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Integral equation technique for scatterers with mesoscopic insertions:
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We present the electromagnetic scattering theory for a finite-length nanowire with an embedded mesoscopic
object. The theory is based on a synthesis of the integral equation technique of classical electrodynamics and
the quantum transport formalism. We formulate Hallén-type integral equations, where the canonical integral
operators from wire antenna theory are combined with special terms responsible for the mesoscopic structure.
The theory is applied to calculate the polarizability of a finite-length single-walled carbon nanotube (CNT)
with a short low-conductive section (LCS) in the microwave and subterahertz ranges. The LCS is modeled as
a multichannel two-electrode mesoscopic system. The effective resistive sheet impedance boundary conditions
for the scattered field are applied on the CNT surface. It is shown that the imaginary part of the polarizability
spectrum has three peaks. Two of them are in the terahertz range, while the third is in the gigahertz range. The
polarizability spectrum of the CNT with many LCSs has only one gigahertz peak, which shifts to low frequencies
as the number of LCSs increases. The physical nature of these peaks is explained, and potential applications of
nanoantennas are proposed.
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I. INTRODUCTION

Over the past two decades, the methods of electrical
engineering have been evolving toward a self-consistent
description of mesoscopic structures with a feature size larger
than the atomic distance but smaller than the characteristic
length at which quantum correlations already appear [1].
The recent progress in nanoscience has paved the way for
experimental implementation of different nanosized objects,
such as quantum dots [2], molecular and quantum contacts
[3,4], carbon nanotubes [5], and graphene [4].

Electron transport in coherent conductors with a size
comparable to, or less than, the inelastic scattering length has
a number of specific features. The most important feature is
the nonlocality of electron transport between two reservoirs
[1]. This process can be described by using a well-known
particle scattering theory that considers electrons scattering by
a potential barrier from an initial to a final state. The transition
from one state to another is described by the scattering matrix
[1]. The first impressive result in the quantum transport theory
based on this approach is the famous Landauer formula for a
quasi-one-dimensional coherent mesoscopic conductor [6].

Due to the recent development of nanotechnologies, meso-
scopic structure changed from a research subject into an
element of nanoelectronic devices. Electron reservoirs for
coherent conductors can act as interconnects, waveguides,
antennas, and rectennas for the electromagnetic (EM) field.
For example, mesoscopic structures such as quantum contacts
or quantum dots pave the way to efficiently controlling and
loading nanoantennas in the infrared and optical frequency
ranges [7–9].

The trend toward the integration of nanophotonics with
mesoscopic physics requires us to build a bridge between

classical electrodynamics and quantum transport theory
[10–12]. Electrodynamics of nanostructures is based, to a
large degree, on the principles and methods of classical
electrodynamics. For example, the integral equation technique
for light scattered by different types of nanowires (e.g., carbon
nanotubes [13,14], noble metal wires [8], etc.) originates in
classical antenna theory [15]. Integral equations for surface
currents in nanowires are in general similar to the Hallén
integral equations for macroscopic wire antennas [15], though
their specific forms are slightly different due to a difference in
the constitutive relations of nanostructures and macroscopic
bulk media; the latter are usually modeled as dielectrics or
perfect conductors.

The subject of this paper is the electromagnetic scattering
theory for a quantum nanowire (or ribbon) with embedded
mesoscopic structure. The key idea consists of combining the
integral equation technique of classical electrodynamics and
a formalism of the high-frequency quantum transport theory.
The mesoscopic structure is modeled with the help of the
scattering matrix approach [1]. Its interaction with the EM
field is described by the alternating-current (ac) voltage across
the structure and the total ac current through it. The nanowire is
modeled with the help of the effective boundary conditions for
the EM field. Its interaction with the EM field is described by
the density of the surface current induced by the total (external
plus scattered) field [16]. The current density and the voltage
between two reservoirs are unknowns and should be found
self-consistently from the boundary-value problem for the EM
field.

The framework of the analysis is a modified integral
equation in which the Hallén-like integral operator appears
simultaneously with the special terms responsible for the

2469-9950/2017/96(20)/205414(13) 205414-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.205414


M. V. SHUBA et al. PHYSICAL REVIEW B 96, 205414 (2017)

mesoscopic structure. This equation is valid for an arbitrary
type of coherent conductors and quantum wires, whose phys-
ical origin manifests itself only in the values of the electron
transmission coefficient and conductance, respectively. Such
parameters appear in the integral equations as a priori given,
and they should be found separately via numerical modeling
or experiment.

Our approach will be illustrated by analyzing the problem
of the scattering of an EM wave by a finite-length carbon
nanotube (CNT) with a short low-conductive section (LCS)
in the microwave and terahertz ranges. The CNT will be
considered as a nanowire, whereas the LCS will be modeled
as a mesoscopic conductor. The LCS could be (i) a nanosized
defective section of the CNT [17], (ii) a junction constructed
between tubes of different chiralities [18], or (iii) a molecular
bridge between tips of the CNTs [19]. Hereafter, the CNT with
the LCS will be referred to as d-CNT.

If the LCS is a molecular bridge between the tips of the two
CNTs, the LCS conductance might be controlled in different
ways, including optical, chemical, electrical, and mechanical
methods:

(i) The conductance of some molecules can be switched
chemically. For example, the molecular conductance of
oligoaniline diamine 4 changes by nearly an order of mag-
nitude following the variation in pH level of the environment
[19].

(ii) The conductance of some photochromic molecules is
sensitive to visible and ultraviolet light. It has been demon-
strated experimentally that diarylethene molecules can be
converted from a conjugated “on” state to a cross-conjugated
“off” state upon illumination in the visible range [20,21]. The
reverse process is possible with ultraviolet light.

(iii) The molecular conductivity can be controlled by a
transverse electric field. This is actively used in a single
molecular transistor [22–24].

(iv) The conductance of the molecular bridge depends
strongly on its geometrical configuration. For instance, the
conductance of a molecule C60 placed between (5,5) carbon
nanotubes is determined by the distance between nanotubes
and the orientation of the fullerene. It can be tuned by rotating
one of the CNTs around its axis [25].

(v) The conductance of some molecules can also be varied
by their mechanical stretching [26].

