С целью нахождения численных хартри-фоковских функций атома урана, приведенных в [5], по типу (2) с учетом (4), мы воспользовались программой, описанной в [6]. Все расчеты велись с двойной точностью. Метод состоял в следующем: минимизировался функционал

$$F\left(\vec{\underline{c}}, \ \vec{\underline{\zeta}}\right) = \sum_{j=1}^{M} \left[\sum_{i=1}^{R} c_i N_i r_M^{n_i-1} \exp\left(-\zeta_i r_M\right) - R^{X\Phi}\left(r_M\right)\right]^2$$
(5)

по методу Давидона — Флетчера-Павелла, где с, ζ — два вектора размерности (1, K), содержащие c_i и ζ_i ; $R^{X\Phi}(r)$ — значение хартри-фоковской функции в точке r. Суммирование в (5) осуществлялось по всем точкам, указанным в [5].

Таблица 2

Значения $F(\vec{c}, \vec{\zeta})$ для внешних орбиталей атома урана, вычисленные по формуле (5)

Орбиталь атома урана	По нашим данным, ×103	По данным из [7], ×10 ³
5-f	7,712657	7,712832
6- <i>d</i>	59,606190	71,416900
7-s	1,517964	3,450129

Начальные значения сіо и Сіо выбирались по методу, описанному в [7]. Результаты счета — многоэкспонентные волновые функции для внешних орбиталей атома урана — сведены в табл. 1.

Сравнение полученных данных с результатами работы [7] для 7—s, 6—d, 5-f орбиталей атома урана показывает, что вычисленные многоэкспонентные волновые функции лучше описывахартри-фоковые ЮТ функции [5]. чем разложения, приведенные в [7] (табл. 2).

Волновые функции внешних оболочек урана, найденные в настоящей работе, могут быть использованы в фи-

зике атомных столкновений, молекулярной физике, физике твердого тела, а также для квантово-химических расчетов урансодержащих соедипений.

Список литературы

1. Жуков В. П., Губанов В. А., Анисимов В. И. // Оптика и спектроскопия. 1979. Т. 46. № 1. С. 85.

2. Губанов В. А., Жуков В. П., Литинский А. О. Полуэмпирические методы молекулярных орбиталей и квантовой химии. М., 1976. 3. Richardson J. W., Powell R. R. // Journ. Chem. Phys. 1963. V. 38. № 4.

P. 796.

4. Richardson J. W., Powell R. R. Ibid. 1962. V. 36. № 4. Р. 1057. 5. Мапп J. B. // Atomic Data. 1973. V. 12. № 1. Р. 86.

6. Химмельблау. Прикладное нелинейное программирование. М., 1975.
7. Нефедов В. С. // Радиохимия, 1980. Т. 22. № 4. С. 479.

Поступила в редакцию 27.10.87.

УДК 539.107.43

О. М. АНШАКОВ, С. А. ВЕРЕЗУБОВА, НГУЕН БАК ХА, В. А. ЧУДАКОВ

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК протяженного детектора НА ОСНОВЕ ЖИДКИХ СЦИНТИЛЛЯТОРОВ

Использование жидких сцинтилляторов (ЖС) позволяет создавать позиционно-чувствительные детекторы (ПЧД) с большими рабочими объемами. Вместе с тем меньший по сравнению с твердотельными сцинтилляторами световыход ЖС предъявляет повышенные требования к уровню шумов фотоэлектронного умножителя (ФЭУ) ПЧД и качеству собпрания света на его фотокатод.

Для однокоординатных ПЧД с малыми относительно длины попереч-

ными размерами светособирание определяется прозрачностью сцинтиллятора к собственному излучению и отражательной способностью боковой поверхности рабочего объема. Светособирание в таких ПЧД характеризуется эффективным коэффициентом поглощения k [1] или длиной ослабления $\lambda = 1/k$ [2], на которой интенсивность световой вспышки ослабляется в e раз.

С целью исследования возможности применения индий- и гадолинийсодержащих ЖС в ПДЧ низкоэнергетического гамма-излучения разработан протяженный детектор с рабочим объемом $\varnothing 25 \times 500$ мм, представляющий собой заполненный ЖС стеклянный цилиндр (толщина стенок 1 мм), находящийся одним торцом в оптическом контакте с ФЭУ и помещенный в дюралюминиевую трубу (толщина стенки 1 мм). Использовался фотоумножитель типа ФЭУ-85 с анодной чувствительностью 100 А/лм и эпергетическим эквивалентом собственных шумов 1,02 кэВ. ЖС на основе α-метилнафталина с 0,5 %-ной концентрацией In и Gd изготовлен в НПО «Монокристаллреактив».

Измерения проводились в геометрии, аналогичной [2]. Амплитудные распределения ФЭУ импульсов снимались выходных с помощью многоканального анализатора АИ-1024 при различных координатах х ввода в детектор относительно фотокатода $\Phi \ni \forall (x=0)$ коллимированного пучка гамма-квантов с энергией 59,6 кэВ от радиоизотопного источника Am-241. Амплитуда импульсов А, по которым определялось ослабление света на расстоянии 0 ... х, выбиралась по положению полувысоты спада амплитудного распределения.

