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We construct new family of spherically symmetric regular solutions of SU (2) Yang–Mills theory coupled 
to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. 
A discussion of the main properties of the solutions and their differences from the usual Bartnik–
McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family 
of linearly stable non-trivial solutions in which the gauge field has no nodes.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Modified theories of gravity gained increasing interest in past 
decade since it now seems accepted that the inflationary sce-
nario in the early Universe is related with modification of the 
usual Einstein–Hilbert action [1], in particular via addition of the 
quadratic curvature terms. The simplest R + R2 model [2] is proven 
to be renormalizable [3,4], further, it appears in a natural way as a 
limit of the string theory [8]. Such generalizations have been also 
studied as an explanation for the dark energy problem [5,6].

The linear Einstein term is not always assumed to be present in 
the action of the modified gravity. The pure R2 theory has some 
advantages [7,10], in particular it is the only ghost-free higher 
order theory. On the other hand, it admits supergravity general-
ization [9,11]. Further, pure R2 black hole and wormhole solutions 
were constructed in [12,13], very recently the pure R2 theory sup-
plemented by a set of complex scalar fields was investigated in 
[14] as a limit of supergravity model. However, not much known 
about solutions of the R2 gravity coupled to the non-Abelian 
fields.

Spatially localized particle-like solutions of the classical Yang–
Mills theory coupled to the usual gravity have been the subject of 
long standing research interest since Bartnik and McKinnon found 
these solutions in 1988 [15]. These globally regular self-gravitating 
field configurations were discovered numerically in the asymp-
totically flat SU(2) Einstein–Yang–Mills (EYM) theory. It has been 
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shown that they are linked to the nontrivial hairy black holes [16,
17], this observation sparked a lot of activity over last two decades, 
see e.g. [19,20]. The SU(2) Bartnik–McKinnon (BM) solutions in 
the asymptotically flat space are spherically symmetric and purely 
magnetic with the net magnetic charge equal to zero [21,22], fur-
ther they are unstable with respect to linear perturbations of the 
metric and the gauge field [23,24,29]. The BM solutions were sub-
sequently generalized to the SU(N) [25,31,26] and the SO(N) [27,
28] Einstein–Yang–Mills theory, axially symmetric generalizations 
of the BM solutions were considered in [30,32].

An interesting observation is that a variety of features of 
asymptotically flat self-gravitating BM solutions and the corre-
sponding hairy black holes are not shared by their counterparts 
in the asymptotically anti-de Sitter (AdS) space–time [33–35,38]. 
There is a continuum of new magnetically charged field config-
urations with asymptotically non-vanishing magnetic flux, which 
are stable under linear perturbations of the fields. One can con-
sider these solutions as describing non-Abelian monopoles in the 
absence of a Higgs field with a non-integer magnetic charge [34,
35]. On the other hand, these solutions are relevant in the context 
of the AdS/QFT holographical correspondence [43]. As discussed in 
[39,40], the EYM solutions in AdS4 spacetime possess generaliza-
tions with higher gauge groups, there is also variety of interesting 
axially-symmetric AdS solutions of the EYM equations [41,42].

The main purpose of this work is to explicitly construct R2

counterparts of the spherically symmetric solutions of the EYM 
system, looking for new features induced by the different struc-
ture of the gravitational part of the action.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. R2 Yang–Mills model

We consider the SU(2) Yang–Mills gauge field coupled to pure 
R2 gravity in (3 +1) dimensions. The model is defined by the scale 
invariant action

S =
∫ √−g

(
R2

2κ
− Tr Fμν F μν

)
d4x (1)

where R is the usual curvature scalar, g denotes the determinant 
of the metric gμν and κ is the effective gravitational coupling con-
stant. The matter field sector is defined by the SU(2) field strength 
tensor

Fμν = ∂μ Aν − ∂ν Aμ − i[Aμ, Aν ] ,
and Aμ = 1

2 Aa
μτ a ∈ su(2).

It is known the pure R2 theory is equivalent to the usual Ein-
stein gravity with additional real scalar field [7]. Indeed, one can 
replace the R2 term with R2

κ → 2t R − κt2, where t is a Lagrange 
multiplier. Then the variational equation for the field t , which is 
non-propagating in this frame, yields the R2 term back. Conse-
quent rescaling of the metric to the Einstein frame and redefinition 
of the field t → φ ∼ ln(2t), transforms the pure R2 gravity to the 
standard gravitational action with a cosmological constant, coupled 
to a massless scalar field φ [7].