Electromagnetic parameters of the CNTs have been investi-
gated intensively in the past two decades [13,14,27–38]. Their
unique electronic properties and folding geometry made CNTs
into promising components for electronic and electromagnetic
applications in the microwave and terahertz ranges. Carbon
nanotubes are currently proposed as elements for different
integrated circuits and electromagnetic devices, such as trans-
mission lines [28,38], interconnects [33], and nanoantennas
[13,14,30]. Composite materials comprising the low content of
the CNTs as inclusions demonstrate good shielding properties
in gigahertz [39] and terahertz [40] regimes.

Due to the high kinetic inductance of a single-walled CNT,
the strongly slowed-down surface wave can propagate along its
axis [28,38]. The excitation of the standing surface wave by a
plane wave causes antenna (or localized plasmon) resonance in
the polarizability spectrum of an individual finite-length CNT
[14]. A terahertz conductivity peak of a CNT film [27,29,34]

is proven experimentally to be due to the localized plasmon
resonance in the CNTs [41].

In the frequency range below the localized plasmon reso-
nance (<1 THz), a quasistatic interaction between the CNT
and the incident electromagnetic wave occurs. In this case,
the strong depolarizing field leads to the screening effect—the
total axial field is as much as 10−103 times smaller than the
axial component of the incident field [35,36]. Moreover, due
to the polarization effect, a high surface charge density is
concentrated near the CNT edges. These charges induce a
radial electric field that is 10–30 times higher than an axial
component of the incident field, resulting in the near-field
enhancement effect [35,42,43].

Though the electromagnetic parameters of perfect CNTs
have been well established [14,31,36,42], there are no theo-
retical or experimental studies of the d-CNT. In the present
paper, we propose a systematic study of the problem of
electromagnetic wave scattering by a single-walled d-CNT.
We shall show that the d-CNT has qualitatively different
terahertz and microwave polarizability spectra as compared to
those for the CNT without the LCS. The electron transmission
coefficients for some particular LCSs were modeled based
on first-principles approaches (a plane-wave formalism within
density-functional-theory calculations [44]).

The paper is organized as follows. In Sec. II, we present
a brief review of the Landauer model of a mesoscopic
structure driven by the ac field, we formulate the boundary-
value problem for the mesoscopic structure embedded into a
nanowire, and we develop the general integral-equation–based
technique for its solution. The calculated conductance of some
particular LCSs in CNT is discussed in Sec. III. The application
to the problem of plane waves scattering by a finite-length
d-CNT in the microwave and terahertz ranges is analyzed and
discussed in Sec. IV. The polarizability spectra of the d-CNTs
with many LCSs are presented and discussed in Sec. V.
The possibilities of tuning the LCS conductivity and possible
applications of the d-CNTs in nanoantennas are discussed in
Sec. VI. The conclusions are drawn in Sec. VII.

II. THEORETICAL FRAMEWORK

Some examples of electromagnetic systems with meso-
scopic structures are shown in Fig. 1. Each system consists
of a nanoantenna with a gap bridged by a nanojunction. The
latter is a mesoscopic object connecting two terminals of the
nanoantenna. The coupling between the terminals is dictated
by the electron tunneling through the gap. The description
of tunneling is based on the concept of quantum transport
[1,45–47].

The famous Landauer model was originally proposed for
the case of dc voltage produced by a battery and applied to a
pair of electrodes (leads) separated by a nanoscale junction.
The battery acts as a reservoir of the electrons, i.e., it can
supply and receive an arbitrary amount of electrons and energy
without changing its internal state. Each lead is connected to a
reservoir. The electrons were prepared in the distant past in the
reservoirs far away from the junction. They move toward the
junction from the leads scattering elastically on the junction
potential. After that they move away without further scattering.
The energy required to extract an electron from one reservoir
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FIG. 1. Examples of the electrodynamic systems with meso-
scopic structures. (a) Nanowire decomposed following the Landauer-
Büttiker concept of quantum transport. LR, LL, RL, and RR denote
left-hand reservoir, left-hand lead, right-hand lead, and right-hand
reservoir, respectively. (b) Circular nanoloop, (c) nanoribbon, and (d)
Vivaldi antenna [48] placed on the optically transparent background.
Double red arrows indicate electron tunneling junctions.

and bring it into the system must be different for different
reservoirs. Such a difference is interpreted [1,45,46] as the
difference in electrochemical potentials associated with the
left- and right-hand reservoirs.

This physical picture cannot be directly applied to the case
of nanoantennas due to the following reasons.

(i) A nanoantenna is exposed to an externally impressed
ac field with angular frequency ω. In this case the Landauer
scenario of quantum transport does not require the assumption
of different chemical potentials of the right- and left-hand
reservoirs [47].

(ii) The voltage between the antenna terminals is created by
the total field, which should be determined self-consistently
from the boundary-value problem for Maxwell equations
and the quantum transport model. Thus, this problem should
take into account the electromagnetic interaction between the
nanojunction and the reservoir.

A. A model of a quantum wire with an imbedded
mesoscopic structure

As an example, for further consideration we choose a
quantum wire with a number of conductive channels Nc. Let
the wire be aligned parallel to the z axis of a cylindrical
coordinate system and be exposed to an externally impressed
field with z component Eex

z (z) = E(0)
z (z)exp(−iωt). Hereafter,

we will use the International System of units.
Let the quantum wire have electron scattering obstacles

localized in a short region z ∈ (r − �/2,r + �/2) [see
Fig. 1(a)]. We define Ti and Ri (i = 1,2, . . . ,Nc) as the total
transmission and reflection coefficients of this region for an
electron into channel i. Let us choose a section of length d (d >

�) with the scattering obstacles in the center. We shall refer to
such a section as an LCS. The length d can be associated with
a distance between the voltage probes in the scheme of the
LCS conductance measurements. In general, this distance is

different for “two-” and “four-terminal” schemes [46]. The
length d should be much smaller than the electron mean
free path λmfp in the wire (i.e., d � λmfp) providing electron
elastic scattering within the LCS. Since the typical value of
λmfp is much smaller than an electromagnetic wavelength λ,
the condition d � λ is satisfied automatically, allowing for a
quasistatic description of the electromagnetic field within the
LCS.

The voltage drop across the LCS can be found from the total
field Etot

z (z) within the LCS in a quasistatic approximation as
follows:

Vd =
∫ r+d/2

r−d/2
Etot

z (z)dz. (1)

The voltage Vd should be related self-consistently to the EM
field scattered by the remaining part of the system.

