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Abstract

We set up a correspondence between solutions of the Yang–Mills equations on
R × S3 and in Minkowski spacetime via de Sitter space. Some known Abelian
and non-Abelian exact solutions are rederived. For the Maxwell case we present
a straightforward algorithm to generate an infinite number of explicit solutions,
with fields and potentials in Minkowski coordinates given by rational functions
of increasing complexity. We illustrate our method with a nontrivial example.
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1 Conformal equivalence of dS4 to I×S3 and two copies of R1,3
+

The present work is motivated by the recent paper [1] co-authored by one of us, where analytic solutions
of the Yang–Mills equations on four-dimensional de Sitter space dS4 are constructed. It is well known
that de Sitter space can be realized as the single-sheeted hyperboloid

− Z2
0 + Z2

1 + Z2
2 + Z2

3 + Z2
4 = `2 (1.1)

embedded in five-dimensional Minkowski space R1,4 with the metric

ds2 = −dZ2
0 + dZ2

1 + dZ2
2 + dZ2

3 + dZ2
4 . (1.2)

Constant Z0 slices of the hyperboloid reveal a three-sphere of varying radius. The following parametriza-
tion makes this structure explicit:

Z0 = −` cot τ and ZA =
`

sin τ
ωA for A = 1, . . . , 4 , (1.3)

where the coordinates ωA embed a unit three-sphere into R4, and 0 < τ < π, i.e.

ωAωA = 1 and τ ∈ I := (0, π) . (1.4)

The metric of dS4 in such coordinates becomes

ds2 =
`2

sin2 τ

(
−dτ2 + dΩ2

3

)
, (1.5)

where dΩ2
3 denotes the metric of the unit three-sphere. Hence, four-dimensional de Sitter space is con-

formally equivalent to a finite Minkowskian cylinder over a three-sphere.

Part of it is also conformally equivalent to (half of) Minkowski space, by employing the parametrization

Z0 =
t2 − r2 − `2

2 t
, Z1 = `

x

t
, Z2 = `

y

t
, Z3 = `

z

t
, Z4 =

r2 − t2 − `2

2 t
, (1.6)

where
x, y, z ∈ R and r2 = x2 + y2 + z2 but t ∈ R+ (1.7)

since t→ 0 corresponds to Z0 → −∞. The metric of dS4 becomes

ds2 =
`2

t2
(
−dt2 + dx2 + dy2 + dz2

)
, (1.8)

hence these coordinates cover the future half R1,3
+ of Minkowski space. In a moment this parametrization

will be extended to the whole of Minkowski space, by gluing a second copy of dS4 to provide for the t < 0
half. The de Sitter radius ` provides a scale.

We shall need the direct relation between the cylinder and Minkowski coordinates. By comparing
(1.3) and (1.6) we see that

− cot τ =
t2 − r2 − `2

2 ` t
, ω1 = γ

x

`
, ω2 = γ

y

`
, ω3 = γ

z

`
, ω4 = γ

r2 − t2 − `2

2 `2
, (1.9)

where for convenience we abbreviated the frequent combination

γ =
2 `2√

4 `2t2 + (r2 − t2 + `2)2
. (1.10)

If we fix r and let t vary from −∞ to∞, then − cot τ sweeps two branches. We pick the branches so that
τ ∈ (−π, 0) for t < 0 and τ ∈ (0, π) for t > 0, gluing them at τ = t = 0. Then inverting (1.9) produces τ
as a regular function of (t, x, y, z). A more useful relation for the following is

exp(i τ) =
(`+ it)2 + r2√

4 `2t2 + (r2 − t2 + `2)2
. (1.11)
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Hence, comparing (1.5) and (1.8), we have given an explicit conformal equivalence between full Minkowski
space R1,3 and a patch of a finite S3-cylinder 2I×S3 with 2I = (−π, π) 3 τ . The structure of this
equivalence is best clarified by an illustration. Note that the whole infinite R × S3 cylinder can be
covered by such patches. The neighbouring patches can be related via shifting τ by π and changing the
sign of ω4. The latter action essentially implements a parity transformation.

Figure 1: An illustration of the map between a cylinder 2I×S3 and Minkowski space R1,3. The Minkowski
coordinates cover the shaded area. The boundary of this area is given by the curve ω4 = cos τ . Each
point is a two-sphere spanned by ω1,2,3, which is mapped to a sphere of constant r and t.