The scale invariant model (1) in the Einstein frame after rescal-
ing takes the form

S =
∫ √−g

(
1

2
R − 1

2
∂μφ∂μφ − κ

8
− Tr Fμν F μν

)
d4x (2)

Here the quantity κ
4 is playing the role of the cosmological con-

stant.
Such a theory, with positive cosmological constant and both 

scalar and non-Abelian Yang–Mills fields in the matter sector, is 
not very common. Most attention is usually devoted to similar 
models with an exponential dilaton coupling, see e.g. [18,30,36]. 
On the other hand, the reformulated model in the Einstein frame 
may only capture part of the possible solutions of the original the-
ory with R2 term [12], so hereafter we restrict our consideration 
to the model (1).

Variation of the action (1) with respect to the metric gμν yields 
the R2 gravity equations, which are counterparts of the usual Ein-
stein equations:

R Rμν − 1

4
R2 gμν − ∇μ∇ν R + gμν�R = κ

2
Tμν . (3)

Here the Yang–Mills stress-energy tensor is

Tμν = −4 Tr

(
Fμρ F ρ

ν − 1

4
gμν F ρσ Fρσ

)
. (4)

Variation of the action (1) with respect to the gauge field Aμ leads 
to the Yang–Mills equations in the curved space–time

∇μF μν − i[Aμ, F μν ] = 0 (5)

Note that the equations of R2 gravity (3) are highly non-linear 
fourth order differential equations, it is not obvious how such a 
system can be integrated in a general case. However, we can see 
that the left hand side of the gravitational equations (3) is covari-
antly constant, thus [12]

∇μTμν = 0 . (6)

Further, the action (1) is classically scale invariant, i.e. Tr Tμν = 0. 
Taking trace on both sides of the Eq. (3) we obtain
�R = 0 . (7)

Thus, in the static case the regular solutions of the Laplace equa-
tion (7) on the entire space R3 without event horizon, are har-
monic functions. In such a case the Liouville’s theorem guarantees 
that R = const is a solutions of Eq. (7). This result greatly simpli-
fies the consideration, indeed there are two distinct situations. In 
the case of zero curvature, the solutions of the model (1) in the 
asymptotically flat spacetime are trivial and Tμν = 0. In the sec-
ond case we suppose that the scalar curvature is a non-vanishing 
constant. Then the R2 gravitational equation (3) can be written in 
the Einsteinian form

Rμν − 1

4
gμν R = κ

2R
Tμν . (8)

Since the curvature scalar is a constant, solutions of this equation 
are given by the equivalent Einstein equations in the AdS space-
time upon identification R = 4	 and rescaling of the gravitational 
coupling constant as κ → κ

8	
.

2.1. Spherically symmetric ansatz and the boundary conditions

We restrict our consideration to the static spherically symmet-
ric field configuration, which are counterparts of the usual BM 
solutions. Then the spherically symmetric purely magnetic Ansatz 
for the Yang–Mills field is given by

A0 = 0 ; Aa
i = εa

i j
x j

r2 (1 − w(r)) , (9)

where w(r) is the profile function. For the metric, we employ the 
usual spherically symmetric line element

ds2 = −σ 2(r)N(r)dt2 + dr2

N(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
. (10)

Within this specific ansatz (10), the Laplace equation (7) be-
comes

Rrr

Rr
+ Nr

N
+ σr

σ
+ 2

r
= 0 . (11)

A general solution of this equation can be written as

R = C1 + C2

∞∫
0

dr

r2σ N
,

where C1, C2 are two arbitrary constants. The regularity condition 
yields C2 = 0, as it is mentioned above, the curvature scalar is a 
constant.

