N such that ¢ € D and DNAtom x* = @. Clearly, card D = oo.
Let D = {d, dz, ...} with d; < d;j4 for alli € N. Define the functional y* € £%, via the for-
mula y*z = x*zp for all z € £, where the sequence Zp € Lo defined by (zp)g, = z, for all
n and (zp), = 0 for all n ¢ D. The relation y* | L;(f2;) holds. To see this, fix € > 0. For an
arbitrary point s € D there exists a subset Ds of N satisfying s € Dy and x*D; < €. Therefore,
DC Ui:l Dy, = Ui:l Dj, for some points sy, .. ., sx. Whence, we obtain D C Ui:l Dy, . For
i =1,...,k, we define the sets N; = {n : d, € Dy, }. Evidently, Uf:] N; = Nand y*N; <
x*Dy, < €. 1In view of part (e) of the preceding theorem, y* L L1({2;). Next, according to part
(a) of this theorem (see also the proof of the implication (g) = (a)), there exists a sequence
y € € satisfying Fy+ y(u) = u forallu € [0,1] and 0 < y, < 1 forall n. Fix § > 0 and pick
a sequence x € £ such that x4, = y, forall n and x, > 1+ 6 for all n ¢ D. Then for every
number u < 1 + §, we have the equalities

Fyeyu) = y*"{n:y, <u} =x"{d, : y, < u}
=x"dy 1 xq, <u}=x"{n:x, <u}= ).

In particular, Fy«  is continuous on [0, 1 4 §]. Using the identity x~10, 1 + 8) = D, we obtain
t € D=x"10,1+34),as desired. [

The equalities (37) can be considered as making more precise of the implication (a) = (b)
of Theorem 25. The preceding theorem remains valid under the assumption x € s.

As follows from (37), the inclusion SN \ Ux*l[a, b) C Atom x* holds. However, this
inclusion can be proper. To see this, it suffices to observe that Fy« ¢ is continuous on [0, A] for
every A > O and x~ 1O, 1) = Nifx = 0. Next, considering a sequence x € cp with either x,, > 0
or x, < O for all n and a functional x* € 6‘11, it is easy to see that in Theorem 28 the condition
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about the continuity of Fy« , on [a, b] cannot be replaced by the condition about the continuity on
one of the sets (a, b), (a, b], or [a, b). On the other hand, if x* € ¢; then the identity Atom x* =
BN\ x~!(a, b] holds, where the union was taken by all sequences x € £+, and segments [a, b]
such that Fy+ , is continuous on (a, b]. Indeed, let n € N and let x*{n} > 0, i.e., n € Atom x*.
Ifn € x '(a, b] for x € £s and Fy+  is continuous on (a, b] then x*{n} = 0, a contradiction.

By analogy with the probability theory, for sequence x € £+, the value x*x can be considered
as the expectation of x (with the respect of the functional x*). On the other hand, an arbitrary
function f : R — R generates the superposition operator on the space s (see, e.g., [1]) defined
by fx = (f(x1), f(x2),...) forall x € 5. As is well-known, if x* € £; and f is a Borel function
then the relations Fy+ , = Fy+ ; and fy, fz € £ with y, z € s imply x*fy = x*fz. An analogous
result holds if x* € £%_. The details are included in the next proposition.

Proposition 29. Let x* € S;* and let a function f : R — R be continuous. Then the identity
Fyxy = Fyx 7, where the elements y, 7 € Lo, implies x*fy = x*fz.