2 The correspondence

In four spacetime dimensions Yang–Mills theory is conformally invariant. Therefore, instead of solving its
equations of motion on Minkowski space one may solve them on the cylinder 2I×S3. The latter has the
added advantage yielding a manifestly SO(4)-covariant formalism due to the three-sphere. Furthermore,
S3 is the group manifold of SU(2), which enables the geometric parametrization (we pick the temporal
gauge Aτ = 0)

A =

3∑
a=1

Xa(τ, ω) ea , (2.1)

where Xa are three functions of τ and ω ≡ {ωA} valued in some Lie algebra, and ea are the three
left-invariant one-forms on S3. Since the conformal factor is irrelevant for the Yang–Mills equations we
can translate Yang–Mills solutions on 2I×S3 to solutions on R1,3 simply via a change of coordinates.
The behavior at the boundary cos τ = ω4 is thereby transferred to fall-off properties at temporal infinity
t→ ±∞.

To become explicit, we need Minkowski-coordinate expressions for the one-forms e0 = dτ and ea,
which are subject to

dea + εabc e
b ∧ ec = 0 and eaea = dΩ2

3 . (2.2)

They can be constructed as
ea = −ηaBC ωB dωC , (2.3)

with ηaBC denoting the self-dual ’t Hooft symbol (with non-zero components ηijk = εijk and ηij4 = −ηi4j =

δij). A straightforward computation yields (a, j, k = 1, 2, 3)

e0 =
γ2

`3

(
1
2 (t2 + r2 + `2) dt− t xkdxk

)
,

ea =
γ2

`3

(
t xadt−

(
1
2 (t2 − r2 + `2) δak + xaxk + ` εajkx

j
)

dxk
)
,

(2.4)

where we introduce the standard notation

(xi) = (x, y, z) and (for later) (xµ) = (x0, xi) = (t, x, y, z) . (2.5)
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Two remarks are in order. First, in Minkowski spacetime the parameter ` just sets an overall scale, which
is needed for nontrivial solutions because the Yang–Mills equations themselves are scale-invariant in four
dimensions. Second, at fixed t the components for e0, . . . , e3 decay at least as 1/r2 for large r. This is a
good signal that the solutions translated from the cylinder will have finite energy in R1,3.

Let us see how this works by transferring some solutions obtained in [1, 2] to Minkowski spacetime.1

There, the authors restricted to SO(4)-symmetric configurations by taking Xa = Xa(τ) to be independent
of ω. This ansatz reduces the Yang–Mills equations to ordinary differential equations for the matrices
Xa. On the cylinder, a simple static homogeneous solution is given by

Xa(τ) = 1
2 Ta ⇒ A = 1

2 g
−1dg for g : S3 → SU(2) , (2.6)

where Ta are su(2) algebra generators scaled to obey [Ta, Tb] = 2εabcTc. After inserting (2.4) and (2.6)
into the ansatz (2.1) one recognizes the De Alfaro–Fubini–Furlan solution [3] (see also [4]). A more
general case,

Xa(τ) =
(
1 + 1

2q(τ)
)
Ta with

d2q

dτ2
= −∂V

∂q
for V (q) = 1

2q
2(q+2)2 , (2.7)

produces a family of SO(4)-symmetric solutions studied by Lüscher [5]. For a review on analytic Yang–
Mills solutions, see [6].

However, the interest of this paper is in Abelian solutions, i.e. electromagnetic field configurations.
These may be embedded in the non-Abelian framework by demanding the three matrices Xa to all
be proportional to the same fixed Lie-algebra element, say T3. Such solutions on I×S3 (with two
proportionality coefficients vanishing) were also discussed in [2]. Since in the U(1) case the matrix
structure is irrelevant, from now on we take Xa(τ, ω) simply to be real-valued functions and focus on
Maxwell’s equations. In the SO(4)-invariant case, Xa = Xa(τ) are found to obey the oscillator equation

d2

dτ2
Xa(τ) = −4Xa(τ) ⇒ Xa(τ) = ca cos

(
2(τ−τa)

)
, (2.8)

yielding six integration constants in the general solution. Since the Xa are oscillating with a frequency
of two, we can use the simple expression (1.11) for e2iτ to translate the dependence on τ into a rational
expression in t and r. From

A = Xa(τ) ea = Aµ dxµ (2.9)

one gets the components Aµ of the gauge potential after substituting the expressions (2.4) for ea. Note
that we chose Aτ = 0 but At = A0 will be nonvanishing. Likewise, from

dA =
d

dτ
Xa(τ) e0 ∧ ea − εabcXa(τ) eb ∧ ec = 1

2Fµν dxµ ∧ dxν (2.10)

one can extract the electric and magnetic field components as

Ei = Fi0 and Bi = 1
2εijkFjk . (2.11)

As a particular example, let us pick the solution

X1(τ) = − 1
8 sin 2τ , X2(τ) = − 1

8 cos 2τ , X3(τ) = 0 (2.12)

and put ` = 1 for simplicity. A short computation leads to the electromagnetic field

~E + i ~B =
1(

(t− i)2 − r2
)3
 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2 (x− iy) (t− i− z)

 . (2.13)

This is the celebrated Hopf-Rañada electromagnetic knot [7]. Note that in our approach we can also
reconstruct the gauge potential for this solution.

