мому кристаллизацией. Такой материал обладает повышенными свойствами по сравнению с материалом, полученным в условиях твердофазного спекания. Взаимодействие концен-трированного светового излучения с материалами основано на поглощениях энергии излучения на дефектах структуры на границах зерен. Количество границ зависит от дисперсности материала. Чем мельче зерно, тем больше количество границ между ними.

Так, материал с мелкими зернами будет интенсивнее поглощать энергию светового излучения и нагреваться. Малый размер зерен обусловливает большую развитость и протяженность межзеренных границ [4–6].

ЗАКЛЮЧЕНИЕ

Вышеописанные особенности солнечных технологий обуславливают экономический эффект от применения плавленого на Большой Солнечной Печи материала в производстве ситалловых изделий. Расчеты показывают, что удельный расход электроэнергии традиционного стекловарения составляет порядка 1,6 кВт*час/кг. Для получения 100 кг стекла тратится 160 кВт *час электрической энергии. А удельный расход электроэнергии при работе солнечной печи составляет 12 кВт*час. За один солнечный день на можно плавить базальтовые отходы в количестве до 500 кг, при расходе электрической энергии 50 кВт*час. Разница в расходе электрической энергии традиционной и солнечной печей составляет в 15 раза.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. R.Y.Akbarov, M.S.Paizullakhanov. Characteristic features of the energy modes of a large solar furnace with a capacity of 1000 kW// Applied Solar Energy 54 (2), 99-109.
- 2. Pasichny V.V. [et al.] // Study of the process of processing the pseudo-alloy W-Cu (5%) in a solar furnace. // Electrical contacts and electrodes. 2006. C. 272-277.
- 3. MS Paizullakhanov [et al.] // Synthesis features of barium titanate in the field of concentrated light energy //Applied Solar Energy 49 (4), 248-250.
- 4. IG Atabaev [et al.] // High-strength glass-ceramic materials synthesized in a large solar furnace// Applied Solar Energy 51 (3), 202-205.
- 5. TT Riskiev [et al.] // The effects of the solar radiant flux density on the properties of pyroceramic materials//Applied Solar Energy 50 (4), 260-264.
- 6. Nanostructure Materials for Solar Energy Conversion.// Edited by Tetsuo Soga. Amsterdam.: Elsevier B.V. 2006. -600p.

МОДИФИКАЦИЯ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ МЕДИ ПРИ ЕЕ НЕРАЗРУШАЮЩЕЙ ЛАЗЕРНОЙ ОБРАБОТКЕ

С. В. Васильев, А. Ю. Иванов, А. Л. Ситкевич

Гродненский государственный университет имени Янки Купалы, ул. Ожешко, 22, 230023 Гродно, Беларусь, e-mail: ion ne@mail.ru

Методом рентгеновской дифрактометрии обнаружено изменение кристаллической структуры меди в зоне воздействия на ее поверхность лазерного излучения с плотностью потока $10^4 - 10^5$ Вт/см². Показано, что при действии лазерного излучения на поверхности металлических образцов их кристаллическая структура меняется в облученной зоне с кубической гранецентрированной на искаженную (имеющую форму параллелепипеда, отличную от куба). При этом формировался приповерхностный слой с повышенной микротвердостью.

Ключевые слова: лазерное излучение; рентгеновская дифрактометрия; изменение кристаллической структуры; корреляционная функция.

CRISTALLINE SURFACE MODIFICATION IN COPPER DURING ITS LASER TREATING

S. V. Vasiliev, A. Yu. Ivanov, A. L. Sitkevich

Grodno State University named after Yanka Kupala, Ozheshko str. 22 230023 Grodno, Belarus Corresponding author: A. Yu. Ivanov (ion ne@mail.ru)

A change in the crystal structure of copper in the zone of exposure to laser radiation with a flux density of 10^4 – 10^5 W/cm² was detected by X-ray diffractometry. It is shown under the action of laser radiation on the surface of metal samples, their crystal structure changes in the irradiated zone from cubic face-centered to distorted (having a parallelepiped shape different from the cube). Increase of hardness as well as structure near-surface layer have been observed.

Key words: laser radiation; X-ray diffractometry; changes in the crystal structure; correlation function.

введение

В наши дни технологям лазерной обработки уделяется повышенное внимание, поскольку они являются эффективными, а главное, результативными методами. Сфера ее применения очень широка: поверхностное упрочнение металлов, микрообработка материалов, модификация свойств и поверхности, лазерная резка и сварка и т.д. При этом наблюдается четко выраженное изменение ряда физических свойств материалов. Объяснения таких изменений следует искать в особенностях протекания процесса лазерной обработки вещества. В связи с этим возникает необходимость в изучении процессов, протекающих при лазерной обработке твердого тела.