The description of the field and charge distribution within
the LCS is a complex quantum-mechanical task, which should
be solved separately for each particular configuration of the
scattering obstacles. In our formulation, we will proceed with
the LCS as a section with an effective conductance Gd , which
can be determined via the quantum transport formalism. We
use two basic assumptions in our model: (i) a weak-field
approximation (ωh̄ � eVd ), and (ii) the low-frequency regime
(see below). Then, the current Id through the LCS and the
voltage Vd are connected linearly [1,47,49],

Id = Gd (ω)Vd. (2)

To calculate Gd , one can apply different models of quantum
transport. Here we mention two of them.

In the framework of the Landauer-Büttiker formalism for
a potential barrier with scattering-free leads connected to two
reservoirs [49] [see Fig. 1(a)], Gd can be found from “two-
terminal” many-channel conductance formulas [49]. This
formalism is quite general; it also allows (i) an investigation of
the rectification effect and shot noises in the system [49], (ii)
generalization of the theory for the case of a wire with a double
barrier at the resonant tunneling [49], and (iii) development
of the model for the system with embedded mesoscopic
structure having more than two terminals [50,51]. It should be
noticed that the formula for “two-terminal” conductance yields
unreasonable finite conductance in the absence of electron
scattering, i.e., at Ti = 1, i = 1,2, . . . ,Nc.

In the framework of the low-frequency Landauer formalism
developed by Kamenev and Kohn in Ref. [47] for a barrier
imbedded in the quantum wire, Gd can be calculated using the
“four-terminal” conductance formula.

Though both models (Refs. [49] and [47]) yield the
same value of Gd for a weakly transmitting LCS (Ti � 1,
i = 1,2, . . . ,Nc), their outcomes are rather different for a
weakly reflecting LCS (Ri � 1, i = 1,2, . . . ,Nc). The reason
originates from the difference of the problem definitions (see
details in [47]).

Since our task and the boundary-value problem for the LCS
are close to those considered by Kamenev and Kohn, we shall
further apply their “four-terminal” conductance formulas [47]
derived for the barrier with disordered leads in the cases of a

205414-3



M. V. SHUBA et al. PHYSICAL REVIEW B 96, 205414 (2017)

weakly transmitting LCS,

Gd (ω) ≈ e2

πh̄

Nc∑
i=1

Ti, (3)

and a weakly reflecting LCS,

Gd (ω) ≈ e2

πh̄

[ ∑Nc

i=1 υi

]
∑Nc

i=1 υ2
i Ri

, (4)

where h̄ is the reduced Planck constant, e is the electron charge,
and υi is the electron velocity in channel i. For the particular
case of equal velocity channels and arbitrary Ti and Ri , one
can apply [47]

Gd (ω) = e2

πh̄

Nc

∑Nc

i=1 Ti∑Nc

i=1 Ri

. (5)

Formulas (3)–(5) take into account the spin degeneracy. They
are correct when (i) the frequency is small, EF � ωh̄, allowing
us to neglect the difference in the velocities of scattered and
incident electronic states [52], and (ii) the values Ti and Ri are
slowly varying functions on the scale of both temperature T

and frequency ω. The chemical potential is supposed to be the
same on both sides of the LCS.

Since Vd is a voltage in the “four-terminal” measurement
scheme, then following Ref. [47], the value of d in (1) should be
taken to be equal to � + 2κ−1, where κ−1 is the Thomas-Fermi
screening length along the wire.

B. Boundary-value problem for a d-CNT

Here, we propose the electromagnetic boundary-value
problem formulation to describe the electrodynamics of
metallic d-CNT. Let an isolated d-CNT of length L and
cross-sectional radius a, aligned parallel to the z axis of a
Cartesian coordinate system [see Fig. 1(a)], be located in a
host medium with permittivity ε (host relative permittivity is
εh = ε/ε0, ε0 = 8.85 × 10−12 F/m). The CNT occupies the
region z ∈ (0,L), and the LCS with length d is located in the
interval z ∈ (r − d/2,r + d/2); 0 < r < L.

Let the d-CNT be exposed to an externally impressed field
with a z-component Eex

z (z) = E(0)
z (z)exp(−iωt). This field

induces the surface current density j(r) in the d-CNT, which
reradiates the scattered field.

The electron scattering by the obstacles located in the center
of the LCS causes charge accumulation near them. Due to the
poor screening of the long-range Coulomb interaction in CNTs
[53], the charge density decays slowly (nonexponentially) with
the distance from the scattering obstacles along the z axis. In
spite of the long-range decay (of several tens of the CNT
radius), the main decrease in the charge density occurs in
the short interval—“screening length” κ−1—comparable with
CNT diameter [53]. Therefore, it is reasonable to assume the
LCS length is in the range d ∈ (� + 4a,� + 10a).

In the terahertz and subterahertz regime, only intraband
transitions of π electrons with unchanged transverse quasi-
momentum are allowed in the CNT [54]. As those transitions
contribute to the axial conductivity, but not to the transverse
conductivity, only the azimuthally symmetric electric current
densities can be excited in the CNTs [31]. So, we can set
j(r) = j (z)ez, where ez is the unit vector along the CNT axis.

FIG. 2. Defects of (5,5) armchair CNT with (a) 6, (b) 18, (c)
24, and (d) 60 carbon atoms extracted. Carbon dangling bonds are
hydrogen-passivated.

The Landauer concept of quantum transport deals only with
a total current Id , whereas an electromagnetic task requires
the introduction of a spatially distributed current density
within the LCS. The realistic current density is complex in
the azimuthally asymmetric scattering region (see Fig. 2). To
simplify the electromagnetic task and match it with the model
of mesoscopic structure, we assume the current to be uniformly
distributed on the surface of the LCS, which is modeled as a
hollow cylinder of radius a and length d. The linear relation
between voltage across the LCS, Vd [see Eq. (1)], and current
through the LCS, Id , is determined by (2) where the effective
conductance Gd is given by (3) or (4). Then the effective
current density within the LCS is

j (z) = jd = Id

2πa
= 1

2πa
GdVd, z ∈ (r − d/2,r + d/2).

(6)

Thereby, we ignore in our model the real geometry of the LCS.
We shall show below that the polarizability of the d-CNT does
not depend on the value d, but only on the value of the LCS
effective conductance Gd , thus justifying the validity of our
simplification.

