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Abstract

We study extremal and algorithmic questions of subset and careful synchroniza-
tion in monotonic automata. We show that several synchronization problems that are
hard in general automata can be solved in polynomial time in monotonic automata,
even without knowing a linear order of the states preserved by the transitions. We
provide asymptotically tight bounds on the maximum length of a shortest word syn-
chronizing a subset of states in a monotonic automaton and a shortest word carefully
synchronizing a partial monotonic automaton. We provide a complexity framework
for dealing with problems for monotonic weakly acyclic automata over a three-letter
alphabet, and use it to prove NP-completeness and inapproximability of problems such
as Finite Automata Intersection and the problem of computing the rank of a
subset of states in this class. We also show that checking whether a monotonic partial
automaton over a four-letter alphabet is carefully synchronizing is NP-hard. Finally,
we give a simple necessary and sufficient condition when a strongly connected digraph
with a selected subset of vertices can be transformed into a deterministic automaton
where the corresponding subset of states is synchronizing.

1 Introduction

Let A = (Q,Σ, δ) be a deterministic finite automaton (which we further simply call an
automaton), where Q is the set of its states, Σ is a finite alphabet and δ : Q× Σ → Q is
a transition function. Note that our definition of automata does not include initial and
accepting states. The mapping δ can be inductively extended to the mapping Q× Σ∗ →
Q, which we also denote as δ: for each word xw, where x is a letter, take δ(q, xw) =
δ(δ(q, x), w). An automaton is called synchronizing if there exists a word that maps
every its state to some fixed state. Such word is also called synchronizing. Synchronizing
automata play an important role in manufacturing, coding theory and biocomputing, and
model systems that can be controlled without knowing their actual state [Vol08].

Synchronizing automata model devices that can be reset, by applying a synchronizing
word, to some particular state without having any information about their current state.
Automata with a synchronizing set of states model devices that can be reset to a particular
state with some partial information about the current state, namely when it is known that
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the current state belongs to a synchronizing subset of states. A set S ⊆ Q of states of an
automaton A = (Q,Σ, δ) is called synchronizing if there exists a word w ∈ Σ∗ and a state
q ∈ Q such that the word w maps each state s ∈ S to the state q. The word w is said to
synchronize the set S. It follows from the definition that an automaton is synchronizing
if and only if the set Q of all its states is synchronizing.

In this paper, we deal with monotonic and weakly acyclic automata. An automaton
A = (Q,Σ, δ) is called monotonic if there is a linear order ≤ of its states such that for each
x ∈ Σ if q1 ≤ q2 then δ(q1, x) ≤ δ(q2, x). In this case we say that the transitions of the
automaton preserve, or respect this order. Monotonic automata play an important role
in the part-orienting process in manufacturing [AV04], some connections of monotonic
automata with infinite games are described in [Kop06] and [Kop08]. Once the order
q1, . . . , qn of the states is fixed, we denote [qi, qj ] = {qℓ | i ≤ ℓ ≤ j}, and minS, maxS
as the minimum and maximum states of S ⊆ Q with respect to the order. The following
open problem is mentioned in [Shc06], showing that monotonic automata are not fully
understood, and require more investigation.

Question 1. Find a combinatorial characterization (for example, using regular expres-
sions) of languages recognized by monotonic automata.

An automaton A = (Q,Σ, δ) is called weakly acyclic if there exists an order of its
states q1, . . . , qn such that if δ(qi, x) = qj for some x ∈ Σ, then i ≤ j. Note that a
monotonic automaton does not have to be weakly acyclic, and vice versa. Both weakly
acyclic and monotonic automata present proper subclasses of a widely studied class of
aperiodic automata [Vol08]. An automaton is called orientable, if there exists a cyclic
order of its states that is preserved by all transitions of the automaton (see [Vol08] for
the discussion of this definition). Each monotonic automaton is obviously orientable. An
automaton is called strongly connected if any its state can be mapped to any other state
by some word.

The two fundamental directions is studying synchronization of automata are extremal
(bounding the length of a shortest synchronizing word) and algorithmic (exploring the
complexity of deciding synchronizability and finding a shortest synchronizing word) ques-
tions.

From the extremal point of view, it is known that any synchronizing n-state automa-
ton can be synchronized by a word of length at most n3−n

6 [Pin83], and the famous Černý
conjecture states that the length of such word is at most (n−1)2 [Vol08]. A slightly better
but still cubic bound is reported in [Szy17]. For words synchronizing a subset of states,
the situation is quite different. It is known that the length of a shortest word synchro-
nizing a subset of states in a binary strongly connected automaton can be exponential
in the number of states of the automaton [Vor16]. In weakly acyclic automata, there is
a quadratic upper bound on the length of such words [Ryz17]. For orientable n-state
automata, a tight (n− 1)2 upper bound on the length of a shortest word synchronizing a
subset of states is known [Epp90].