Целью данной работы является изучение изменения структуры ряда металлов, подвергшихся воздействию лазерного излучения (ЛИ) с плотностью потока $10^4 - 10^5$ BT/см², а также объяснение обнаруженных структурных изменений.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Схема использовавшейся в работе экспериментальной установки приведена на рисунке 1. Цифрой «*I*» обозначен источник лазерного излучения (ЛИ) – рубиновый лазер ГОР–100 М (с длиной волны $\lambda = 0,694$ мкм) работающий в режиме свободной генерации (длительность импульса $\tau \sim 1,2$ мс). Цифрой «*2*» обозначена фокусирующая система, пройдя через которую, ЛИ направлялось на образец 3. В качестве фокусирующих использовались как однолинзовые, так и двухлинзовые системы, что позволяло строить изображение диафрагмы *4* на поверхности образца *3* в виде пятна с резкими краями (диаметр варьировался в ходе экспериментов от 1 до 2 мм), что, в свою очередь, обеспечивало изменение плотности потока излучения q от 10⁴ до 10⁶ Вт/см². Часть (~ 4%) ЛИ направлялась передней гранью стеклянного клина *5* в

измеритель энергии ИМО-2Н 6, входной зрачок которого был расположен в фокальной плоскости линзы 7. Энергия лазерных импульсов E_0 варьировалась в пределах от 5 до 60 Дж. Отраженное задней гранью клина излучение направлялось на коаксиальный фотоэлемент ФЭК-14 8, сигнал с которого подавался на вход осциллографа C8-13, и использовался для регистрации временной формы лазерного импульса.

Для определения структурных изменений образцов из металла

Рисунок 1. - Схема экспериментальной установки

(сплошные поликристаллические), в равновесном состоянии имеющих кубическую гранецентрированную кристаллическую решетку, до и после воздействия лазерного излучения, использовался рентгеновский дифрактометр ДРОН-2.0. В дифрактометре использовалось излучение линии К_αот трубки с медным антикатодом, фильтрованное никелевым стандартным фильтром на длине волны 154,050 пм.

При взаимодействии лазерного излучения с веществом может произойти целый ряд изменений в обрабатываемом образце: кристаллохимические превращения, способные привести к изменению химического свойства вещества; фазовые переходы; появление дефектов новых типов и увеличение концентрации уже существующих; изменение свойств межкристаллических областей.

Рассмотрим действие лазерного излучения с указанными выше параметрами на медный образец (Cu). Поскольку медь относится к кубической сингонии и ее ячейка не имеет других фаз, кроме той, что описывается группой Fm3m, можно сказать, что первые два механизма изменений в данном случае не способны привести к изменениям, которые можно было бы зарегистрировать методами рентгеновской дифрактометрии. Кроме того, в нашем случае энергии лазерного излучения недостаточно для ионизации остова, и, следовательно, ни межъядерные расстояния, ни энергия Ферми не изменяются. Значит, необходимо выяснить, влияет ли облучение на дефектность структуры кристалла меди.

В таблице приведены теоретические и экспериментальные значения межатомных расстояний (а), координационное число (К) и полуширины максимумов (Δ) на экспериментальных кривых корреляционных функций для медного образца.

Приведенные в таблице экспериментальные значения показывают, что лазерная обработка приводит к изменению интенсивности рефлексов, их положения и профилей. Причем эти изменения значительно превышают погрешности эксперимента. Кроме того, было зафиксировано, что при локальном кратковременном нагреве и быстром охлаждении в образце возникают механические напряжения, которые приводят к изменению кристаллической структуры металла в облученной области с кубической гранецентрированной на тетрагональную, что и объясняет значительное (до 30%) увеличение микротвердости поверхности металла.

Таблица

№ п/п	Теоретические значения		Необлученный образец			Облученный образец		
	a, Å	K	a, Å	Δ, Å	K	a, Å	Δ, Å	K
1	2,550	12	2,58	0,7	13	2,48 2,60	1,2	6 6
2	4,416	24	4,50	0,5	26	4,50	1,0	24
3	5,100	12	—	-	-	-	-	-
4	5,702	24	5,75	0,6	36	5,82	0,3	36
5	6,246	8	6,40	0,3	5	-	-	-
6	6,746	48	6,80	0,3	45	6,50	0,8	52

Параметры корреляционных функций медного образца до и после лазерного облучения с q ~ 5·10⁵ Bt/см²

Как видно из рисунка 2, для облученных образцов меди при $q \sim 5 \cdot 10^5$ Bt/cm² наблюдается не только размытие, но и расщепление первого максимума распределения P(u) – самосвертки функции

электронной плотности

$$P(\vec{u}) = \frac{1}{V_{11}} \int \rho(\vec{r}) \rho(\vec{r} - \vec{u}) d\vec{r} .$$

Это свидетельствует о том, что после лазерной обработки кристаллическая структура действительно трансформируется, как говорилось выше. Стоит также отметить, что при плотностях потока ЛИ, достаточных для плавления металла в зоне обработки $(q > 10^6 \text{ Bt/cm}^2)$ изменение дифрактограмм не наблюдалось, а микротвердость немного уменьшалась.