1 In these papers cylinder solutions were transferred to dS4 solutions.
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3 Construction of electromagnetic solutions

We will now investigate the case of a U(1) gauge group more thoroughly, by allowing for a general
dependence on the Minkowski coordinates xµ beyond one dictated by SO(4) invariance like in (2.13)
above. This means that our functions Xa will also depend on the S3 coordinates, Xa = Xa(τ, ω). In
order to capture this dependence in an SO(4)-covariant fashion, let us introduce a basis of three-sphere
vector fields dual to the left-invariant one-forms ea,

Ra = −ηaBC ωB
∂

∂ωC
. (3.1)

Under commutation, these vectors fields form an su(2) representation,

[Ra, Rb] = 2 εabcRc . (3.2)

They realize the infinitesimal right multiplications on SU(2), hence the chosen notation. Hence for an
arbitrary function Φ on S3 we may write

dΦ = eaRaΦ . (3.3)

There is another triplet of vector fields closely related to (3.1) given by

La = −η̃aBC ωB
∂

∂ωC
, (3.4)

where η̃aBC is the anti-self-dual ’t Hooft symbol (with non-zero components ηijk = εijk and ηij4 = −ηi4j =

−δij). As suggested by the notation, these realize infinitesimal left multiplications and obey the same
algebra as the R’s. Since right and left multiplications commute, [Ra, Lb] = 0.

The space of functions of S3 can be decomposed into irreducible representations of the su(2)L×su(2)R
algebra generated by La and Rb, respectively. These representations can be labeled uniquely by a non-
negative number j such that 2j ∈ {0, 1, 2, . . .}. If we define Hermitian “angular momentum” operators

Ia := i
2 La and Ja := i

2 Ra , (3.5)

then a particular basis of hyperspherical harmonics

Yj;m,n(ω) with m,n = −j,−j+1, . . . ,+j and 2j = 0, 1, 2, . . . (3.6)

is specified by the relations

I3 Yj;m,n = mYj;m,n , J3 Yj;m,n = nYj;m,n ,

I2 Yj;m,n = J2 Yj;m,n = j(j+1)Yj;m,n ,
(3.7)

where I2 = IaIa and J2 = JaJa are the Casimirs of the two su(2) subalgebras. To give explicit formulæ
for Yj;m,n it is useful to introduce two complex coordinates

α = ω1 + iω2 and β = ω3 + iω4 (3.8)

parametrizing the three-sphere via ᾱα+ β̄β = 1. Then, employing the notation

I± = (I1 ± iI2)/
√

2 , J± = (J1 ± iJ2)/
√

2 and X± = (X1 ± iX2)/
√

2 , (3.9)

the angular momentum generators take the simple form

I+ = (β̄∂ᾱ − α∂β)/
√

2 , J+ = (β∂ᾱ − α∂β̄)/
√

2 ,

I3 = (α∂α + β̄∂β̄ − ᾱ∂ᾱ − β∂β)/2 , J3 = (α∂α + β∂β − ᾱ∂ᾱ − β̄∂β̄)/2 , (3.10)

I− = (ᾱ∂β̄ − β∂α)/
√

2 , J− = (ᾱ∂β − β̄∂α)/
√

2 ,
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and the normalized hyperspherical harmonics are

Yj;m,n =

√
2j+1

2π2

√
2j−m(j+m)!

(2j)! (j−m)!

2j−n(j+n)!

(2j)! (j−n)!
(I−)j−m(J−)j−n α2j . (3.11)

These are homogeneous polynomials of degree 2j in α and β and their complex conjugates.