Checking whether an automaton is synchronizing can be performed in polynomial time
[Vol08], but checking whether a given subset of states in an automaton is synchronizing
(the Sync Set problem) is a PSPACE-complete problem in binary strongly connected
automata [Vor16], and a NP-complete problem in binary weakly acyclic automata [Ryz17].
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Eppstein [Epp90] provides a polynomial algorithm for the Sync Set problem, as well
as for some other problems, in orientable automata. However, the proposed algorithms
assume that a cyclic order of the states preserved by the transitions is known. Since the
problems of recognizing monotonic and orientable automata are NP-complete [Szy15], a
linear or cyclic order preserved by the transitions of an automaton cannot be computed in
polynomial time unless P = NP. Thus, we should avoid using these orders explicitly in al-
gorithms, so we have to investigate other structural properties of monotonic automata. As
shown in this paper, several synchronization problems are still solvable in polynomial time
in monotonic automata without knowing an order of states preserved by the transitions.

Approximating the length of a shortest word synchronizing a n-state automaton within
a factor of O(n1−ǫ) for any ǫ > 0 in polynomial time is impossible unless P = NP [GS15].
For finding the length of a shortest word synchronizing a subset of states in binary weakly
acyclic automata a similar inapproximability bound holds [Ryz17].

A problem closely connected to subset synchronization is careful synchronization of
partial automata. A partial automaton A is a triple (Q,Σ, δ), where Q and Σ are the
same as in the definition of a finite deterministic automaton, and δ is a partial transition
function (i.e., a transition function which may be undefined for some argument values).
A word w is said to carefully synchronize a partial automaton A if it maps all its states to
the same state, and each mapping corresponding to a prefix of w is defined for each state.
The automaton A is then called carefully synchronizing.

The length of a shortest word carefully synchronizing a n-state partial automaton is
also a subject of research. Rystsov [Rys80], Martyugin [Mar10b], Vorel [Vor16] and de
Bondt et al. [dBDZ17] propose consecutive improvements of (exponential) lower bounds
for this value, both in the case of constant and non-constant alphabets. Rystsov [Rys80]
provides an upper bound of O(3

n

3 ) on this value. A simple relation between careful
synchronization and subset synchronization is provided by Lemma 1 of [Vor16].

Deciding whether a partial automaton is carefully synchronizing is PSPACE-complete
for binary partial automata [Mar10a], and moreover for binary strongly connected partial
automata [Vor16]. It is also NP-hard for aperiodic partial automata over a three-letter
alphabet [Ryz17].

A synchronizing set of states can be considered as a set compressible to one element.
A more general case of a set compressible to a set of size r is defined by the notion of the
rank of a subset. Given an automaton A = (Q,Σ, δ), the rank of a word w ∈ Σ∗ with
respect to a set S ⊆ Q is the size of the image of S under the mapping defined by w in A,
i.e., the number |{δ(s,w) | s ∈ S}|. The rank of an automaton (respectively, of a subset
of states) is the minimum among the ranks of all words w ∈ Σ∗ with respect to the whole
set Q of states of the automaton (respectively, to the subset of states). It follows from the
definition that a set of states has rank 1 if and only if it is synchronizing. A state in an
automaton is a sink state if all letters map this state to itself.

For n-state monotonic automata of rank at most r, Ananichev and Volkov [AV04] show
an upper bound of n−r on the length of a shortest word of rank at most r, and also provide
bounds on the length of a shortest word of interval rank at most r. Shcherbak [Shc06]
continues the investigation of words of bounded interval rank in monotonic automata.
Ananichev [Ana05] provides bounds on the length of a shortest word of rank 0 in partial
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monotonic automata of rank 0 (a partial automaton is called monotonic if there exists a
linear order of its states preserved by all defined transitions).

In this paper, we study both extremal and algorithmic questions of subset synchro-
nization in monotonic automata. In Section 2, we provide structural results about syn-
chronizing sets of states in monotonic automata and give algorithmic consequences of this
results. In Section 3, we provide lower and upper bounds on the maximum length of
shortest words synchronizing a subset of states in monotonic automata, and show some
lower bounds for related problems. In Section 4, we provide NP-hardness and inapprox-
imability of several problems related to subset synchronization and careful synchronization
of monotonic automata. In Section 5 we give necessary and sufficient conditions when a
strongly connected digraph can be colored resulting in an automaton with a pre-defined
synchronizing set.

A conference version of this paper was published in [RS17]. Besides presenting new
results, this paper corrects errors of the conference version.

2 Structure of Synchronizing Sets

Let A be an automaton, and S be a subset of its states. In general, if any two states in
S can be synchronized (i.e., form a synchronizing set), S does not necessarily have to be
synchronizing, as it is shown by the following theorem.

Theorem 1. For any positive integer k0, there exists a binary weakly acyclic automaton
A and a subset S of its states such that |S| ≥ k0, each pair of states in S in synchronizing,
but the rank of S equals |S| − 1.

Proof. Consider the following automaton A = (Q, {0, 1}, δ). Let S = {s0, . . . , sk−1}. Let
k = 2ℓ for an integer number ℓ, and let bin(i) be a word which is equal to the binary
representation of i of length ℓ (possibly with zeros at the beginning). We introduce new
states ti, pi for 0 ≤ i ≤ k − 1, a state f , and new intermediate states in Q as follows. For
each si, 0 ≤ i ≤ k− 1, consider a construction sending si to f for a word bin(i), and to ti
by any other word of length ℓ.

