И. И. ЗАДУБОВСКИЙ, Б. Н. КРАСНОГОЛОВЫЙ, В. Т. НИКОЛАЕНКО

ГЕНЕРАТОР ПОДДЕРЖИВАЮЩЕГО НАПРЯЖЕНИЯ ДЛЯ ГАЗОРАЗРЯДНЫХ ИНДИКАТОРНЫХ ПАНЕЛЕЙ ПЕРЕМЕННОГО ТОКА

Газоразрядные индикаторные панели переменного тока (ГИП $_\sim$) в последние годы все шире используются для построения устройств отображения информации (УОИ) различного назначения. ГИП $_\sim$ обладают свойством запоминания информации, что делает их удобными при отображении знаковой и графической информации, поскольку исключаются проблемы, связанные со скоростью регенерации изображения. Это не единственное достоинство ГИП $_\sim$, позволяющее им конкурировать во многих областях с электронно-лучевыми трубками.

Ввиду специфики электрических разрядов в газовой среде, несмотря на относительно простую конструкцию, управление $\Gamma U\Pi_{\sim}$ — довольно сложный процесс. Управление состоянием ячеек $\Gamma U\Pi_{\sim}$ (зажигание, гашение) осуществляется с помощью импульсов записи U_3 и гашения U_r , которые во времени должны располагаться определенным образом относительно поддерживающего напряжения U_{π} (простой или сложной многоступенчатой формы), постоянно приложенного к электродам $\Gamma U\Pi_{\sim}$ [1]. Амплитуда U_{π} превышает максимальное напряжение гашения ячеек, но выбирается меньшей минимального напряжения их зажигания. Разность между этими граничными напряжениями (15÷20 В) определяет диапазон памяти $\Gamma U\Pi_{\sim}$.

Особые требования предъявляются к генератору поддерживающего напряжения ГПН, формирующему $U_{\rm II}$. Он должен создавать на емкостной нагрузке ГИП $_{\sim}$ 1000 \div 5000 пФ импульс $U_{\rm II}$ с амплитудой 90 \div 120 В и нестабильностью менее 1 % при длительности фронтов не больше 0,3 мкс, пропускать разрядные токи в несколько ампер без искажений вершины импульсов $U_{\rm II}$. Частота повторения импульсов $U_{\rm II}$ должна обеспечивать достаточную для оператора яркость изображения.

На днапазои памяти $\Gamma U\Pi_{\sim}$ существенно влияет крутизна фронта U_{π} . Оптимальное значение крутизны $S_{\text{опт}}$ фронта импульсов U_{π} для обеспечения обусловленной накоплением стеночных зарядов на диэлектрических слоях памяти панели определяется соотношением $S_{\text{опт}} \geqslant 12~S_{\text{кр}}$, где $S_{\text{кр}}$ — критическая крутизна фронта, при которой разряд ячейки не возникает [2]. Экспериментальные исследования показывают, что у $\Gamma U\Pi_{\sim}$ отечественного производства $S_{\text{опт}}$ для практически неизменного диапазона памяти составляет $250 \div 300~\text{В/мкс}$.

Работа ГИП $_{\sim}$ на той или иной частоте повторения определяет яркость свечения ячеек панели. При этом следует учитывать, что длительность импульса $U_{\rm п}$ должна быть достаточной для накопления соответствующего заряда на диэлектрических слоях [3]. Это обстоятельство накладывает существенные ограничения на частоту $U_{\rm n}$.

Нами установлено, что частота $U_{\rm fl}$ влияет также на значения $U_{\rm 3}$ и $U_{\rm fl}$ ячеек ГИП $_{\sim}$ (рис. 1). При частоте $U_{\rm fl}$ больше 50 кГц наблюдается увеличение $U_{\rm fl}$ при незначительном изменении $U_{\rm 3}$, что приводит к сужению диапазона управляемости (разность между минимальным значением $U_{\rm 3}$ и максимальным $U_{\rm fl}$). Наиболее приемлемыми для практических целей рабочими частотами ГИП $_{\sim}$ следует считать $40 \div 50$ кГц, на которых обеспечивается вполие достаточная для нормальной работы оператора яркость свечения ячеек ($90 \div 120$ кд/м 2) и максимальный диапазон управляемости ГИП $_{\sim}$.