Зависимость амплитуды А выходных импульсов протяженного детектора от координаты x ввода пучка гамма-излучения для гадолиний (1)- и индийсодержащих (2) ЖС при боковых отражателях:

О — алюминиевая фольга; + — черная бумага

На рисунке представлены результаты относительных измерений зависимости A(x), проведенных при использовании боковых покрытий (черная бумага и алюминиевая фольга), окружающих цилиндр с ЖС без воздушного зазора. Полученные данные нормпрованы на значение A = Aпри x = 5 см для гадолинийсодержащего ЖС. Исследования показали, что для рассматриваемой конструкции детектора качество внешнего бокового отражателя практически не влияет на светособирание в ПЧД, так как, по-видимому, значительная часть света, прошедшего в боковую стенку стеклянного цилиндра, захватывается в угол полного внутреннего отражения и не попадает на фотокатод ФЭУ, диаметр рабочей поверхности которого 25 мм.

Для детектора на ЖС с Gd относительная сцинтилляционная эффективность выше, чем для ЖС с In в 1,3 раза. Оценка длины ослабления для детекторов с указанными ЖС дает 246 ± 4 и 140 ± 4 см соответственно. Эффективность регистрации гамма-излучения изотопа Am-241 при x=25 мм, определенная для детектора в соответствии с [3], составила для ЖС с In ($37,1\pm0,4$) % н для ЖС с Gd — ($43,8\pm0,5$) %.

Список литературы

1. Цирлин Ю. А., Дайч А. Р., Соколовская Т. И., Нагорная Л. Л. // ЖПС. 1965. Т. 2. № 4. С. 371. 2. Бэм Я., Выскочил С., Завада П., Крумштейн З. В., Монич Е. А., Муравьев Б. А., Ронжик А. К., Харчилава А. И., Шафарик К., Цисек З. // ПТЭ. 1981. № 5. С. 55.

3. Петржак К. А., Бак М. А. // ЖТФ. 1955. Т. 25. С. 636.

Поступила в редакцию 27.10.87

УДК 517.916

О. А. КОНОНОВА

ОБ ИЗОХРОННОСТИ ЦЕНТРА ОДНОЙ СИСТЕМЫ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ

,

Рассматривается система нелинейных колебаний:

$$\frac{dx}{dt} = y;$$

$$\frac{dy}{dt} = -x + c_0 x^2 + d_0 x^3 + l_0 x^4 + y (b_1 x + c_1 x + d_1 x^3) + y^2 (a_2 + b_2 x + c_2 x^2) + y^3 (a_3 + b_3 x) + a_4 y^4.$$
(1)

Для системы (1) И. С. Куклесом найдены необходимые и достаточные условия, при которых точка О (0, 0) является центром. Этих условий девять [1]. Изохронность центра (0, 0) в случаях I—IV показана в [2].

В данной заметке рассматривается вопрос об изохронности центра в 8-м случае центра, когда $a_4 = a_3 = a_2 = c_0 = c_1 = l_0 = 0$. Система (1) в 8-м случае центра имеет вид:

$$\frac{dx}{dt} = y;$$

$$\frac{dy}{dt} = -x + d_0 x^3 + y (b_1 x + d_1 x^3) + y (b_2 x + b_3 x y).$$
(2)

Теорема. Система (2) изохронна только в случае $d_0 = -\frac{1}{9}b_1^2$; $d_1 = b_2 = b_3 = 0$ и в линейном случае.

Чтобы начало координат было изохронным центром, необходимо и достаточно существования голоморфного в окрестности (0, 0) преобразования:

$$u = x + \sum_{i+j>2}^{\infty} \alpha_{ij} x^i y^j; \ v = y + \sum_{i+j>2}^{\infty} \beta_{ij} x^i y^j,$$

переводящего систему (2) в систему

$$\frac{du}{dt} = v; \quad \frac{dv}{dt} = -u. \tag{3}$$

Непосредственные вычисления дают следующие необходимые условия изохронности:

1.
$$b_1^2 + 3b_2 + 9d_0 = 0;$$

2. $6b_1d_1 + 6b_1b_3 + 9b_2d_0 + 18b_1^2d_0 + 9b_1^2b_2 + 2b_1^4 + 9b_2^2 = 0;$
3. $18b_2d_1 + 12b_1^2d_1 + 2b_1^2b_3 + 3b_3b_2 = 0;$ (4)
4. $\frac{7}{60}b_1d_1d_0 - \frac{157}{36}b_1b_2d_1 - \frac{197}{60}b_1^3d_1 + \frac{214}{15}b_1^2d_0^2 + \frac{1783}{45}b_1^2b_2d_0 + \frac{2}{135}b_1^3b_3 + \frac{12166}{945}b_1^4d_0 + \frac{12077}{1620}b_1^4b_2 + \frac{911}{72}b_1^2b_2^2 + \frac{508}{405}b_1^6 + \frac{69}{15}b_1b_3d_0 + \frac{135}{8}b_2^2d_0 + \frac{35}{4}b_2d_0^2 + \frac{4}{3}b_1b_2b_3 + \frac{113}{24}b_2^3 = 0.$
Если $b_1 = 0$, тогда $b_2 = d_0 = 0$ и система (2) имеет вид:

$$\frac{dx}{dt} = y; \frac{dy}{dt} = -x + d_1 x^3 y + b_3 x y^3.$$
(5)

71