Since the surface current on the CNT surface outside the
LCS in the local approximation satisfies Ohm’s law, then using
(6) we can present the surface current density in the d-CNT as
follows:

j (z) =
{
σcnE

tot
z (z), z ∈ (0,r − d/2) ∪ (r + d/2,L),

jd, z ∈ (r − d/2,r + d/2),
(7)

where the total axial field Etot
z on the CNT surface can be found

as a sum of axial components of incident E(0)
z and scattered

Esc
z fields,

Etot
z (z) = E(0)

z + Esc
z , (8)

while σcn in (7) is the axial surface conductivity of the CNT;
for a small radius metallic CNT (< 2 nm) [28],

σcn = 2ie2υF

π2h̄a(ω + iν)
, (9)

where υF is the Fermi velocity for a CNT, υF � 106 m/c; ν

is the relaxation frequency; ν = τ−1, where τ is the electron
relaxation time.
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Let us note that Gd in (3)–(5) is purely real. In general,
the dynamic admittance Yd (ω) should be complex. At small
frequencies, it can be expanded to first order in frequency
as follows [51,52]: Yd (ω) = Gd (0) + iBdω, where Bd is a
constant value.

For a weakly transmitting LCS, the admittance Yd has
a capacitive imaginary part [47,55] taking into account
the electric charges accumulated within the LCS due to
the electron scattering effect, Bd = −C < 0, where C is a
capacitance of the LCS. For sufficiently small LCS length d,
these charges are much smaller than those accumulated outside
of the LCS in its locality. Hence, in our further consideration,
we shall neglect the charges accumulated within the LCS,
omitting the capacitive part of the admittance, i.e., assuming
Bd = 0.

For weakly reflecting LCS, the admittance has an inductive
imaginary part, Bd > 0, which is important in the high-
frequency range. The positive imaginary part of the CNT
admittance appears due to the inertia of electrons moving in the
ac electric field. If this field slightly changes during the period
of the electron relaxation time, then the electron motion is
very similar to that in a dc field. Therefore, in the range f �
ν/(2π ), the imaginary part of both σcn and Yd is much smaller
than the real one, and it can be omitted. In our calculations, we
shall use an electron relaxation time of τ = 50 fs [ν/(2π ) ≈ 3
THz] [34]. Then formula Y (ω) = Gd (0) describe the LCS
admittance with high accuracy in the range f ∈ (0,0.5) THz.
Since we shall consider further only the case of weakly
transmitting LCS providing a small inductive imaginary part
of Yd , we shall also apply and presume the validity of the
equality Yd (ω) = Gd (0) in the range f ∈ (0.5,10) THz.

Electromagnetic properties of the CNT in our model
are described by the effective resistive sheet impedance
boundary conditions for the total electric, Etot, and mag-
netic, Htot, fields. In a general form, they are written as
follows [28]:

n × (Etot
+ − Etot

− ) = 0, (10)

n × Etot = −Ẑ[n × n × (Htot
+ − Htot

− )] = 0, (11)

where subscripts ± indicate different sides of the surface, n is
the local outward unit vector normal to the surface, and Ẑ is
the tensor of the sheet impedance. Those effective boundary
conditions were first adapted for CNTs [28] and thereafter for
graphene [56].

The electromagnetic field scattered by the d-CNT can be
described in terms of the electric Hertz potential �(r) =
�(ρ,z)ez, which satisfies the Helmholtz equation:

(∇2 + k2)� = 0, (12)

where k = √
εhω/c is the wave number, and c is the speed of

light in vacuum. The only nonzero components of the scattered
electromagnetic fields are as follows:

Esc
ρ = ∂2�

∂z∂ρ
, Esc

z =
(

∂2

∂z2
+ k2

)
�, H sc

φ = iεω
∂�

∂ρ
.

(13)

The boundary conditions for Eq. (12) for the d-CNT can be
written as follows [28]:

∂�

∂ρ

∣∣∣∣
ρ=a+0

− ∂�

∂ρ

∣∣∣∣
ρ=a−0

= j (z)

iωε
, z ∈ (0,L), (14)

∂�

∂ρ

∣∣∣∣
ρ=a+0

= ∂�

∂ρ

∣∣∣∣
ρ=a−0

, z ∈ (−∞,0) ∪ (L, + ∞), (15)

�|ρ=a+0 = �|ρ=a−0, − ∞ < z < +∞. (16)

The total axial field Etot
z on the CNT surface can be found

from (8) subjected to (13),

Etot
z (a,z) = E(0)

z (z) +
(

∂2

∂z2
+ k2

)
�(a,z). (17)

To obtain the unique solution of the boundary-value
problem for the CNT, the boundary conditions must be
supplemented by radiation conditions [57] as well as by edge
conditions. The latter express the absence of concentrated
charges on the edges z = 0,L of the tube, i.e.,

j (0) = j (L) = 0. (18)

The formulated boundary-value problem can easily be
generalized for the d-CNT with many LCSs when the distance
between any adjacent LCSs is larger than the electron coher-
ence length. In this case, the strong dephasing processes occur
in the region between adjacent LCSs providing uncorrelated
electron scattering by different LCSs.

C. Hallén-type equation for a d-CNT

The solution of Helmholtz equation (12) with boundary
conditions (14)–(16) and edge conditions (18), taking into
account (6), may be represented as a single-layer potential,

�(ρ,z) = ia

4πεω

(∫ r−d/2

0
j (z′)G(ρ,z − z′)dz′

+ jd

∫ r+d/2

r−d/2
G(ρ,z − z′)dz′

+
∫ L

r+d/2
j (z′)G(ρ,z − z′)dz′

)
, (19)

where j (z) and jd are the unknown surface current densities
to be found, and

G(ρ,z) =
∫ 2π

0

exp(ik
√

a2 + ρ2 − 2ρa cos(ϕ) + z2)√
a2 + ρ2 − 2ρa cos(ϕ) + z2

dϕ.