Таким образом, $\Gamma\Pi H$ в значительной степени определяет характеристики УОН на $\Gamma U\Pi_{\sim}$, в связи с чем вопросам проектирования $\Gamma\Pi H$ уделяется первостепенное внимание.

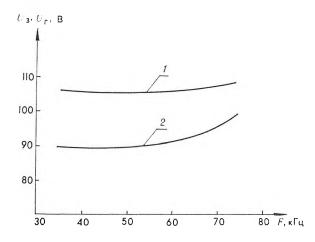


Рис. 1. Экспериментальная зависимость напряжений записи $U_{\rm 3}$ (1) и гашения $U_{\rm r}$ (2) ячейки от частоты поддерживающего напряжения

До недавнего времени наиболее распространенными были схемы ГПН с несколькими стабилизированными источниками питания. При этом формирование U_{π} осуществлялось отдельно для каждой системы электродов ГИП $_{\sim}$ (рис. 2, a) [1]. Выходные сигналы двух ГПН через блоки адресации БА по каждой из координат поступают на электроды ГИП $_{\sim}$. ГПН формируют однополярные импульсы напряжения со смещением на половину периода, создавая двухполярное результирующее напряжение на ячейке ГИП $_{\sim}$ (пересечении электродов соответствующих координат).

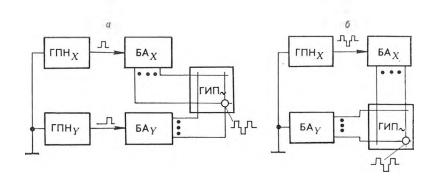


Рис. 2. Принципы построения ГПН: 2— с двухсторонней подачей однополярных поддерживающих импульсов; б— с односторонним приложением двухполярных импульсов

Такой принцип построения $\Gamma\Pi H$ приводит к громоздкой конструкции, а также к невозможности обеспечения высокой температурной стабильности амплитуды U_{π} из-за существенного различия электрических характеристик транзисторов $\Gamma\Pi H$, что, в свою очередь, сужает диапазон управляемости и снижает устойчивость работы $\Gamma M\Pi_{\sim}$.

Более перспективным является построение ГПН только на одну систему электродов (рис. 2, б). В этом случае ГПН формирует двухполярное U_{π} для одной системы электродов, а на другую систему воздействуют управляющие сигналы зажигания (гашения). Для такого ГПН требуются два высокостабильных разнополярных источника питания, но этот не-

достаток можно исключить, если выполнять ГПН по схеме, показанной

на рис. 3, а [4].

ГПН состоит из неполярного (ни один из полюсов не заземлен) источника питания ИП, коммутатора на зарядном VT2 и разрядном VT3 транзисторах, ключевых элементов на транзисторах VT1 и VT4, обеспечиваю-

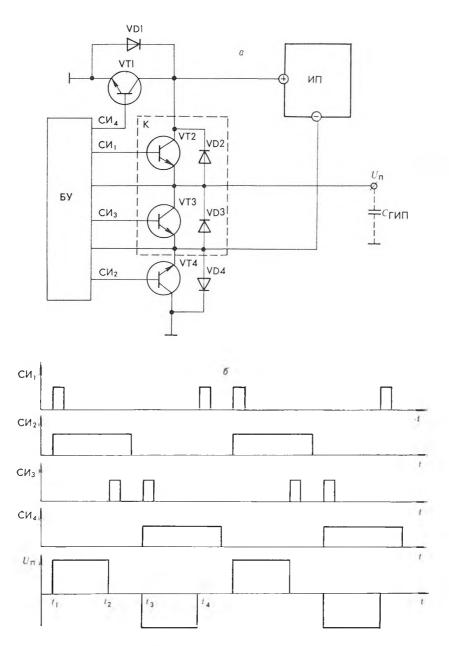


Рис 3. Генератор поддерживающего напряжения с одним источником питания (a) и временная диаграмма его работы (δ)

щих «привязку» полюса $И\Pi$ к нулевому потенциалу; блока управления БУ, синхронизпрующего работу элементов $\Gamma\Pi H$; диодов $VD1\dots VD4$, служащих для замыкания зарядных и разрядных токов. Все транзисторы типа KT809A, диоды — KД212A.