Note that in the case of positive constant curvature, the 
spherically-symmetric solutions of the Yang–Mills system coupled 
to R2 gravity are effectively equivalent to the asymptotically de-
Sitter solutions in the Yang–Mills model coupled to the usual 
Einstein gravity [44]. This is not the case, however, for the asymp-
totically AdS solutions with a negative constant curvature, R < 0. 
In the Einstein gravity this situation would correspond to a non-
conventional choice of the negative gravitational coupling constant. 
Hereafter we consider the case of R < 0.

As we can see, this equivalence also holds for a theory (2) in 
the Jordan frame. Indeed, in the case of constant scalar curva-
ture the scalar field φ should also be constant, the corresponding 
dynamical equation is just �φ = 0 and the field φ is constant ev-
erywhere in space. Thus, it does not affect the dynamical equations 
for the metric functions and the Yang–Mills field, in the Jordan 
frame the scalar field is effectively decoupled.
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Within the spherically symmetric ansatz (9), (10), the varia-
tional equations associated with the action (1) can be reduced to 
the following system of three non-linear differential equations

wrr = wr
r2 R[r2 R + 4(N − 1)] + 2κ(w2 − 1)2

4N Rr3
+ w(w2 − 1)

Nr2
,

Nr = −κ(w2 − 1)2

2Rr3
+ R[Rr2 + 4(N − 1)] + 4κN w2

r

4Rr
,

σr = κσ w2
r

Rr
.

(12)

Note that the metric function σ(r) can be integrated out,

σ(r) = σ(0)exp

⎛
⎝κ

R

∞∫
0

w2
r

r
dr

⎞
⎠ .

The series expansion of the equations (12) near the origin 
yields

w ≈ 1 − br2 + O (r4) ,

σ ≈ σ0 + 2κb2

R
+ O (r4) ,

N ≈ 1 −
(

2κb2

R
+ R2

12

)
r2 + O (r4) .

(13)

Similarly, on the spacial boundary

w ≈ w∞ − 6w∞(w2∞ − 1)

Rr2
+ O (r−4) ,

σ ≈ 1 + O (r−4) ,

N ≈ 1 − R

12
r2 − 2M

r
+ κ(w2∞ − 1)2

2Rr2
+ O (r−3) .

(14)

Here σ0, M and w∞ are constants that have to be determined nu-
merically. The constants κ and b are the parameters of a particular 
spherically-symmetric solutions of the R2 Yang–Mills coupled sys-
tem.

Thus, in order to obtain regular solutions of this model with 
finite energy density we have to impose the following boundary 
conditions

w(0) = 1 , wr(0) = 0 , N(0) = 0 σ(∞) = 1 . (15)

Evidently, they agree with the corresponding boundary conditions 
for the asymptotically AdS EYM system, see [34].

The static regular localized solutions are characterized by the 
mass M and by the non-Abelian magnetic charge

Q = 1

4π

∫ √−gεi jk Fi jdSk = (1 − w2∞)
τ3

2
. (16)

For the gauge invariant charge we use the definition |Q |, where 
the vertical bars denote the Lie-algebra norm [37]. Similar to the 
asymptotically AdS solutions in the usual EYM system [33–35,38], 
the function w(r) does not need to have an asymptotic value 
w∞ = ±1, the charge (16) generally is not integer.