(20)
The potential �(a,z) can be expressed from (17) as follows:

�(a,z) = 1

2ik

∫ L

0
Etot

z (a,z)eik|z−z′ |dz′ − 1

2ik
�(z), (21)

where

�(z) =
∫ L

0
E(0)

z (z)eik|z−z′|dz′ + Ceikz + De−ikz, (22)

where C and D are unknown constants to be determined from
edge conditions (18).
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Let us expand the integral in Eq. (21) as follows:∫ L

0
{· · · }dz′ =

∫ r−d/2

0
+

∫ r+d/2

r−d/2
+

∫ L

r+d/2
{· · · }dz′. (23)

Taking into account (1), (2), (6), and the inequality kd �
kL � 1, the middle integral on the right side of (23) can be
transformed as follows:∫ r+d/2

r−d/2
Etot

z (z′,a)eik|z−z′ |dz′

� eik|z−r|
∫ r+d/2

r−d/2
Etot

z (z′)dz′

= Vde
ik|z−r| = 2πa

Gd

jde
ik|z−r|. (24)

In view of (7) and (24), after substitution of (21) into (19)
at ρ = a, we arrive at the Hallén-type equation for the d-CNT
with respect to the current density j (z) and effective current
density jd ,∫ r−d/2

0
+

∫ L

r+d/2

[
σ−1

cn eik|z−z′ | + ak

2πεω
G(a,z − z′)

]

×j (z′)dz′ + jdF (z) = �(z), (25)

where

F (z) = 2πa

Gd

eik|r−z| + ka

2πεω

∫ r+d/2

r−d/2
G(a,z′ − z)dz′. (26)

Let us note that the first term in (26) contains Gd but not d.
This means that the surface current density distribution over
the d-CNT and, consequently, the d-CNT polarizability does
not depend on LCS length d, but only on the conductance Gd .
For all the d-CNTs considered in Sec. IV, we proved with
numerical calculations that the solution of Eq. (25) practically
does not depend on the value of d if it varies from 0.1 to 5 nm
for a constant Gd . The independence of the electromagnetic
parameters of the d-CNT on the LCS length justifies the
suggestion that the application of the approach developed for
the LCS of cylindrical shape could be also applied for any
other LCS of noncylindrical geometry. This is true due to the
one-dimensional nature of the electron transport in CNTs.

The integrals in (25) can be handled by a quadrature
formula, thereby transforming (25) into a matrix equation.
The latter can be solved numerically to find the current density
in the d-CNT.

Let us note that Eq. (25) has a solution that is very similar to
a solution of the Hallén equation for a CNT with z-dependent
axial conductivity, i.e., instead of (7) one can assume

j (z) = σ (z)Etot
z (z), z ∈ (0,L), (27)

where

σ (z) =
{
σcn, z ∈ (0,r − d/2) ∪ (r + d/2,L),
Gdd

2πa
, z ∈ (r − d/2,r + d/2).

(28)

For this case, the Hallén equation for the CNT with z-
dependent conductivity has the form∫ L

0

[
1

σ (z′)
eik|z−z′ | + ak

2πεω
G(a,z − z′)

]
j (z′)dz′ = �(z).

(29)

Our calculations show that the solutions of Eqs. (25) and
(29) coincide within the error of 1% for all the d-CNTs
considered in Sec. IV. Moreover, these equations can be easily
generalized to calculate the electromagnetic response of the
d-CNT with an arbitrary number of noncorrelated LCSs.

D. Electromagnetic parameters of a d-CNT

Once we know the surface current density, we can calculate
a polarizability tensor of the d-CNT in the long-wavelength
regime (L � λ). The tensor has only one nonzero element,

αzz = 2πia

ωE
(0)
z

∫ L

0
j (z)dz. (30)

Hereafter, we shall refer to αzz as CNT polarizability.
The surface charge density on the d-CNT outside the LCS

can be found from the continuity equation as

ρ(z) = − i

ω

∂j (z)

∂z
, z ∈ (0,r − d/2) ∪ (r + d/2,L). (31)

Let us note that both (25) and (29) together with (31) give
the correct charge-density distribution ρ(z) outside the LCS.
However, the value ρ(z) within the LCS depends on its intrinsic
atomic structure, and, consequently, it cannot be described by
the presented model.

As we considered elastic electron scattering by the LCS, the
electromagnetic energy cannot be dissipated within the LCS.
However, the power Pd gained by electrons passing through the
LCS is dissipated within a distance of the order of the electronic
mean free path from the LCS [58]. It can be obtained as

Pd = 2π2a2G−1
d |jd |2. (32)

The power Pcn dissipated in the d-CNT by electrons that
did not pass the LCS can be calculated as follows [42]:

Pcn = πaRe
(
σ−1

cn

)[∫ r−d/2

0
+

∫ L

r+d/2
|j (z)|2dz

]
. (33)

Then the total dissipated power in the d-CNT is a sum of Pcn

and Pd .

III. THE CONDUCTANCE OF SOME PARTICULAR LCSs

To demonstrate which types of defects might be associated
with the LCS in the d-CNT, as an example we calculated the
conductance of some particular defects in a metallic armchair
(5,5) CNT (see Fig. 2). As shown in Fig. 2, the LCSs were
constructed by extraction of 6, 18, 24, and 60 carbon atoms. In
practice, similar defects could be obtained by voltage pulses
[59].

Extraction of some carbon atoms leads to the emergence
of dangling-bond defects in the CNTs. They are chemically
reactive and tend to adsorb gas molecules such as CO2 and O2

from the air [60]. To make the d-CNT chemically stable in air,
we passivated all the dangling bonds by hydrogen atoms. To
get mechanically stable atomic configurations, we carried out
structural optimization of the LCS with the PWSCF code of
the QUANTUM ESPRESSO package, which uses a plane-wave
formalism based on ground-state density-functional-theory
calculations [44].
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TABLE I. The conductance Gd (0) and the ratio Nσ =
2πaσcn(0)/(Gdd) for the defects presented in Fig. 2.

Number of extracted C atoms Gd (e2π−1h̄−1) Nσ

6 1.06 33
18 0.16 220
24 0.015 2320
60 0.0042 8300

The (5,5) armchair CNT has two conductive channels
near the Fermi level [61]. To calculate electron transmission
probability Ti for the i-channel (i = 1,2), we used a rigorous
first-principles method [62] (the Choi-Ihm method) based
on the scattering theory and pseudopotentials, which are
implemented within the PWCOND part of the QUANTUM

ESPRESSO package [44]. The calculations were performed
using the PW91 [63] exchange and correlation functional.
The convergence with the number of plane waves and with
the number of k-points used to sample the Brillouin zone was
carefully checked. We used an energy cutoff of 35 Ry, and a
set of 12 k-points.

LCS conductance Gd (0) has been calculated according
to (8) assuming that the velocity of electrons moving in
two channels is equal to υF . The LCS conductance and the
value Nσ = 2πaσcn(0)/(Gdd) at d = 5 nm, a = 0.34 nm,
and τ = 50 fs are collected in Table I for all the defects
presented in Fig. 2. The value Nσ is a ratio of the CNT
intrinsic conductivity to the effective LCS conductivity [see
Eq. (25)]. As shown in Table I, the conductance Gd decreases
as the number of extracted atoms increases, and the value
Nσ varies over a wide range reaching 8300 at 60 extracted
carbon atoms. Similar low conductance, 0.032e2/(πh̄) and
0.0032e2/(πh̄), has been found in an experiment for a
molecular intertube junction with conducting molecules [19].
Let us note that a significant decrease in the transmission
coefficient near the Fermi level for single-walled nicked CNTs
was also reported in Ref. [17]. Thus, in the present section we
estimated the conductance of a few LCSs that may exist in
the CNTs.