Proof. Fix € > 0 and a number M satisfying M > max{||y||, ||z||}. Find a collection of scalars
AosAly ..., Ay Withm € Nsuchthat —M =1 < A < - <Ay =Mand A; — Aj_| < €
fori = 1...,m.Definethesets A; = {n: Ai—1 <y, <A;j}and B; = {n : Ai—1 < z, < Ai}.
Obviously, x*A; = x*B; and each of two collections Ay, ..., A, and By, ..., By, is a partition
of N. For every k € N, we have the relations

m m k m
)y" - ZM‘XA,-‘ = ‘y" = (X hixa) ( < kM"‘l(y - ZMXA,-’ < ekM*.
i=l1 i=l1 i=1

Thus, |x*y* — 37, 2kx*A;| < ekM*=1. Analogously, |x*z¢ — 37 Akx*B;| < ekM*—1.
Since € is arbitrary, we infer x*y* = x*zX. Consequently, the equality x*fy = x*fz holds if f is
a polynomial and, hence, in view of Weierstrass theorem, if f is a continuous function. [

The preceding proposition does not hold for an arbitrary Borel function f. Indeed, we define
the function f by f(#) =0fortr < Oand f(¢t) = 1fort > 0.1f x* L £ and z € ¢ withz, <0
for each n then Fy+ g = Fy+; while 1 = x*f0 # x*fz = 0.

For an arbitrary sequence x € £, the characteristic function of x (with respect of x* € £%))
is the function fy+ , from R into C defined by

frer (1) = x*e'™™ = x*(cos(tx1), cos(tx2), . ..) + ix*(sin(txy), sin(tx), . . .).

Corollary 30. Let x* € 52;50 andlet y, z € bog. If Fyry = Fyr o then fysy = for ..

As is well-known from the probability theory, if a functional x* € ¢; then the identity
fery = fyr; implies Fyx y = Fy= ;. In the general case of x* e £} this assertion is not valid.
Indeed, let x* L £; and let y, z € co such that y, < 0 and z, > O for all n. Then fy« (1) =
S z(t) = 1forall t while Fyx y # Fy= ;.

5.3. Two definitions of a variance

In the probability theory the next “standard” definition of a variance is used. Namely, the
variance of an element x € fo is the value Dysx = x*((x — (x*x)e)?). As in the case of
x* € €1, the most of elementary properties of the variance remains valid in this general case and
it can be checked without difficulty.
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Now let z* € ext BM. We have the next statement: the identity D,+z = 0 holds iff z € Dgx.
Indeed, if D,«z = O then, using the Cauchy—Schwarz inequality (x*(vw))? < x*(v?) - x*(w?)
which is valid for arbitrary elements v, w € £, we obtain z*|z — (z*z)e| < (]D)Z*z)% =0.In
view of Theorem 3(d), z € D_«. For the converse, let z € D_«. Taking into account Corollary 4,
we have D+z = (z*(z — (z"2)e))> = 0.

Next, the covariance between two sequences y, 7 € £ is the value

coves (y,2) = x*((y — (x*y)e)(z — (x*2)e)).

As is easy to see, the identity Dy« (y 4+ z) = Dy+y + 2covyx (y, z) + Dy+z holds. It follows from
the remarks above that if z* € ext BM and y, z € D+ then cov+ (y, z) = 0.
We have the following variant of the Law of large numbers.

Proposition 31. Let x* € SZZ and let {x,} be a sequence in L, such that covy« (x;, x;) = 0 for
i # j and the sequence {Dy=x,} is bounded. Then for every € > 0 the next relation holds

lim x*
k—o00

{n~)(xl)n+"'+(xk)n Xtk

: _ (ze} —o. (39)

Proof. Put d = sup, D,+x,. Using Lemma 1, we have

|2 3 G - x| z €
i=1

k

o (e - o))

i=1

1 & d
= _€2k2 ;Dx*xi < m — 0

A

ask — o0o. O

In usual form of the Law of large numbers, the notion of independence is often used. Re-
call that if two random variables £ and n are independent then for them expectations, we have
E(¢n) = E& - En and, hence, E((§ — E&)(n — En)) = 0. This is just the condition what
we required in the preceding proposition for the sequence {x,}. As was mentioned above, this
condition holds if x* € ext BM and x, € D,+ and follows from the multiplicativity of x* on
D,+. Thus, in this case the property of the independence can be replaced by the property of the
multiplicativity.