Работа ГПН происходит следующим образом (рис. 3, δ). Синхронмпульсы СИ₁, СИ₃ поступают с трансформаторных выходов БУ на эмиттерные переходы соответствующих транзисторных ключей. В момент вре-

мени t_1 сигналом С W_2 отпирается транзистор VT4 на время, примерно равное половине периода повторения $U_{\rm II}$, и отрицательный полюс WII соединяется с нулевым потенциалом. В этот же момент времени сигналом С W_1 отпирается транзистор VT2, через который заряжается эквивалентная емкость $C_{\rm ГИП}$ до напряжения WII. В момент времени t_2 сигналом С W_3 отпирается транзистор VT3. При этом формируется срез положительной части $U_{\rm II}$. Отпиранием транзистора VT1 в момент времени t_3 обеспечивается «привязка» положительного полюса WII к пулевому потенциалу. Заряд $C_{\rm ГИП}$ происходит от отрицательного полюса WII через транзистор VT3, а разряд в момент времени t_4 (формирование среза отрицательной части $U_{\rm II}$) — через транзистор VT2 и диод VD1.

Схемы управления ГИП, в том числе и ГПН, выполняются, как правило, на дискретных компонентах (транзисторы, диоды, резисторы). Это объясияется тем, что до настоящего времени не налажен серийный выпуск высоковольтных мощных интегральных микросхем с высоким быстродействием, необходимым для получения достаточно высокой крутизны фронтов импульсов, оказывающей существенное влияние на днапазон

управления ГИП~.

Таким образом, описываемая схема ГПН обеспечивает получение двухполярного U_{π} от одного ИП со стабильной и одинаковой амплитудой положительной и отрицательной частей. Использование одного ИП позволяет уменьшить число соединений, по которым протекают мощные импульсные токи, и уменьшить вероятность возникновения сбоев за счет паразитных наводок.

Список литературы

- 1. Яблонский Ф. М. Газоразрядные приборы для отображения информации. М., 1979.
- 2. Якимов О. П. // Электронная техника. Сер.: Электровакуумные и газоразрядные приборы. 1983. Вып. 3. С. 11.

3. Проблемы прикладной физики. Дисплен / Под ред. Ж. Панкова. М., 1982.

4. Задубовский И. И., Калугин Б. Н., Николаенко В. Т. Генератор импульсов: А. с. 1018195 СССР // БИ. 1983. № 18.

Поступила в редакцию 18.05.87.

УДК 548-162:539.12.04

В. П. ГОЛЬЦЕВ, В. В. ХОДАСЕВИЧ, В. М. ДРАКО, В. В. УГЛОВ

ДИНАМИКА НАКОПЛЕНИЯ РАДИАЦИОННЫХ ДЕФЕКТОВ В НИКЕЛЕ ПРИ ИОННОМ ОБЛУЧЕНИИ

В настоящее время значительно возрос интерес к кинетике и механизмам взаимодействия ускоренных ионов с ГЦК- и ОЦК-металлами в связи с решением ряда проблем радиационной физики твердого тела и реакторного материаловедения [1]. Изучение основных закономерностей образования, накопления и эволюции радиационных дефектов структуры и их взаимодействия с внедренными ионами помогает понять механизм таких явлений, как радиационное распухание, структурно-фазовые превращения и упрочнение материалов [2]. Экспериментально установлено, что имплантация ионов инертных газов существенно влияет на характер радиационной повреждаемости металлов, что проявляется в изменении морфологии скоплений дефектов в процессе облучения или постимплантационного отжига.

В данной работе методом просвечивающей электронной микроскопни (ПЭМ) с использованием микроскопа JEM-100X исследовано влияние изохронного отжига на динамику накопления радиационных дефектов в понно-имплантированных образцах никеля.