IV. NUMERICAL RESULTS AND DISCUSSION

Let us apply the theoretical model developed in Sec. II to
calculate the polarizability of the metallic “armchair” (5,5)
single-walled CNT with a length of 1 μm and a diameter of
0.68 nm. The CNT contains a single LCS, which has a length
of 5 nm and is located 300 nm away from the left edge of the
CNT, i.e., d = 5 nm and r = 300 nm in Fig. 3. The electron
relaxation time of 50 fs is assumed [34] to calculate the CNT
conductivity σcn using Eq. (7). The effective axial surface
conductance of the LCS is determined by Nσ introduced in
Sec. III. Below we shall apply the abbreviation “p-CNT” to
indicate the CNT without the LCS. If LCS conductance is
zero, the d-CNT will be called a cut CNT (c-CNT). Figure 3
shows schematically these CNTs. Let us note that Nσ = 1,
Nσ > 1, and Nσ = ∞ correspond to the p-, d-, and c-CNTs,
respectively. The amplitude of the applied electric field is
assumed to be 3 × 104 V/m.

FIG. 3. A schematic depiction of the p-, d-, and c-CNTs. The
dark section indicates the LCS with length d , and it is located at the
distance r away from the left edge of the CNT.

Figure 4 presents the spectral dependences of the real and
imaginary parts of the polarizability αzz in the range 1−104

GHz for the d-CNTs at different values Nσ . For the p-CNT
(Nσ = 1), the spectrum of Im(αzz) has a terahertz peak at a
frequency of 2 THz, which is associated with the localized
plasmon resonance in the CNTs [14,34]. This peak shifts to
higher frequencies as the tube length decreases. There is a
quasistatic regime of CNT interaction with the electromagnetic
field at frequencies below the localized plasmon resonance.
In this range, the value of Re(αzz) is the same as in the
electrostatic case at f → 0, and the value of Im(αzz) decreases
with frequency. Due to the strong depolarizing field, the total
axial field in the CNT is much lower than the axial component
of the incident field.

As shown in Fig. 4, the polarizability spectra of the d-CNT
at Nσ = 20 and the p-CNT are very similar. There are three
peaks for the d-CNTs at Nσ � 200 in Fig. 4(b). Two of them
are at 3.5 and 8 THz; they occur due to the localized plasmon
resonance in the right and left CNT sections separated by the
LCS. The third one is a very broad gigahertz peak; its central
frequency fg decreases as Nσ increases: fg is 10 and 100 GHz
for Nσ = 2 × 103 and 2 × 104, respectively.

To explain the influence of the LCS on the d-CNT
polarizability spectrum, we shall consider the field, charge,
and current density distributions as well as dissipated power
in the d-CNT at Nσ = 800. This value of Nσ was chosen

FIG. 4. Frequency dependence of the (a) real and (b) imaginary
parts of the d-CNT polarizability for different LCS conductivities
Nσ ∈ {1,20,2 × 102,2 × 103,2 × 104}.
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FIG. 5. Frequency dependences of the (a) real and (b) imaginary
parts of the polarizability of the d-CNT (Nσ = 800), c-CNT, and
p-CNT. Frequency dependences of (c) normalized average electric
field and (d) dissipated power in the p-CNT (solid line) as well as
dissipated powers Pd (dotted line) and Pcn (dashed line) in the d-CNT.

for convenience to compare the current and charge-density
distribution over the d-, p-, and c-CNTs on the same scale.

Figures 5(a) and 5(b) show the polarizability spectra for the
p-, c-, and d-CNTs. The frequency dependence of the average
electric field and dissipated power in the p-CNT and in the
d-CNT (within and outside the LCS) are shown in Figs. 5(c)
and 5(d), respectively. In Figs. 5(a) and 5(b), we observe the
following:

(i) A regime of the high-transparency LCS (f < 40 GHz),
where the real part of the polarizability for the d-CNT
coincides with that for the p-CNTs.

(ii) A regime of the medium-transparency LCS (40 GHz <

f < 2 THz), where the polarizabilities of the d-, c-, and p-
CNTs are different from one another.

(iii) A regime of the low-transparency LCS (f < 2 THz),
where the polarizabilities of the d- and c-CNTs almost coincide
with each other.

Let us consider each regime in detail.

A. Regime of the high-transparency LCS

Since the external field oscillates quite slowly, the charge
carriers have enough time to pass through the LCS. As a result,
the value of Re(αzz) is the same for the d- and p-CNTs.

Figure 6 demonstrates the surface charge and current
density distributions on the p- and d-CNTs when the amplitude

FIG. 6. (a), (c) The surface current and (b), (d) charge-density
distribution over the d-CNT (Nσ = 800) and the p-CNT at a frequency
of 20 GHz.

of the incident field is real and the frequency is 10 GHz.
One can see that Im(j ) � Re(j ) and Re(ρ) � Im(ρ), and the
values of Im(j ) and Re(ρ) coincide for the p- and d-CNTs
everywhere except in the LCS and its near neighborhood.
Due to the charge accumulated in the vicinity of the LCS,
the effective field within the LCS is much higher than the
average effective field outside the LCS [see Fig. 5(c)]. As
a result, the current density within the LCS is the same
as it would be in the CNT without the LCS. As the LCS
conductance is very low, the dissipated power Pd is higher
than the power Pcn in the d-CNT [Fig. 5(d)]. Thus, the
high-energy dissipation near the LCS at f < 800 GHz leads
to the higher imaginary part of the polarizability of the d-CNT
in comparison to that of the p-CNT [see Fig. 5(b)].

B. Regime of the medium-transparency LCS

In this regime, the LCS partially hinders electric charge
flow. The higher the frequency, the less charge can pass across
the LCS during the period of the field oscillations. Then
the current density on the LCS decreases as the frequency
increases. As a result, the value of Re(αzz) decreases and the
value of Im(αzz) has a peak at fg = 10 GHz [Fig. 5(c)]. The
peak is a result of two physical phenomena in the d-CNT: (i)
a formation of the depolarizing field in a finite length d-CNT,
and (ii) a limitation on the charge propagation through the
LCS. Therefore, the frequency fg depends on the CNT length
as well as on the conductance of the LCS and its position in
the d-CNTs.