Nevertheless, some results of the preceding sections (see, e.g., Theorem 3/(d)(h)) and some
remarks done in this subsection suggest another possible definition of a variance which can be
more suitable from the viewpoint of the study of Banach—Mazur limits. Namely, the variance
of an element x € £ is the value D+x = x*|x — (x*x)e|. Again, many elementary properties
of the “standard” variance remain valid in this case. Below, to avoid ambiguity, if we will write
D,+x and will say a “variance” then we will mean this second definition.

Let z € €. The next two statements follow from the identity (2) and Theorem 3:

(a) If z* € ext BM then 7 € D« iff D xz = 0;
(b) z € D(acy) iff Dxz = O for all z* € ext BM.

Proposition 31'. Let x* € S}
% ZLI Dyxx; = 0 (e.g., x* € ext BM and x, € Dy+ for sufficiently large n). Then for every
€ > 0 the relation (39) holds.

and let {x,} be a sequence in the space £~ such that limy_,
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Proof. Using Lemma 1, we have

x{n \% glj«xnn )

k k
—x* E X; —x*( xi)e‘
ek . 4
i=1 i=1

IA

-

1 k
< ng*'xi — (x*x;)e] = 0

ask — oo. O

As the next proposition shows, minimum points for the function @y« ,(t) = x*|x — te| with
t € R can be characterized in terms of a distribution function. An analogous result for countable
additive probability measures was mentioned in [14, p. 44, Exercise 5].

Proposition 32. Let x* € SZ;Oc and let x € Loo. If x*{n : x, < 1y} < % < x*{n:x, < 1o} for
some number to then x*|x —te| > x*|x —tpe| for allt € R and, in particular, Dyxx > x*|x —tge|.

Proof. We will show first that if Fy« ,(0) > % for some y € £ then x*|y| < x*|y — re| for all
t > 0. Indeed,

T A (t€) = x* Ppuy,-0y (01 A (1) < tx*{n 1y, > 0}

=t(1— Fey(0) <t (1 - %) =-. (40)
On the other hand,
x*((y —te)” A(te)) = x" Py, <) (v — 1€) A (1))
> X Py, <0) (7 = 1) A (1€)) = 3" Py <ojte = 5.

Whence, using (40), we have x*(yT A (te)) < x*((y — te)~ A (te)). Now taking into account
the last inequality and the identities

(y—te)  A(te)+y =(y—te)” and y'—y" A@te)=(y—te),
we obtain

Kyl = x0T Ae) +yT + (T —yT A(re)
<x*((y—te)" A(te) +y )+ (T —yT A(te))
=x*((y —te)” + (y —te)") = x*|y — re|.

Now let the inequality x*{n : y, < 0} < % hold for some y € £o. Then Fyx (0) > %
Therefore, as showed above, x*|y| < x*|(—y) — (—t)e| = x*|y — te| for all t+ < 0. Thus, the
required assertion has been proved in the case of #p = 0.

In the general case, using the inequalities x*{n : x, — fp < 0} < % < Fyx x—1e(0), we have
x*|x — toe| < x*|x — (to + t)e| for every t € R, as desired. [

The converse to the statement of the preceding proposition is not valid. Actually, if x* 1 £,
and x € co then @y« x (1) > P+ ,(0) = 0. But, if we also assume x, < 0 for all n then
x*n:x, <0} =1.

On the other hand, as follows from Theorem 3(d), if z* € ext BM and z € D, then
minger @+ - (t) = 0 and P+, attains its minimum at the point z*z. In the next example this
case will be considered in detail.



610 E.A. Alekhno / Indagationes Mathematicae 26 (2015) 581-614

Example 33. Let z* € ext BM and let 7 € £o. Then z € D= iff
Fx,t)=0 for t<z"z and Fp (1)=1 for t>z*z. 41)

We shall prove first the necessity. For an arbitrary number ¢ < z*z, we find € > 0 satisfying
t + € < z*z. Using Theorem 3(h), we obtain

Fo )=z n:zy <t} <z"n:z, <zZ’z—e} <z"{n:|zn — 2zl = €} = 0.