Note that by analogy with the corresponding solutions in the 
AdS4 spacetime, we can reparametrize the metric function N(r) as

N(r) = 1 − 2m(r)

r
− Rr2

12
, (17)

where the function m(r) has an asymptotic limit m(∞) = M . How-
ever, in the R2 gravity the usual definition of the Arnowitt–Deser–
Misner mass should be modified in the comparison with the case 
of the conventional general relativity [45]. Thus, the parameter M
does not uniquely specify the mass, in the system under consider-
ation the static energy is defined as M = M R instead [45,46].
3. Numerical results

Solutions for system of equations (12) with boundary condi-
tions (15) are constructed numerically using shooting algorithm, 
based on Dormand–Prince 8th order method with adaptive step-
size. The relative errors of calculations are lower than 10−10. Simi-
lar to the case of the soliton solutions in the usual EYM model, for 
each fixed values of the parameter κ there is a continuous set of 
regular magnetic solutions labeled by the free adjustable parame-
ter b. Typical solutions are displayed in Fig. 1. For all the solutions 
we present we make use of the scale invariance of the model (1)
and take the value of the curvature scalar R = −1.

Variation of the shooting parameter b gives us a continuous 
family of solutions, which are qualitatively similar to the usual 
Einstein–Yang–Mills monopoles in asymptotically AdS spacetime 
[34,35]. However, there are some important differences. First, the 
regular finite energy R2 EYM magnetic solutions exist only for one 
finite interval of values of the parameter b bounded from above 
and below, b ∈ [bmin, bmax] where bmin < 0. Contrary to this case, 
a continuum of monopole solutions in the conventional EYM AdS4
exists for all values of the shooting parameter bounded from above 
only [34,35]. On the other hand, the family of finite energy EYM 
solutions in the fixed AdS background also exist for only one in-
terval in parameter space [41]. Secondly, there is an additional 
parameter labeling the usual EYM AdS4 solutions, the number n
of oscillations of the Yang–Mills field. Our numerical results show 
that for the R2 EYM system there are only solutions with n = 0
or n = 1. Thus, although the R2 gravity coupled to the Yang–Mills 
theory can be conformally transformed to Einstein frame, where 
it takes the form of the standard Einstein gravity with cosmologi-
cal constant and both massless scalar and non-Abelian Yang–Mills 
fields in the matter sector, the solutions of these models are still 
quite different, there is no one-to-one correspondence between 
them.

Setting the shooting parameter b = 0 yields the trivial zero en-
ergy solution with vanishing non-Abelian magnetic field in the AdS 
space with a cosmological constant 	 = R

4 . Increasing of the pa-
rameter b lead to increase of both the energy and the magnetic 
charge of the configuration. These solutions are of particular inter-
est because, as we will see below, they are stable against linear 
perturbations. At some value of b the asymptotic value of the 
gauge field function w∞ approaches zero and the magnetic charge 
takes its maximal value, |Q | = 1. Further increase of the parame-
ter b leads to decrease of the charge which again deviates from an 
integer, on this unstable branch of solutions the gauge field profile 
function w(r) has a single node. At some upper critical value of 
the parameter b both the mass and the energy diverge, see Fig. 2.

Similarly, decreasing of the parameter b from zero is leading 
to decrease of the magnetic charge of the configuration, along 
this branch the energy rapidly increases, both the energy and the 
charge diverge at some negative value of b = bmin . No solution 
seems to exist for b less than this value. Note that the pattern 
of critical behavior is different from the usual EYM monopoles, the 
metric function N of the R2 EYM solutions diverge at both ex-
tremities of the interval of values of b, while it approaches zero 
in the case of the EYM AdS4 solutions [35]. As shown in Fig. 2, 
the interval of values of the parameter b decreases when the grav-
itational coupling constant κ gets larger. The contraction of this 
interval is mainly because of decrease of the upper critical value 
bmax , the lower critical value bmin weakly depends on variations of 
the coupling constant κ . Dependencies of the critical values of the 
parameter b on κ are shown in Fig. 3. Both critical values, bmax

and bmin , approach zero as κ tends to infinity, however the upper 
critical value bmax decreases monotonically, while the lower critical 
value bmin possesses a minimum at κ ∼ 6.