For each ti, consider the same construction sending ti to f for a word bin(i), and to pi
otherwise. For each i, define both transitions from pi as self-loops. Define both transitions
from f as self-loops.

In this construction, each word applied after a word of length 2ℓ obviously has no
effect. Consider a word w of length 2ℓ, w = w1w2, where both w1 and w2 have length ℓ.
If w1 = w2, then the image of S under the mapping defined by w has size k. Otherwise,
w synchronizes two states si and sj with bin(i) = w1 and bin(j) = w2 and maps all other
states to different states. Thus, the rank of S equals k − 1.

The size of the whole automaton is O(|S| log |S|), thus S can be large comparing to
the size of the whole set of states in the automaton.

Since the Sync Set problem is PSPACE-complete in strongly connected automata,
pairwise synchronization of states in a subset does not imply that this subset is synchro-
nizing for this class of automata unless P = PSPACE. Thus, it is reasonable to ask the
following question.
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Question 2. How large can be the rank of a subset of states in a strongly connected
automaton such that each pair of states in this subset can be synchronized?

For the rest of section, fix a monotonic automaton A = (Q,Σ, δ) and an order q1, . . . , qn
of its states preserved by all transitions. As shown by the next theorem, the situation in
monotonic automata is in some sense opposite to the situation described by Theorem 1.

Theorem 2. Let S ⊆ Q be a subset of states of A. Then S is synchronizing if and only
if any two states in S can be synchronized.

Proof. Obviously, any subset of a synchronizing set is synchronizing.
In the other direction, if any two states in S can be synchronized, then the minimal

state qℓ = minS and the maximal state qr = maxS in S can be synchronized by a
word w ∈ Σ∗. Let q = δ(qℓ, w) = δ(qr, w). Then the interval [qℓ, qr] = {qℓ, . . . , qr} is
synchronized by w, because each state of [qℓ, qr] is mapped to the interval [δ(qℓ, w), δ(qr , w)]
= {q}, since A is monotonic. Thus, S ⊆ [qℓ, qr] is synchronizing.

Corollary 1. The problem of checking whether a given set S is synchronizing can be
solved in O(|Q|2 · |Σ|) time and space for monotonic automata.

Proof. By Theorem 2 it is enough to check that each pair of states in S can be synchro-
nized, which can be done by solving the reachability problem in the subautomaton of the
power automaton, built on all 2-element and 1-element subsets of Q [Vol08]. There are
|Q|(|Q|+1)

2 states in this subautomaton A2. We need to check that from each state {qi, qj},
qi, qj ∈ S, in A2 some singleton set is reachable. Consider the underlying digraph of A2

and reverse all arcs in it. Then we need to check that in this new digraph each vertex
{qi, qj}, qi, qj ∈ S, is reachable from some singleton. To check it, run breadth-first search
simultaneously from all singletons [CLRS09].

To construct the subautomaton we need O(|Q|2 · |Σ|) time and space, and breadth-first
search requires time and space linear in the number of arcs of the digraph.

Corollary 2. A shortest word synchronizing a given subset S of states can be found in
O(|Q|4 · |Σ|) time and O(|Q|2 · |Σ|) space for monotonic automata.

Proof. Consider the following algorithm. For each pair of states, find a shortest word
synchronizing this pair. This can be done by solving the shortest path problem in the
subautomaton of the power automaton, build on all 2-element and 1-element subsets of
Q [Vol08]. Let W be the set of all such words that synchronize S. Output the shortest
word in W .

By an argument similar to the proof of Theorem 2, any shortest word synchronizing
{minS,maxS} is a shortest word synchronizing S, thus the algorithm finds a shortest
word synchronizing S. Since finding a shortest synchronizing word for a pair of states
requires O(|Q|2 · |Σ|) time and there are O(|Q|2) such words, the set W can be found
in O(|Q|4 · |Σ|) time. Finding a shortest word in W synchronizing S requres additional
O(|Q|4) time, since we have to check each word. Thus, the total time required by the
algorithm is O(|Q|4 · |Σ|).
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The algorithm requires O(|Q|2 · |Σ|) space for the subautomaton construction. We
don’t have to store W , since we can check the words in W one by one and store only the
shortest one, so we need O(|Q|2 · |Σ|) space.

Corollary 3. A synchronizing subset of states of maximum size can be found in O(|Q|4 ·
|Σ|+ |Q|5) time and O(|Q|2 · |Σ|) space in monotonic automata.

Proof. For each synchronizing pair qi, qj of states, find a word synchronizing this pair (in
the same way as described in Corollary 1), and the find all states that are mapped by this
word to the same state as qi and qj. Output the pair with the largest synchronizing set
constructed in such a way.

To prove that this algorithm is correct, observe that each word synchronizing a pair
qi, qj of states synchronizes also all the states qk, qi < qk < qj. On the other hand,
if qi = minS and qj = maxS for a synchronizing set S of maximum size (which is an
interval), any word synchronizing qi and qj synchronizes only S.

The described algorithm requires O(|Q|2 · (|Q|2 · |Σ| + |Q|3)) (for each pair of states,
we need to find a synchronizing word which requires O(|Q|2 · |Σ|) time, and then apply
this word to each state, which requires O(|Q|3)) time. Since we need to store only the set
of maximum size, the algorithm requires O(|Q|2 · |Σ|) space.