The second equality in (41) can be checked in a similar manner. For the converse, for every
€ > 0, we have the identities z*{n : z, < z*z—€} =0and z*{n : z, < 7*z+ €} = 1. Therefore,
7*{n:|zy — 7%zl > €} = 0and so z € D,=.

Nevertheless, even when z € D, «, every number in the segment [0, 1] can be a value of
F« ; at the point z*z. Indeed, using Corollary 27, for an arbitrary scalar A € [0, 1], we find a
subset A of N satisfying z*A = A and consider a sequence z € £, which converges to A and
satisfies the relations z, < A foralln € A and z,, > X foralln ¢ A. Obviously, z € D, and
F (") =A. O

5.4. Radon—Nikodym theorem

Letx™*, y* € €% be two finite additive measures on N. The measure x* is said to be absolutely
continuous (see, e.g., [2, Section 10.12]) with respect to the measure y*, written x* <« y*, if for
each € > 0 there exists § > 0 such that for every subset A of N the inequality |y*|A < &
implies [x*|A < €. As is well-known (see [2, p. 401]), the relation x* < y* holds iff x* € Byx.
Next, Radon—Nikodym theorem (see, e.g., [2, Section 13.6]) asserts, in particular, the following:
if x*,y* € €1 C €} and x* K y* (i.e., in other words, y*e, = 0 for some n implies x*e, = 0)
then there exists a unique y*-integrable sequence w € s satisfying the identity

x*A:/ wdy* (42)
A

for every subset A of N; in this case, the sequence w can be defined by w, = ; :2’; if y*e, £ 0
and w;, = 0 otherwise. If w € £, then (42) is equivalent to the identity

x*x = y*(wx) (43)

forall x € Lo, i.e., x* =y (see (5)).

As is well-known, Radon—Nikodym theorem is the most prominent result for the construction
of conditional expectations (see, e.g., [ 14, Section 2.7]). Therefore, in the study of finite additive
probability measures the question about the validity of this result in the general case arises
naturally. Unfortunately, as Example 36 shows, Radon—Nikodym theorem is not valid for finite
additive measures.

The next lemma will be needed later.

Lemma 34. Let x*, y* € £% be two functionals such that 0 < x* < y* and let the identity (42)
hold for some w € s and all subsets A of N. Then there exists a sequence wo € L satisfying
0<wo<eand [, wdy* = [, wody* for all subsets A of N.

Proof. For an arbitrary subset A of N, we have

Og/wfdy*zf ufdy*f/ whdy* =0
A AN{n:w, <0} AN{n:w, <0}
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and so [, w™dy* = 0. Thus, [, wdy* = [, wtdy* and, hence, we can assume w > 0 (we
only used the inequalities y* > 0 and || g wdy* > 0 for all subsets B of N). Next, using (42),
we obtain [, wdy* < y*A = [, edy*. Therefore, [, (e — w)dy* > 0. As showed above, the
relation [, (e — w)dy* = [, (e — w)T dy* holds and so [, wdy* = [,(e — (e —w)")dy*. It
remains to observe the validity of the inequalities 0 < wg < e withwg =e — (e —w)*. O

First of all, we mention the conditions under which Radon—-Nikodym theorem is valid.

Proposition 35. Let x*, y* € £% and let x* < y*. We have the next statements:

(@ If y* = Z{'(:I a;x; with t; € BN and o; € R then the identity (43) holds for some w € £
and for all x € lso;

(b) If there exist a sequence {t,} in BN and a sequence {x,} in lxo satisfying y* = > 2, o xg
with o € £y, x; xp # 0 and x;’ (Uj#n supp xj) = 0 for all n, and for every k € N

m
sup[m eN: ke msuppxnjforsomenl,...,nm, n; #nj fori ;éj} < oo (44)
j=1

then the identity (42) holds for some w € s and for every subset A of N.