We will work in the Coulomb gauge on 2I × S3, which for a general gauge field

A = X0(τ, ω) dτ +Xa(τ, ω) ea (3.12)

with τ ∈ (−π,+π) and ω ∈ S3 means that

X0(τ, ω) = 0 and JaXa(τ, ω) = 0 . (3.13)

The Maxwell equations of motion then take the form

− 1
4 ∂

2
τXa = (J2+1)Xa + 2i εabcJbXc , (3.14)

which is su(2)L invariant and su(2)R covariant. A less compact but more transparent rewriting of
Maxwell’s and our gauge-fixing equation is

− 1
4 ∂

2
τX+ = (J2 − J3 + 1)X+ + J+X3 ,

− 1
4 ∂

2
τX3 = (J2 + 1)X3 − J+X− + J−X+ , (3.15)

− 1
4 ∂

2
τX− = (J2 + J3 + 1)X− − J−X3 ,

0 = J3X3 + J+X− + J−X+ . (3.16)

The components Xa are functions on S3 and can be expanded in the basis of hyperspherical harmonics,

Xa(τ, ω) =
∑
jmn

Xj;m,n
a (τ)Yj;m,n(α, β) . (3.17)

From the form of (3.15) and (3.16) it is obvious that

• the equations are diagonal in the quantum numbers j and m, so these may be kept fixed

• they only couple triplets (Xj;m,n
3 , Xj;m,n+1

+ , Xj;m,n−1
− ), so X± ∝ J±X3 for X3 ∝ Yj;m,n

• the ansatz Xj;m,n
a (τ) ∝ eiΩj;n

a τ cj;na gives a linear system for the frequencies and amplitudes

It turns out that the former are integral,

Ωj;na = ±2(j+1) or ± 2j (3.18)

independent of a or n. We call the corresponding solutions ‘type I’ and ‘type II’, respectively. From the
linear equations we extract the coefficients cj;na (up to an irrelevant overall factor which may depend on
j and m). Putting everything together, the two families of basic solutions read:

• type I : j ≥ 0 , m = −j, . . . ,+j , n = −j−1, . . . ,+j+1 , Ωj = ±2(j+1) ,

X+ =
√

(j−n)(j−n+1)/2 e±2(j+1)iτ Yj;m,n+1 ,

X3 =
√

(j+1)2 − n2 e±2(j+1)iτ Yj;m,n ,

X− = −
√

(j+n)(j+n+1)/2 e±2(j+1)iτ Yj;m,n−1 .

(3.19)

• type II : j ≥ 1 , m = −j, . . . ,+j , n = −j+1, . . . ,+j−1 , Ωj = ±2j ,

X+ = −
√

(j+n)(j+n+1)/2 e±2j iτ Yj;m,n+1 ,

X3 =
√
j2 − n2 e±2j iτ Yj;m,n ,

X− =
√

(j−n)(j−n+1)/2 e±2j iτ Yj;m,n−1 .

(3.20)
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It is understood that Yj;m,n vanish when n lies outside the interval [−j,+j]. This occurs on type I, at the
maximal n values (two X components vanish) and at the next-to-maximal n values (one X component
vanishes). We see that, for a given integral frequency Ω, solutions occur with the two values j = 1

2 |Ω|
and j = 1

2 |Ω|−1 (except for Ω=1). Constant solutions (Ω=0) are not admissible. The simplest nontrivial
case are the six SO(4)-invariant j=0 solutions of type I. Indeed, a superposition of (j;m,n) = (0; 0,−1)
and (0; 0,+1) was presented at the end of the previous section.

4 Some properties of the solutions

The basis solutions given in the previous section are complex, but real and imaginary parts solve the
equations independently. For fixed j there are 2(2j+1)(2j+3) real linearly independent solutions of type I
and 2(2j+1)(2j−1) such solutions of type II (with j>0). In total, for j > 0 there are 4(2j+1)2 solutions,
and for j = 0 there are six, in agreement with SO(4) representation theory. Type I solutions at level j
are related with type II solutions at level j+1 via a parity transformation. On S3 this transformation
exchanges right and left su(2) algebras, which induces n↔ m for the hyperspherical harmonics. The shift
in j arises from expanding the right-invariant one-forms in terms of the left-invariant ones. Furthermore,
electromagnetic duality is realized in a simple fashion for the solutions above. For type I (type II) at

fixed j, shifting |Ωj |τ by π
2 (−π2 ) produces the dual solution with ~BD = ~E and ~ED = − ~B. All quantum

numbers remain unaffected.

The field energy and helicity, given by

E = 1
2

∫
R3

d3x
(
~E2 + ~B2

)
and h = 1

2

∫
R3

(
A ∧ F +AD ∧ FD

)
, (4.1)

respectively, are both conserved in the dynamics. They are readily computed for any given solution. If
we introduce “sphere frame” electric and magnetic fields (denoted calligraphically) via

F = Ea ea ∧ e0 + 1
2Ba ε

a
bc e

b ∧ ec , (4.2)

then on the t = τ = 0 slice we find that∫
R3

d3x ~E2 =
1

`

∫
S3

d3Ω3 (1−ω4) EaEa and

∫
R3

d3x ~B2 =
1

`

∫
S3

d3Ω3 (1−ω4)BaBa . (4.3)

Manipulating integrals on the sphere is more convenient due to the orthogonality properties of the har-
monics Yj;m,n. For a solution with fixed (j,m, n) the ω4 term drops out from the integration. In the
expression (4.1) for the helicity the metric does not enter, so we may evaluate the corresponding integral
on any spatial slice of the cylinder 2I×S3. The dual potential is easily accessible, as was remarked in the
previous paragraph. Energy and helicity are related: for instance, any type I solution with m = n = 0
and fixed j has E ` = 2(j+1)h.