The problem of finding a synchronizing subset of states of maximum size in general
automata is PSPACE-complete [Ryz17]. Türker and Yenigün [TY15] study a variation of
this problem, which is to find a set of states of maximum size that can be mapped by some
word to a subset of a given set of states in a given monotonic automaton. They reduce the
N-Queens Puzzle problem [BS09] to this problem to prove its NP-hardness. However,
their proof is unclear, since in the presented reduction the input has size O(logN), and
the output size is polynomial in N .

The algorithms proposed in this section run polynomial time, but the degrees of these
polynomials are quite high. A natural question is to find faster algorithms for the described
problems. Another interesting quiestion is whether the results can be generalized to
oriented automata.

3 Lower Bounds for Synchronizing Words

The length of a shortest word synchronizing a n-state monotonic automaton is at most n−1
[AV04]. In this section we investigate a more general question of bounding the length of a
shortest word synchronizing a subset of states in a n-state synchronizing automaton. For
a more general class of oriented automata a bound of (n − 2)2 is known [Epp90], but for
monotonic automata a smaller upper bound can be proved.

Theorem 3. Let S be a synchronizing set of states in a monotonic n-state automaton A.

Then for n ≥ 8 the length of a shortest word synchronizing S is at most (n−2)2

4 .

Proof. Let A = (Q,Σ, δ), and {q1, . . . , qn} be an order of the states preserved by all
transitions of A. Define qℓ = minS, qr = maxS. We can assume that S can be mapped
only to the states in [qℓ, qr]. Indeed, assume without loss of generality that qi, i < ℓ,
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is a state such that S can be mapped to qi, and it is the smallest such state. Then by
monotonicity there exists a word mapping qr to qi by taking only transitions going to

smaller states. This word then synchronizes S and has length at most n− 1 ≤ (n−2)2

4 for
n ≥ 8.

Now we can assume that S can be mapped only to states in [qℓ, qr]. This means that
S can be mapped to the states qi, qj in [qℓ, qr], and no state outside [qi, qj ] is reachable
from any state of [qi, qj]. Indeed, the set of states reachable from both qℓ, qr contains qi
and qj, and if some state outside [qi, qj ] is reachable from [qi, qj ] we can synchronize S to
a state outside [qi, qj ], which contradicts the definition of the interval [qi, qj]. If both qℓ
and qr are mapped to states inside [qi, qj ], they can be then synchronized by applying a
word of length at most j − i, for example by applying a word w′ composed of only letters
mapping the consecutive images of qj to states with smaller indexes by the same reasoning
as below. By our assumptions, qi is reachable from each state in [qi, qj ], thus such a word
w′ exists.

Suppose now that w = w1 . . . wm is a shortest word synchronizing S. Consider the
sequence of pairs (tk, sk) = (δ(qℓ, w1 . . . wk), δ(qr , w1 . . . wk)), k = 1, 2, . . . ,m. As w is a
shortest word synchronizing S, and synchronization of S is equivalent to synchronization
of {qℓ, qr}, no pair appears in this sequence twice, and the only pair with equal components
is (sm, tm). Because of monotonicity, tk ≤ sk for each 1 ≤ k ≤ m. Thus, the maximum
length of w is reached when qi = qj, since after both images are in [qi, qj] the remaining
length of a synchronizing word is at most j − i. Observe that if q1 or qn is in S, S again
can be synchronized by a word of length n − 1. Thus, we can assume that |S| ≤ n − 2,

and thus the length of w is at most (i− 1)(n− 3− i) ≤ (n−2)2

4 .

The bound is almost tight for monotonic automata over a three-letter alphabet as
shown by the following example.

Theorem 4. For each m ≥ 1, there exist a (2m+ 3)-state monotonic automaton A over
a three-letter alphabet, which has a subset S of states, such that the length of a shortest
word synchronizing S is m2 +m.

Proof. Consider the following monotonic automaton A = (Q,Σ, δ), Q = {q1, . . . , q2m+3}.
Let Σ = {0, 1, 2}. Let states q1, qm+2 and q2m+3 be sink states. For every state qi,
2 ≤ i ≤ m + 1, we set δ(qi, 0) = qi+1, δ(qi, 1) = qi, δ(qi, 2) = q1. For every state qi,
m + 4 ≤ i ≤ 2m + 2, we set δ(qi, 0) = q2m+3, δ(qi, 1) = qi−1, δ(qi, 2) = qi. Finally we
define δ(qm+3, 0) = q2m+2, δ(qm+3, 1) = qm+3, δ(qm+3, 2) = qm+2. See Figure 1 for an
illustration of the construction.

All transitions of A respect the order q1, . . . , q2m+3, so A is monotonic. Let us show
that the shortest word synchronizing the set S = {q2, q2m+2} is w = 1m−1(01m−1)m2. Let
S′ be a set of states such that qi, qj ∈ S′, 2 ≤ i ≤ m+ 1, m+ 3 ≤ j ≤ 2m+ 2. The set S′

can be mapped only to qm+2, because A is monotonic. Hence if any state of S′ is mapped
by a word to q1 or to q2m+3, then this word cannot synchronize S′.