Proof. (a)We can suppose #; # t; fori # j. Since By» C Ly;,..4) and x* € By«, we have

.....

. .. —pBN
x* = ZLI al{x;‘; with o] € R. Next, let Ay, ..., A be a partition of N such that 7; € A,-ﬁ for

. . o . o
i =1,...,k Assuming o; # 0, we put w = Zk EXA;- Since x;w = -t we have
1

i=1 @
k k
y*(wx) = Zaix;;(wx) = Za;x;x = x*x,
i=1 i=1
as required.

(b) For some sequence &’ € £; the identity x* = Y72 /x; holds. We can suppose x;" x, = 1

for all n. Moreover, using part (a), we can assume «; # 0 for all i. Put A; = ‘;i and define the
sequence w € s (not necessarily bounded) by wy = Z?il Xi(xi)r. In view of (44), w is well

defined. We claim that w satisfies the identity (42). To this end, consider the sequence {w} in
{0 defined by w™ = Y71 Aix;. The sequence {w™} converges in measure y* to w, i.e.,

o (45)
Indeed, for every € > 0, we have

o o oo
eIk s Tl = wel = ey < 171 supp ) = Y leul (U supp ;)
j=n+1 i=1 j=n+1

o0
D el >0

i=n+1

as n — 00. Next, we will show the relation

lim /|w<">|d|y*|=o (46)
Y E—=0JE

uniformly in 7. To see this, fix € > 0 and choose an index ng satisfying 372, |ej| < €. Next,
pick 6 > 0 such that § < min{|ai], ..., |oy,|}. Therefore, for an arbitrary subset E of N the
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inequality |y*|E < & implies the relation {t1, ..., t,;,} N EﬁN = (). Whence, for all n > ng, we

get

n

n n
/|w<">|d|y*|s/Zlki|lxi|d|y*|=Z|xi||y*|<PE|xi|>§ D lefl <e,
E Ei=1 i=1

i=ngp+1

and (46) has been established. Using (45) and (46), we infer [6, p. 122] that w is y*-integrable
and fN |lw — w™|d|y*| = 0asn — oo. Finally, for an arbitrary subset A of N, we have

/wdy* = lim [ w™ dy*
A

n—oo [,
n n
= lim > [ nxidy* = lim Y o = lim > ojxfA=x*A,
n—0o00 4 A n—>o0o | n—o00 4 !
i=1 ie{l,...,n} i=1
t,—eKﬁN

and the proof is completed. [

As is shown in part (a) of the next example, in the general case, the preceding proposition is
not valid for functionals of the form ) o, oxg

Example 36. (a) Let {#,} be an arbitrary sequence in 8N such that #; # ¢; fori # j and

thel{n t,...} 47
(e.g..h € N and tn = n — 1if n > 1). Consider two arbitrary sequences {«,} and {«)} in R
satisfying

o0 /

<, and o, > O for all n, ai > 0, Za,- < 00, and lim I =0 (48)

n—>00

0<a,

i=1
(e.g.a) = S anda, = ). Putx* = 3%, ajxf and y* = Y72 a;x;. Clearly, 0 < x* < y*
and, hence, the finite additive measure x* is absolutely continuous with respect to the finite
additive measure y*.

If the assertion of Radon—Nikodym theorem is valid then the identity (42) holds for some
sequence w € s. In view of Lemma 34, we can assume w € {. Therefore, we have the identity
(43) for all x € £oo, ie., x*x = y*(wx). Fix an index io. Since the collection {A : A € N}
is a base for the topology on BN, for an arbitrary index n, we find a subset A, of N satisfying
tiy € Ay and ({t1, ..., t,} \ {t;,}) N A, = 0. In view of (48), we get