I. Perapechka, Ya. Shnir / Physics Letters B 780 (2018) 152–158 155
Fig. 1. R2 EYM solutions for R = −1, κ = 1 and some set of values of b: The metric function σ(r) (upper left plot), the mass function m(r) (upper right plot) and the profile 
function of the gauge field w(r) (bottom plot) are plotted as functions of the radial coordinate r.
4. Linear stability analysis

In is known that the usual EYM AdS4 magnetic solutions with 
no node in w(r) are stable with respect to linear perturbations [34,
35], so we can expect the same arguments can be applied to the 
corresponding solutions of the R2 EYM system. We consider small 
time-dependent perturbations of the configuration (9) described by 
the general magnetic ansatz for the spherically symmetric Yang–
Mills connection

A = 1

2
{u(r, t)τ3dr + [w(r, t)τ1 + v(r, t)τ2]dθ

+ [w(r, t)τ2 − v(r, t)τ1 + cot θτ3] sin θdφ} . (18)

It is more convenient in the stability analysis to make use of the 
following parametrization for the metric

ds2 = −eν(r,t)N(r, t)dt2 + eλ(r,t)dr2 + r2(dθ2 + sin2 θdφ2) , (19)

instead of (10).
The functions in this general ansatz can be now written as the 
sum of the static solution, which stability we are investigating, and 
a time dependent perturbations:

w(r, t) = w(r) + δw(r, t) , u(r, t) = δu(r, t) ,

v(r, t) = δv(r, t) ; ν(r, t) = ν(r) + δν(r, t) ,

λ(r, t) = λ(r) + δλ(r, t) .

(20)

Substituting (20) into the action of the system (1) and retaining 
only terms linear in perturbations, we variate the corresponding 
functional with respect to the fluctuations of the matter fields 
δw, δu and δv . The equations for fluctuations of the metric fields 
can be obtained from the linearized gravitational equations (8). In 
particular, integration of the corresponding rt-equation over time 
yields the relation

δλ = 2κ wr
δw .
Rr
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Fig. 2. The energy (upper left plot), the magnetic charge (upper right plot) and the value of the metric function σ0 = σ(0) (bottom plot) of R2 EYM solutions are shown as 
functions of the parameter b for some set of values of the gravitational coupling κ at R = −1.
Another relation between the perturbations can be obtained from 
the linear combination of the tt- and rr-Einsteinian equations, to-
gether with the corresponding unperturbed equations:

δλr + δνr = 4κ wr

Rr
δw .

With there relations at hands, we arrive to the following system of 
the linearized equations

4r4 R2eλδwtt + 2κeλ+νδw w2
r

(
r2 R(r2 R − 4) + 2κ(w2 − 1)2

)

+ 4r3 R2eν(δwr − rδwrr)

+ rReλ+ν
(
δwr(r

2 R(r2 R − 4) + 2κ(w2 − 1)2)
)

+ 4r2 R2eλ+νδw(3w2 − 1) + 16κrReλ+νδw wr w(w2 − 1) = 0 ;
4eλr3 Rδvtt + r2 Reλ+ν wδu(r2 R − 4) + 4rReλ+νδv(w2 − 1))

(21)
+ eλ+νδvr

(
r2 R(r2 R − 4) + 2κ(w2 − 1)2

)

+ 2κeλ+νδu w(w2 − 1)2

+
2r

No
th
tio
tio

δ

δw

δ

Th

Aδ

an

D

4eνr2 R (δvr − 2rwrδu − rwδur − rδvrr + wδu) = 0 ;
2δutt + 4eν w(δvr + wδu) − 4eν wrδv = 0

te that the equation for the fluctuations δw is decoupled from 
e other two equations, which involve δv and δu. The first equa-
n defines the even parity fluctuations, while the other two equa-
ns correspond to the odd parity fluctuations.
Now we can suppose the fluctuations are harmonic, i.e.