We start with the set S = {q2, q2m+2}. There is only one letter 1 that does not map
the state q2 to q1 or the state q2m+2 to q2m+3, and maps S not to itself. Indeed, 0 maps
q2m+2 to q2m+3 and 2 maps q2 to q1. Thus, any shortest synchronizing word can start only
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q2 q3 qm+1· · · qm+2 q2m+2qm+5
. . .qm+4qm+3q1 q2m+3

Figure 1: The automaton providing a lower bound for subset synchronization in monotonic
automata over a three-letter alphabet. Solid arrows represent transitions for the letter 0,
dashed – for the letter 1, dotted – for the letter 2. The states q1, qm+2, q2m+3 are sink
states, self-loops are omitted.

with 1. Consider now the set {δ(q2, 1), δ(q2m+2 , 1)} = {q2, q2m+1}. There is only letter 1
that does not map the state q3 to q1, or q2m+1 to q2m+3 and maps this set not to itself.
Indeed, 0 maps q2m+1 to q2m+3 and 2 maps q3 to q1. So the second letter of the shortest
synchronizing word can only be 1. By a similar reasoning (at each step there is exactly
one letter that maps a pair of states not to itself and does not map the states to the sink
states q1 and q2m+3), we deduce that any shortest synchronizing word has to begin with
1m−1(01m−1)m and it is easy too see that 1m−1(01m−1)m2 synchronizes S. Thus, w is a
shortest word synchronizing S, and its length is m2 +m.

For a n-state automaton, the lower bound on the length of a shortest word in this

theorem is (n−2)2−1
4 , which is very close to the lower bound (n−2)2

4 from Theorem 3.
By taking q2 and q2m+2 as initial states in two equal copies of the automaton in the

proof of Theorem 4, and taking qm+2 as the only accepting state in both copies, we obtain
the following result.

Corollary 4. A shortest word accepted by two (2m+3)-state monotonic automata which
differ only by their initial states can have length m2 +m.

For binary monotonic automata, our lower bound is slightly smaller, but still quadratic.

Theorem 5. For each m ≥ 1, there exist a (4m+3)-state binary monotonic automaton A,
which has a subset S of states such that the length of a shortest word synchronizing S is
at least m2.

Proof. Consider the following automaton A = (Q,Σ, δ) with Q = {q1, . . . , q4m+3}, Σ =
{0, 1}. Define δ as follows. Set q1, q2m+2, q4m+3 to be sink states. Define δ(qi, 1) = qi−1

for all i 6= 1, 2m+2, 4m+3. For each i, 2 ≤ i ≤ m+1, define δ(qi, 0) = qi+m, and for each
i, m+ 2 ≤ i ≤ 2m + 1, define δ(qi, 0) = q2m+2. For each i, 2m + 3 ≤ i ≤ 3m + 3, define
δ(qi, 0) = qm+i−1, and for each i, 3m+4 ≤ i ≤ 4m+2, define δ(qi, 0) = q4m+3. The defined
binary automaton is monotonic, since all its transitions respect the order q1, . . . , q4m+3.
See Figure 2 for an example of the construction.

Define S = {qm+2, q4m+2}. Let us prove that a shortest word synchronizing S has
length at least m2.

The set S can only be mapped to q2m+2, since it is a sink state between minS and
maxS. Thus, no word synchronizing S maps any its state to q1 or q4m+3. Consider now
an interval [qi, qj] for 2 ≤ i ≤ m+1, 2m+3 ≤ j ≤ 4m+2 and note that applying 0 reduces
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q1 q2m+2q2m+1qm+3
. . .qm+2q3 · · ·q2 q2m+3

. . .

q2m+2 q4m+3q4m+2q4m+1q3m+3
. . .q3m+2q2m+4 · · ·q2m+3

. . .

Figure 2: The automaton providing a lower bound for subset synchronization in binary
monotonic automata. Dashed arrows represent transitions for the letter 0, solid – for the
letter 1. The states q1, q2m+2, q4m+3 are sink states. The picture is divided into two parts
because of its width.

its length by 1 (or maps its right end to q4m+3), and applying 1 maps its ends to the ends
of another interval of this form with the same length (or maps its left end to q1). The
maximal length of a segment of this form that allows its left end to be mapped to q2m+2 is
2m+1, so before any end of the interval is mapped to q2m+2, the letter 0 has to be applied
at least m times. Each application of 0 moves the right end of the intervals m− 1 states
to the right, so each application of 0 requires m − 1 applications of 1 so that 0 can be
applied one more time. Thus, the word mapping S to q2m+2 has length at least m2. Note
that S can be synchronized by a word w = (1m−10)m12m of length |w| = m2 + 2m.

For a n-state binary monotonic automaton we get a lower bound of (n−3)2

16 from this
theorem.

By removing the first and the last state (and leaving all transitions to the removed
states undefined) in the automata in the both series, we get the following results.

Corollary 5. For infinitely many n, there exists a n-state monotonic partial automaton
over a three-letter alphabet with shortest carefully synchronizing word of length at least
(n−1)2

4 + 1.