0< Zcxﬁg Zaif iai—>0

ti€An ti€An i=n+1
iig iig

as n — o0¢. Then, on the one hand,
* _ / / /
X An—aio—i— E o = o

ti€An
ii

as n — 00, on the other hand,
YH(Pa,w) = ajgW(tiy) + Z ai(t;) — oty W(tiy)

t;€Ap

iig
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as n — oo. Whence alfo = aj,w(t;,) because x*A,, = y*(Pa,w) for all n. Since iy is arbitrary,

we get w(t) = % for all ;. In particular, w(#;) % 0 and w(5;) — O asi — oo.
Next, for some ng the inequality

)] < lw ()

(49)

holds for all n > ng. Since the function @ is continuous, there exists a neighborhood U, of 7
such that

[w(t)]
2

for all # € U;,. Using (47), we find an index n’ satisfying n’ > ng and f,; € Uj,. In view of (49)
and (50), the relations

lw@) —w®)] < (50)

~ 1 ~ —~
lw(t)| < §|w(t1)| +lw@)| < [w(t)

hold, which is impossible.

(b) We will show that for the case of Banach—-Mazur limits Radon—-Nikodym theorem is not
also valid. To this end, let {D,},>2 be a sequence of pairwise disjoint subsets of N such that
D,, € D(aco) and t(xp,) = 1 for all n > 2 (the existence of such sequence follows easily from,
e.g., Corollary 7(a)). There exists a sequence {z;;},>2 in ext BM satistying zjD; = §;;, where
8;j is the Kronecker delta. As is easy to see, z; L zjf fori # j.Let z] be a 0 (£3,, £oo)-cluster
point of the sequence {z;},>2. Evidently, zj € BM and z D, = 0 for all n > 2. Again consider
two sequences {«,} and {o,} in R satisfying the relations (48) and, moreover, Z?il o; = 1. Put
x* =32 alzF and y* = Y 72 a;zf. Clearly, 0 < x* < y* and y* € BM \ ext BM.

Assume that the identity x*x = y*(wx) holds for some w € £ and for all x € £4,. Using
Theorem 3/(c), for an arbitrary sequence x € D(acg), we have Y ;= alzix = > 7o) o (zfw -
z7x). Since the sets D,, € D(acy), we obtain

o0 o0
/ ! _k * * *
a, = E a;z; Dy = E a;(z;w - z; Dp) = apz,w
i=1

i=1
for all n > 2 and, hence,

* o
Zw="1 (51)
(277}

=~

Therefore, lim, . z;w = 0 and, consequently, z’fw = 0. Using the last identity and (51), we
have Y70 af = x*e = y*w = Y72 o;zfw = Y 2, . Finally, o] = 0, a contradiction. [J
It is not known if the relations 0 < x* < y* and y* € ext BM imply (43).

By Bochner theorem (see [6, p. 315]), if x*, y* € €5, y* > 0, and x* <« y* then for every
€ > 0 there exists a simple sequence w satisfying ||x* — y || < €. The next proposition makes
more precise this result.

Proposition 37. Let x*, y* € L%, be two functionals and let 0 < x* < y*. Then for every € > 0
there exists a simple sequence w satisfying ||x* — yX || < e and 0 <w <e.
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Proof. First of all, we assume that x* is a component of y*, i.e., x* L y* — x*. There exists
[3, p. 77] a collection Ay, ..., Ay of pairwise disjoint subsets of N which satisfies the inequality
lx* — Zle P;{iy*ll < eandso [|x* — PEy*|| < e with B = U;‘Zl A;, as required.

In the general case, using Schaefer theorem [3, p. 172], we find two collections yj, ..., y,,
of components of y* and A1, ..., A, of non-negative numbers with ) /-, A; = 1 satisfying the
inequality [|x* — Y 7" | A; ¥/l < 5. As showed above, for some subsets B, ..., B, of N, we
have ||y} — P;iy*H < §fori =1,...,m. To finish the proof, let w = > /.| A; x5, and we are
done. [J

In conclusion of this section, the author must mention that, unfortunately, he does not know
such examples in the nature or in the natural science that probability models of these examples
require a finite additive, i.e., discontinuous, probability measure (in particular, Banach—-Mazur
limit) but not countable additive.
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