Figure 7 shows the current and charge distributions on the
d- and p-CNTs at a frequency of 300 GHz. One can see from
Fig. 7 that the LCS modifies the magnitude and phase of the
current and charge on the d-CNT in comparison to those on
the p-CNT.

The surface charge and field distributions over the d-CNT
are schematically illustrated in Fig. 8, when the incident field
E0 is polarized along the nanotube axis. Due to the edge effects,
a large surface density of electric charge ρ2 accumulates near
the d-CNT edges. This charge induces a depolarizing field Ed

with magnitude |Ed | ≈ |E0| resulting in a very small total field
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FIG. 7. Same as in Fig. 6, but at a frequency of 300 GHz.

|Et | = |E0 + Ed | � |E0|. The charges accumulated on both
sides of the LCS with the density ρ1 induce a high electric
field ELCS within the LCS, i.e., ELCS � |E0|. As shown in
Fig. 5(d), the total axial field outside the LCS is about 1000
times smaller than the field within the LCS. Thus, the near-field
enhancement effect occurs within the LCS, while the screening
effect takes place outside the LCS.

C. Regime of the low-transparency LCS

In this regime, a very small charge passes through the LCS
during the period of the field oscillations, i.e., the LCS divides
the CNT into two parts interacting with one another only via
the electromagnetic field.

Figure 9 shows the charge and current distributions over
the d- and c-CNTs at a frequency of 5 THz. One can see that
both the surface charge and current on the d-CNT coincide
with those on the c-CNT. Consequently, the polarizability of
the d-CNTs is almost the same as that for the c-CNT at f > 2
THz [see Figs. 5(a) and 5(b)].

Figure 10 demonstrates the polarizability spectra of the p-
and d-CNTs with different LCS locations. As shown in Fig. 10,
the difference between the spectra of the p- and d-CNTs is (i)
the smallest in the case of the LSC located in the vicinity
of the CNT edges, and (ii) the highest for the LCS located
in the center of the d-CNT. The gigahertz peak frequency fg

is the smallest for the case of the LSC located in the center
of the d-CNT, and it increases as the LCS shifts toward the
edge of the tube. The closer the LCS is to the tube center,
the more charges pass through it during one period of the

FIG. 8. A schematic depiction of the charge and electric-field
distributions on the d-CNT.

FIG. 9. Same as in Fig. 6, but at a frequency of 5 THz.

field oscillation. As a result, the dissipated power Pd and,
consequently, the imaginary part of the d-CNT polarizability
are maximal in the low-frequency range for the case of the
LCS located in the tube center.

Figure 11 demonstrates the polarizability spectra of the
d-CNTs with different lengths at the same relative position
r/L and length d of the LCS. As shown in Fig. 11(b), the
frequencies of both the terahertz and gigahertz peaks are
lower for the longer nanotube. The longer the d-CNT, the
more time is needed for charges to be redistributed following
the oscillations of the external field. Moreover, the longer the
tubes, the more charge should cross the LCS during the period
of field oscillations. This explains the length dependence of
the gigahertz peak.

V. THE POLARIZABILITY OF THE d-CNT WITH
MANY LCSs

In the present section, we apply the theoretical approach
developed in Sec. II to calculate the polarizability of a metallic
(5,5) CNT with n identical LSCs. Let a tube length be L =
1 μm, and let the LSCs be located equidistant from each other.

FIG. 10. Frequency dependence of the (a) real and (b) imaginary
parts of the p- and d-CNT polarizability at different LSC locations
r ∈ {L/6,L/4,L/2}, Nσ = 800.
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FIG. 11. Frequency dependence of the (a) real and (b) imaginary
parts of the d-CNT polarizability for different CNT lengths: L = 1
and 2 μm. The LCS is located in the center of the d-CNT and Nσ =
800.

Each LCS has a length of 5 nm and a conductance determined
by Nσ = 800.

Figure 12 shows the polarizability spectra for the p-CNT
and d-CNTs with different numbers, n, of the LCSs. As shown
in Fig. 12(b), all the spectra Im[αzz(ω)] have one gigahertz
peak, whose frequency decreases as the value of n increases.
Due to the strong energy dissipation near the LCSs, the
imaginary part of the polarizability is much higher for the d-
CNTs than for the p-CNT at low frequencies (f < 500 GHz).
Thus, one can increase the microwave energy absorption in an
individual d-CNT by adding the LCSs. In the high-frequency
range f ∈ (0.6,10) THz, both the real and imaginary parts of
the polarizability are higher for the p-CNT than for the d-CNT.

A d-CNT with a large number of LCSs can be considered
as the p-CNT with diminished effective axial conductivity.
To demonstrate this, we calculated the polarizability spectrum

FIG. 12. Frequency dependence of the (a) real and (b) imaginary
parts of the polarizability for the d-CNTs with various numbers of
identical LCSs n ∈ {1,5,10,20}, and for the p-CNTs (n = 0) with
different axial CNT conductivities σcn and σcn/82, where σcn is
determined by (7).

of the p-CNT with diminished conductivity σcn/82, and we
found good agreement of this spectrum with that of the d-CNT
with n = 20 (see Fig. 12). It is worth noting that the total
conductance of the d-CNT with 20 LCSs and the conductance
of the p-CNT with diminished conductivity are approximately
the same. Note that the same behavior is observed for the
system of two barriers separated by a region with strong
electron dephasing processes: the resistance of the system
is equal to the sum of the intrinsic resistances of these two
barriers [46].

Our calculations also show a small difference between
the spectra of the d-CNTs at both ordered and random
distributions of the LCSs in the nanotube at low frequencies
(1 < f < 100 GHz) if the number of LCSs is large (n > 10).
Thus, to calculate the polarizability of the d-CNT with many
ordered or randomly located LCSs, one can use the simpler
model of the p-CNT with the conductance equal to the effective
conductance of the d-CNT.