Corollary 6. For infinitely many n, there exist a n-state monotonic binary partial au-

tomaton with shortest carefully synchronizing word of length at least (n−1)2

16 .

Question 3. Find upper bounds on the length of a shortest carefully synchronizing words
for monotonic partial automata.

A related question is to measure the shortest length of a word accepted simultaneously
by k monotonic automata. This question is important, for example, for investigation of the
computational complexity of the Finite Automata Intersection problem, see Section
4 for the details. For alphabet of unbounded size, a partial answer is provided by the
following theorem.

Theorem 6. For any k > 0, there exist k 3-state monotonic automata over a k-letter
alphabet, such that the length of a shortest word accepted by all automata is at least 2k−1.
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Proof. To prove the theorem, we show how to imitate a simple binary counter with k

monotonic automata. Consider the following family Ai = (Qi,Σ, δi), 1 ≤ i ≤ k. Here
Qi = {fi, si, ti}, Σ = {a1, . . . , ak} and δi are defined as follows. We define δi(si, ai) = ti,
and δi(si, aj) = fi, δi(ti, aj) = si for i < j. All yet undefined transitions are self-loops. In
each Ai, we take si as the initial state, and ti as the only accepting state.

By induction, the length of a shortest word accepted by all automata is 2k − 1, since
each next automaton can be mapped to its accepting state only when all previous automata
are already in their accepting states, and this operation maps all previous automata to
their initinal states.

Hence, we get a lower bound of 2
n

3 − 1, where n is the total number of states in
the automata. Thus the most obvious candidate for a certificate to show that Finite

Automata Intersection is in NP for monotonic automata fails.
The proof of Theorem 6 implies the following interesting result.

Corollary 7. For each k there exists a monotonic partial automaton with 3k states,
alphabet of size k + 1 and a shortest carefully synchronizing word of length at least 3k.

Proof. Remove the states fi in all automata from the construction of Theorem 6 and
leave all transtions to this states undefined. Then add a letter a such that δ(ti, a) = tk for
1 ≤ i ≤ k. Thus we get a carefully synchronizing automaton imitating a binary counter.
The last step is to note that 2

1

2 < 3
1

3 , and to imitate a ternary counter in the exactly
same way instead.

We note that the ternary counter is optimal since 2
1

2 < 3
1

3 and 3
1

3 > ℓ
1

ℓ for ℓ ≥ 4.
The bound in this corollary is of the same order as in the result of Rystsov [Rys80] and

Martyugin [Mar10a], but our example is monotonic and has simpler structure. Since each
carefully synchronizing partial automaton has a carefully synchronizing word of length
O(3

n

3 ) [Rys80], the bound is asymptotically tight.
Some additional optimization can be done for the described construction. In partic-

ular, the after countng to 3k − 1, only two states in the set of reached states can be
synchronized by a new letter. Then counting is repeated (to 3k−1 − 1) and again two
states are synchronized, and so on. Thus, the bound will become 3k + 3k−1 + . . .+ 3 + 1.
However, the bound remains of the same order and is still smaller than the bounds of
Rystsov and Martyugin for general automata.

For a constant number of letters the considered problems remain open.

Question 4. What is the length of a shortest word accepted simultaneously by k monotonic
automata over an alphabet of constant size? What is the length of a shortest word carefully
synchronizing a monotonic partial automaton with n states and alphabet of constant size?

4 Complexity Results

In this section, we obtain computational complexity results for several problems related
to subset synchronization in monotonic automata. We improve Eppstein’s construction

10



[Epp90] to make it suitable for monotonic automata. We shall need the following NP-
complete SAT problem [Sip12].

SAT

Input: A set X of n boolean variables and a set C of m clauses;
Output: Yes if there exists an assignment of values to the variables in X such that
all clauses in C are satisfied, No otherwise.

Provided a setX of boolean variables x1, . . . , xn and a clause cj , construct the following
automaton Aj = (Q,Σ, δ). Take

Q = {q1, . . . , qn+1} ∪ {q′2, . . . , q
′
n} ∪ {s, t}.

Let Σ = {0, 1, r}. Define the transition function δ as follows. For each i, 1 ≤ i ≤ n,
map a state qi to q′i+1 (or to t if i = n) by a letter x ∈ {0, 1} if the assignment xi = x

satisfies cj , and to qi+1 otherwise. For each i, 2 ≤ i ≤ n − 1, set δ(q′i, x) = δ(q′i+1, x)
for x ∈ {0, 1}. Set δ(q′n, x) = t for x ∈ {0, 1}. Define transitions from t for letters 0, 1
as self-loops. Finally, define δ(q, r) = s for q ∈ Q \ {t}, δ(t, r) = t. See Figure 3 for an
example.

s q1 q20 q30, 1 q41 q50 t0, 1

q′2 q′30, 1 q′40, 1
0, 1

1 0 1
0, 1, r0, 1, r

Figure 3: The automaton Aj for a clause cj = (x1 ∨ x3 ∨ x4). Dotted arrows represent
transitions for the letter r.

Note that Aj is monotonic, since it respects the order

s, q1, q2, q
′
2, q3, q

′
3, . . . , qn, q

′
n, qn+1, t.