The main technical but straightforward task is to transform any chosen solution (3.17) to Minkowski
coordinates (t, x, y, z). Since the hyperspherical harmonics are homogeneous polynomials in ωA, one can
easily use the expressions (1.9) and (1.10) to do this. The remaining coordinate dependence hides in
integral powers of eiτ , for which we employ formula (1.11). All resulting expressions will be rational
functions in the Minkowski coordinates. Potential square roots stemming from odd powers of eiτ or γ
will not occur in the final expressions for the components Aµ(x, y, z, t), as one can check.

5 An example

Let us illustrate the power of our method by presenting a simple example of a solution with a nontrivial
dependence on the S3 coordinates. We take the two j = 1 solutions of type I with m = n = 0 and
combine their e±4iτ time dependences into a cosine:

X+ = −
√

3
π αβ cos 4τ , X3 =

√
6
π (ββ̄ − αᾱ) cos 4τ , X− = −

√
3
π ᾱβ̄ cos 4τ . (5.1)
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On the t=τ=0 slice time and τ derivatives are proportional to one another, hence at t=0 this solution is
purely magnetic. We refrain from presenting here the rather lengthy expressions for the electromagnetic
fields, but instead display below plots of the energy density level surfaces and a magnetic flux line, all at
t=0. In this example, the energy and helicity compute to

E = 48/` and h = 12 . (5.2)

Finally, in the figure below we have added the energy density plot for a particular (j;m,n) = ( 3
2 ; 1

2 ,
3
2 )

type I solution, for illustrative and aesthetical reasons.

(a) (b)

(c)

Figure 2: (a) Energy density level surfaces and (b) a particular closed magnetic field line for the solution
discussed in the example. Plot (c) shows a particular ( 3

2 ; 1
2 ,

3
2 ) solution. The energy density levels

displayed have 0.01 and 0.1 of the maximal value. All plots are at t=0.

6 Summary and discussion

The construction of rational electromagnetic field configurations with nontrivial topology has been an
active field of theoretical and experimental research for almost thirty years now. To the four methods
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described in the recent review [8] we should like to add a fifth one. It is based on the simplicity of
analytically solving Maxwell’s equations on a temporal cylinder over a three-sphere plus the conformal
equivalence of a part of the latter space to four-dimensional Minkowski spacetime.

A generic Maxwell solution on R × S3, written in the form A = Xα(τ, ω) eα (α = 0, . . . , 3), can be
translated via a change of coordinates to a Minkowski solution A = Xα

(
τ(x), ω(x)

)
eαµ(x) dxµ. We

have demonstrated the effectiveness of this approach by reconstructing several known exact solutions in
Minkowski spacetime. The pre-image of full Minkowski spacetime lies in a finite open (−π,+π) segment
of the cylinder R× S3, so only finite-time dynamics is required there.

Suppose we are given an electromagnetic field in Minkowski spacetime at t = 0 that decays quickly
enough at infinity. It can be mapped to the τ=0 slice of R × S3 and consequently expanded in the
complete basis there. After going back to Minkowski space we obtain a solution for all values of t. In
this sense the set of finite-energy solutions of the Maxwell equations that we have constructed forms a
complete basis: any solution which at t=0 decays quickly enough at spatial infinity can be expanded in
it. Our simple and explicit expressions allow for the transfer of this complete basis on S3 to a complete
set of Maxwell configurations with sufficiently fast spatial and temporal decay on R1,3. By construction,
these fields have finite energy and action.

Our method works likewise for Yang–Mills fields. In fact, it was conceived first for non-Abelian gauge
theory, and we have rediscovered exact Minkowskian SU(2) Yang–Mills solutions with it. However, in the
Yang–Mills equations of motion, the commutator term couples different j components of Xa in (3.17), and
so the analysis of an infinite coupled set of now nonlinear ordinary differential equations generalizing (3.14)
will be much harder. However, because of the simple and regular form of τ(x), ω(x) and eαµ(x), one
may hope that our method can become a useful tool for analytic and numerical investigations of classical
Yang–Mills dynamics in four-dimensional Minkowski spacetime.
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