ν(r, t) = δν(r)eiωt , δλ(r, t) = δλ(r)eiωt ;
(r, t) = δw(r)eiωt , δu(r, t) = δu(r)eiωt ,

v(r, t) = δv(r)eiωt .

(22)

us, the eigenvalue equation for the even-parity perturbations is

wrr + Bδwr + Cδw = ω2δw , (23)

d the odd-parity perturbations are described by the equations

δwrr + Eδvr + F δv + Gδur + Hδu = ω2δv ,

Iδv + Jδv + Kδu = ω2δu
(24)
r
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Fig. 3. Critical values of the parameter b are shown as functions of the effective 
gravitational coupling constant κ for R = −1. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

where A . . . K are the following functions of unperturbed solution:

A = D = −eν−λ ,

B = E = eν

4r3

(
r4 R + 4r2(e−λ − 1) + 2κ

R
+ 2κ w2(w2 − 2)

R

)
,

C = κeν

2r4 R2

(
2r2 R2(3w2−1)

κ
+w2

r

[
2κ+r2 R(r2 R−4)

+ 2κ w2(w2−2)
]
+8rR w wr(w2−1)

)
,

F = eν(w2 − 1)

r2
, G = −eν−λw ,

H = eν

4r3 R

(
w[2κ + r2 R(r2 R − 4) + 2κ w2(w2 − 2)]

+ 4r2 Re−λ(w − 2rwr)
)

,

I = 2eν w

r2 , J = −2eν wr

r2 , K = 2eν w2

r2 .

(25)

The eigenvalue problem (24) can be solved numerically, the 
case of imaginary eigenvalues ω2 < 0 corresponds to the exponen-
tial growth of the perturbation, i.e. instability of the original solu-
tion. We found that for the odd-parity perturbations the results are 
similar with the corresponding situation in the EYM model [34,35], 
the number of unstable modes is equal to the number of nodes of 
the profile function w(r). Thus, the nodeless solutions are stable 
with respect to the odd-parity perturbations.

The situation is much simpler for the even-parity perturba-
tions, it turns out, that for any values of the gravitational coupling 
constant κ and the shooting parameter b, the eigenvalues of the 
problem (24) are real, i.e. the solutions are stable with respect to 
the even-parity perturbations. Fig. 4 shows for example, the evolu-
tion of ten lowest eigenvalues of the even-parity perturbations as 
the shooting parameter b varies, all eigenvalues remain real.

5. Conclusions

The objective of this work was to investigate properties of new 
regular solutions of the SU(2) Yang–Mills theory, coupled to the 
pure R2 gravity. We found a family of non-trivial spherically sym-
metrical solutions with non-vanishing magnetic charge, which gen-
Fig. 4. The eigenvalues of ten lowest even-parity perturbations of the R2 EYM solu-
tions are shown as functions of the parameter b for κ = 1 and R = −1.

eralize the usual Bartnik–McKinnon solitons in the EYM theory. We 
found that the R2 EYM model has only solutions with no node 
in the gauge field profile function, or with a single node, there is 
no solutions with multiple nodes. Similar to the BM solutions in 
asymptotically AdS4 spacetime, the nodeless solutions are stable 
with respect to linear perturbations.

We remark that the scale invariant R2 EYM model is very dif-
ferent from the generalizations of gravity, which also include the 
usual linear in curvature term. The R + R2 model is also ghost-free, 
however it is equivalent to the conventional Einstein gravity with 
an additional scalar field. Further, we found that such a model sup-
ports only regular solutions, for which the curvature scalar is zero 
and Tμν = 0.

The scale invariance of the R2 model with the non-Abelian 
matter fields will be broken when the R2 gravity will be coupled 
to the Yang–Mills-Higgs system with symmetry breaking potential. 
We expect the properties of the corresponding monopole solu-
tions will be different from the standard gravitating monopoles in 
asymptotically AdS4 spacetime. Another direction for further work 
is to investigate R2 EYM non-Abelian configurations with both 
electric and magnetic charges.
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