It is also weakly acyclic, since its underlying digraph has no simple cycles of length at
least 2.

Also, provided the number of variables n, construct an automaton T = (QT ,Σ, δT )
as follows. Take QT = {a, p1, . . . , pn+1, b}, Σ = {0, 1, r}. Define δ(pi, x) = pi+1 for each
i, 1 ≤ i ≤ n, and x ∈ {0, 1}, and δ(pn+1, x) = b for x ∈ {0, 1}. Define also δ(a, x) = a

and δ(b, x) = b for each x ∈ Σ, and δ(pi, r) = a for 1 ≤ i ≤ n + 1. See Figure 4 for an
example. This automaton is monotonic, since it respects the order a, p1, . . . , pn+1, b, and
it is obviously weakly acyclic.

First, we prove NP-completeness of the following problem.
Finite Automata Intersection

Input: Automata A1, . . . , Ak (with initial and accepting states);
Output: Yes if there is a word which is accepted by all automata, No otherwise.
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a p1 p2

0, 1
p3

0, 1
p4

0, 1
p5

0, 1

b

0, 1
0, 1, r 0, 1, r

Figure 4: The automaton T for n = 4 variables. Dotted arrows represent transitions for
the letter r.

This problem is PSPACE-complete for general automata [Koz77], and NP-complete
for binary weakly acyclic automata [Ryz17]. Some results on this problem are surveyed in
[HK11]. Blondin et al. [BKM16] provide further results on the problem. Some complexity
lower bounds are presented in [Weh14] and [FK16].

Theorem 7. The Finite Automata Intersection problem is NP-complete for mono-
tonic weakly acyclic automata over a three-letter alphabet.

Proof. The fact that the problem is in NP follows from the fact that Finite Automata

Intersection for weakly acyclic automata is in NP [Ryz17].
To prove hardness, we reduce the SAT problem. For each clause cj ∈ C, construct an

automaton Aj , and set q1 as its initial state and t as its only accepting state. Construct
also the automaton T with the initial state p1 and accepting state a.

We claim that C is satisfiable if and only if all automata in {Aj | cj ∈ C}∪{T} accept
a common word w. Indeed, assume that there is a common word accepted by all these
automata. Then none of the first n letters of this word can be r, otherwise all automata
Aj are mapped to s, which is a non-accepting sink state. The next letter has to be r,
otherwise T is mapped to b, which is a non-accepting sink state. But that means that in
each Aj, the set q1 is mapped by a n-letter word z1 . . . zn to the accepting state t. Thus,
by construction, the assignment xi = zi satisfies all clauses in C.

By the same reasoning, if the assignment xi = zi, 1 ≤ i ≤ n, satisfies all clauses in C,
then z1 . . . znr is a word accepted by all automata.

Now we switch to a related Set Rank problem.
Set Rank

Input: An automaton A and a set S of its states;
Output: The rank of S.

This problem is hard to approximate for binary weakly acyclic automata [Ryz17]. To
get inapproximability results for monotonic automata, we use the following problem.

Max-3SAT
Input: A set X of n boolean variables and a set C of m 3-term clauses;
Output: The maximum number of clauses that can be simultaneously satisfied by
some assignment of values to the variables.

This problem cannot be approximated in polynomial time within a factor of 7
8 + ǫ for

any ǫ > 0 unless P = NP [H̊as01].
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Theorem 8. The Set Rank problem cannot be approximated in polynomial time within
a factor of 9

8 − ǫ for any ǫ > 0 in monotonic weakly acyclic automata over a three-letter
alphabet unless P = NP.

Proof. We reduce the Max-3SAT problem. For each clause cj ∈ C, construct an au-
tomaton Aj. Construct also m copies of the automaton T , denoted Tj, 1 ≤ j ≤ m.
Define an automaton A with the set of states which is the union of all sets of states of
{Aj , Tj | 1 ≤ j ≤ m}, alphabet Σ and transition functions defined in all constructed au-
tomata. For each j, identify the state t in Aj with the state a in Tj. Take S to be the set
of states q1 from each automaton Aj, and p1 from each Tj . The constructed automaton
is monotonic and weakly acyclic.

If h is the minimum number of clauses in C that are not satisfied by an assignment,
the set S has rank m+h. Indeed, consider an assignment xi = zi, 1 ≤ i ≤ n, not satisfying
exactly h clauses in C. Then the word z1 . . . znr has rank m+ h with respect to S.

In the other direction, let w be a word of minimum rank with respect to the set S. If
any of the first n letters of w is r, then q1 in each Ai is mapped to s in the corresponding
automaton, and thus w has rank 2m with respect to S. The same is true if (n+1)st letter
of w is not r, because then p1 in each Ti is mapped to b in the corresponding automaton.
If first n letters z1, . . . , zn of w are not r, and the next letter is r, then the assignment
xi = zi does not satisfy exactly h′ clauses, where m + h′ is the rank of the word w with
respect to S. For the word of minimum rank, we get the required equality.

It is NP-hard to decide between (i) all clauses in C are satisfiable and (ii) at most
(78 + ǫ)m clauses in C can be satisfied by an assignment [H̊as01]. In the case (i), the rank
of S is m, in the case (ii) it is at least m+(18 − ǫ)m. Since it is NP-hard to decide between
this two options, we get (98 − ǫ)-inapproximability for any ǫ > 0.