VI. TUNABILITY OF THE d-CNT POLARIZABILITY VIA
DRIVING dc VOLTAGE AND SOME POTENTIAL

APPLICATIONS

In this section, we consider the possibility of tuning the LCS
ac conductance by the applied dc voltage. Toward that end, we
need to apply the two-terminal Landauer-Büttiker formalism
[49] for the case of different electrochemical potentials on
the left and right sides of the LCS, denoted below by indexes
α and β (α,β = 1,2) and considered as electron reservoirs.
The generalization can be done correctly taking into account
the self-consistent screening effect [49]. In this case, the ac
current depends on both the applied external potential Vβ and
the oscillating internal potential U at the center of the LCS
produced by the displacement capacitive currents on both sides
of the LCS. As a result, the total current on the α side of the
LCS is

Iα =
∑

β=1,2

gαβVβ + g̃αU, (34)

where

g̃α = −
∑

β=1,2

gαβ (35)

and

gαβ = − e2

πh̄

∫
Tαβ(E)

∂fβ

∂E
dE. (36)

Here fβ(E) = f (E − μβ) is the electron Fermi function and
μβ is electrochemical potential on the β side of the LCS,
μ1 − μ2 = eVdc, Vdc is the dc voltage across the LCS. The
internal potential is [49]

U =
∑

α,β=1,2 gαβVβ + iω
∑

β=1,2 CβVβ∑
α,β=1,2 gαβ + iω

∑
β=1,2 Cβ

, (37)

where Cβ is the capacitance between the point with potential
U and the β side of the LCS. Using the sum rules [49], we find
the current through the LCS,

Id = g11V1 − g22V2 − g11 − g22

C1 + C2
(C1V1 + C2V2). (38)
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Due to the second term determined by the self-consistent
screening, Eq. (38) is invariant under an equal shift of both
potentials. For symmetric excitation, we have V1,2 = ±Vd/2,
which corresponds to the LCS conductance

Gd = 1

2

[
g11 + g22 − (g11 − g22)

C1 − C2

C1 + C2

]
. (39)

For the symmetric configuration of the LCS geometry C1 =
C2, we find

Gd = e2

πh̄
[T (EF − eVdc/2) + T (EF + eVdc/2)]. (40)

One can see from (40) that the dc voltage Vdc applied to
the mesoscopic system can lead to the variation of its ac
conductance Gd (ω). This shows the possibility of electrically
tuning the polarizability αzz(ω) given by (30). This result
paves the way for efficient implementation of controllable
nanoantennas and lumped elements of nanocircuits in the
gigahertz and terahertz ranges.

Another important application is related to the well-known
ability of the electrons to produce a shot noise by pushing
them through a quantum point contact with a driving dc
field [64–67]. As noted in Ref. [67], such a noise may be
considered as a source of quantum low-frequency radiation,
which is difficult to generate using any other technique. In
particular, the quantum point contact fabricated through gates,
constricting the electron flow in a two-dimensional electron
gas, is able to emit plasmons that may be transformed into
quanta of an EM field in the LC circuits or transmission lines.
The wavelength of the plasmons involved in the experiment
[66] is even larger than the sample’s size. In this case, the
charge fluctuations generated at the quantum point contact are
directly coupled into the transmission lines, whereas the direct
photonic emission is a problem. For an effective photonic
emission, the plasmon wave should be transformed into free
three-dimensional photons. To achieve this, one needs to match
the impedance between the mesoscopic setup (with an electric
circuit environment) and free space. Nanoantennas are an
efficient tool to facilitate such photon emission [7–9].

Thus, we propose the system considered above as a
promising candidate for quantum antenna feed by shot noise
for emitting the quanta of gigahertz and terahertz radiation. The
statistics of this radiation can be controlled from bunching to
antibunching by varying the dc voltage [67]. The improvement
of the radiation parameters can be done by means of classical
antenna engineering [15]. For example, it might be an antenna
array with one dipole serving as an exciter, and all others acting
as parasitic directors (Yagi-Uda antennas [15]). Such antennas
may be implemented based on various types of nanostructures,
for example a circular loop with a mesoscopic setup, a helix,
etc.

VII. CONCLUSION AND OUTLOOK

To summarize, we have developed the integral equation
technique for the problem of electromagnetic scattering by a
finite-length nanowire with a number of embedded mesoscopic
objects. The theory is based on combining the integral equa-
tions of the classical antenna theory (Hallén-type equations)
with the quantum transport formalism [47,49]. The generalized

equations comprise the integral operators of wire antennas
and algebraic terms responsible for the mesoscopic systems.
Such equations are solvable numerically for a wide range of
frequencies, as well as constitutive and size parameters of the
systems.

The developed technique was adapted to the problem of
electromagnetic scattering by stand-alone finite-length CNT
with a short LCS. The structure under consideration is
promising for the realization of nanoantennas in the terahertz
frequency range. Electrical transport through the LCS has been
described by the Landauer approach in terms of the electron
transmission coefficient T , while effective resistive sheet
impedance boundary conditions have been used to describe
the current induced on the CNT surface; the Drude model has
been used to calculate CNT axial conductivity outside the LCS.
Based on DFT, ab initio calculations have been carried out to
estimate the multichannel electron transmission coefficient of
a few particular LCSs constructed by extraction of carbon
atoms in the CNT.

The modified Hallén integral equation for the d-CNT
was formulated and solved numerically. The electromagnetic
parameters of the d-CNT, such as (i) the surface current
density, (ii) the surface charge density, (iii) the tensor of
the polarizability, and (iv) the dissipative power, have been
calculated in a wide frequency range (1–10 000 GHz). It
has been shown that the electromagnetic characteristics of
the d-CNTs are different from those for the p-CNTs. The
calculated polarizability spectra of the d-CNT were shown to
have three peaks: two terahertz peaks, which are due to the
localized plasmon resonances in the CNT sections separated
by the LCS, and one gigahertz peak, due to a combination of the
finite-length effect in the d-CNT and a limitation on the charge
crossing the LCS. The frequency of the gigahertz peak depends
on the conductance of the LCS and its position in the d-CNT; it
separates the regimes of low and high transparency for charge
transfer through the LCS. The polarizability spectrum for the
d-CNT comprising many ordered identical LCSs was shown to
have one gigahertz peak. The frequency of the peak decreases
as the number of LCSs increases. Energy dissipation in the
d-CNT is higher than that in the p-CNT in the gigahertz
range, whereas the opposite is true in the terahertz range. The
gigahertz response of the d-CNT is very similar to the response
of the p-CNT with the same total conductance.

The predicted polarizability peaks are promising from a
practical point of view as a framework for enhancement of
the quantum antenna efficiency in the terahertz and gigahertz
ranges. The current fluctuations in the LCS and, consequently,
the probability of the bunched photon emission can be
enhanced via an increase of the CNT polarizability.
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