By using an argument similar to the proof of Theorem 8, we can show inapproximability
of the maximization version of Finite Automata Intersection (where we are asked to
find a maximum number of automata accepting a common word). Indeed, take m copies of
T together with the set {Aj | cj ∈ C} as the input of Finite Automata Intersection

and reduce Max-3SAT to it (input and accepting states are assigned according to the
construction in Theorem 7). Then the maximum number of automata accepting a common
word is m+ g, where g is the maximum number of simultaneously satisfied clauses in C,
since all copies of T have to accept this word. Thus it is NP-hard to decide between (i)
all 2m automata accept a common word and (ii) at most m+ (78 + ǫ)m automata accept
a common word, and we get the following result.

Corollary 8. The maximization version of the Finite Automata Intersection prob-
lem cannot be approximated in polynomial time within a factor of 15

16 + ǫ for any ǫ > 0 in
monotonic weakly acyclic automata over a three-letter alphabet unless P = NP.

Consider now the following problem briefly discussed in the introduction.
Careful Synchronization

Input: A partial automaton A;
Output: Yes if A is carefully synchronizing, No otherwise.

13



Theorem 9. The Careful Synchronization problem is NP-hard for monotonic au-
tomata over a four-letter alphabet.

Proof. We reduce the SAT problem. Let A′
j be Aj with alphabet restricted to {0, 1} and

without the state s, and T ′ be T with alphabet restricted to {0, 1} and without the states
a, b. Let Σ′ = {0, 1, y, z}. Provided X and C, construct A′

j for each clause cj , and also
construct T ′. Let Q′ be the union of all states of each A′

j , all states of T
′ and a new state

f . We expand already defined (for the letters 0, 1) transition function δ as follows. Define
y to map all states in each A′

j to q1 in this gadget, and all states in T ′ to p1. Finally,
define z to map the state t in each Aj, the state pn+1 in T and the state f to f . Leave all
other transition undefined. We denote thus obtained automaton as A′ = (Q′,Σ′, δ′).

Any word w carefully synchronizing A′ begins with y, since it is the only letter defined
for all states. After applying it, the set S of reached states consists of q1 in each Aj , p1
in T , and f . To reach f from this set, we need to apply z at least once. Right before
applying z, the set of reached states must consist of exactly n letters of the set {0, 1},
because application of y takes us back to S, and applying 0, 1 more than n times is not
defined for the state p1. Thus, in each Aj the state q1 must be mapped to t by n 0s and
1s which is possible if and only if C is satisfiable.

Question 5. What is the complexity of the mentioned problems for binary monotonic au-
tomata? Do the problems discussed in this section belong to NP for monotonic automata?

We note that it does not matter in the provided reductions whether a linear order
preserved by all transitions is known or not.

5 Subset Road Coloring

The famous Road Coloring problem is formulated as follows. Given a strongly connected
digraph with all vertices of equal out-degree k, is it possible to find a coloring of its arcs
with letters of alphabet Σ, |Σ| = k, resulting in a synchronizing deterministic automaton.
This problem was stated in 1977 by Adler, Goodwyn and Weiss [AGW77] and solved in
2007 by Trahtman [Tra09]. A natural generalization of this problem is to find a coloring
of a strongly connected digraph turning it into a deterministic automaton where a given
subset of states is synchronizing. We introduce the problem formally and show that its
solution is a corollary of a result of Béal and Perrin [BP14]. In particular, the problem of
deciding whether such a coloring exists is solvable in polynomial time.

Let G = (V,E) be a strongly connected digraph such that each its vertex has out-
degree k. A coloring of G with letters from alphabet Σ, |Σ| = k, is a function assigning
each arc of G a letter from Σ, such that for each vertex, each pair of arcs outgoing from
it achieves different letters. We say that a coloring synchronizes S ⊆ V in G if S is a
synchronizing set in the resulting automaton.

If the greatest common divisor of the lengths of all cycles of G is ℓ, the set V can be
partitioned into sets V1, . . . , Vℓ in such a way that if (v, u) is an arc of G, then v ∈ Vi, u ∈
Vi+1 or v ∈ Vℓ, u ∈ V1 [Fri90]. Moreover, such partition is unique.
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Theorem 10. A strongly connected digraph G with vertices of equal out-degree has a
coloring synchronizing a set S ⊆ V if and only if S ⊆ Vi for some i.

Proof. Obviously, if two vertices of S belong to distinct sets Vi and Vj , S can not be
synchronized. Assume that S ⊆ Vi for some i. As proved in [BP14], there exists a coloring
of G such that the resulting automaton A has rank ℓ. In this coloring each Vj, 1 ≤ j ≤ ℓ,
is a synchronizing set, since no two states from two different sets Vp, Vt, p 6= t, can be
synchronized and A has rank ℓ. Hence, S ⊆ Vi is also a synchronizing set.

According to this theorem, checking whether there exists such a coloring can be per-
formed in polynomial time. This coloring can be constructed in polynomial time using
the algorithm from [BP14].
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