Рассмотрение высоты и формы первого максимума корреляционных функций до и после облуче-

Рисунок 2. – Корреляционные функции Р(и) для медных образцов (1) – до облучения, (2) – после лазерного облучения

ния, приводит к выводу, что трансформации подвержено 83% ячеек. Как мы увидим далее, эти данные хорошо согласуются с результатами расчетов.

РАСЧЕТ ДОЛИ ЯЧЕЕК, ИЗМЕНИВШИХ СВОЮ ГЕОМЕТРИЮ

Для начала рассмотрим изменение кристаллической структуры медного образца при его обработке излучением лазера ГОР-100 M с плотностью потока $q \sim 5 \cdot 10^5$ BT/cm². Прежде всего необходимо выяснить, какое количество элементарных ячеек находилось в зоне облучения в ходе эксперимента. Для этого надо знать объем образца и объем одной ячейки. Поскольку кристалл меди относится к пространственной группе Fm3m и обладает кубической гранецентрированной (ГЦК) элементарной ячейкой, т.е. описывается одним параметром $a = b = c (\alpha = \beta = \gamma = 90^{\circ})$, то объем ячейки до обработки можно считать равным:

$$V_{\text{cell}} = a^3 = (3,597 \cdot 10^{-10} \text{ m})^3 = 4,65 \cdot 10^{-29} \text{ m}^3.$$

Для расчета объема образца необходимо принять во внимание следующие факты. Во-первых, используемое в ходе эксперимента лазерное излучение не может проникнуть вглубь медного образца на глубину, превышающую длину волны. Вовторых, по ширине лазерное излучение не может выйти за границы пятна фокусировки. Поэтому в качестве подвергаемого обработке объекта будем рассматривать цилиндр с высотой, равной длине волны рубинового лазера (h = λ =0,694 мкм), и диаметром, равным диаметру пятна фокусировки (d = 2 мм). В таком случае объем образца можно найти следующим образом:

$$V_{\rm Cu} = \frac{\pi d^2}{4} \lambda = 2,17 \cdot 10^{-12} \,\mathrm{m}^3$$
.

Таким образом, можем определить число ячеек, приходящихся на исследуемый объем:

$$N_{\text{cell}} = \frac{V_{\text{Cu}}}{V_{\text{cell}}} = 4,65 \cdot 10^{16} \,$$
ячеек.

На втором этапе необходимо определить, сколько ячеек смогло бы трансформироваться в параллелепипеды, если бы вся энергия воздействующего пучка тратилась на разрушение ячейки.

Для начала определим энергию кристаллической решетки в основном состоянии. Квантовый расчет энергии связи частиц металла представляет одну из наиболее трудных задач теории твердого тела. В настоящее время неизвестно строгое решение этой задачи ни в классической, ни в квантовой механике даже в случае трех тел. Однако существуют приближенные методы расчета (метод Габера, метод Вингера и Зейтца и др.) [1], при чем расчеты энергии хорошо согласуются между собой. Учитывая, что в кристаллах меди реализуется металлический тип химической связи, можно сказать, что кристалл меди состоит из решетки положительных ионов, которые погружены в электронную жидкость (газ). В таком случае энергию сцепления можно рассчитать с помощью методов, используемых при расчете сцепления ионных кристаллов. Как известно, энергия кристаллической решетки характеризует количество энергии, которое необходимо затратить для разрушения кристаллической решетки на составные части и удаления их друг от друга на бесконечно большое расстояние, то есть на преодаление сил притяжения. Таким образом получим:

$$E_{\text{cell}} = \frac{3}{5}E_F = \frac{3}{5}\frac{\hbar^2}{2m_e} \left(\frac{3\pi^2 \rho N_A}{\mu}\right)^{\frac{2}{3}} = 4,143B$$

где E_F – энергия Ферми, \hbar – постоянная Планка, m_e – масса электрона, ρ – плотность меди, N_A – постоянная Авагадро, μ – молярная масса меди.

Определим число ячеек, способных изменить кристаллическую структуру в облученной области с кубической гранецентрированной на тетрагональную:

$$N_{\text{trans}} = \frac{E_{\text{abs}}}{E_{\text{cell}}} = \frac{3,12 \cdot 10^{19}}{4,14} = 7,53 \cdot 10^{18} \,\text{ячеек} ,$$

где *E*_{abs} – поглощенная энергия (5 Дж).

Однако следует учесть, что не вся энергия лазерного пучка поглощается. Часть отражается, преломляется и рассеивается, и лишь оставшаяся энергия (~0,5%) проникает внутрь образца, поглощается и переходит в тепло. Таким образом, реальное число ячеек, способных изменить кристаллическую структуру будет порядка $3,77\cdot10^{16}$ ячеек, что составляет 81% от общего числа ячеек. Данный результат хорошо согласуется с полученным при анализе коррелляционных функций (рисунок 2).

ЗАКЛЮЧЕНИЕ

Проведенные иссследования показали, что при действии лазерного излучения на поверхность медного образца кристаллическая структура меди меняется в облученной зоне с равновесной на искаженную (имеющую форму параллелепипеда, отличную от куба). Получено хорошее согласие рассчитанных и полученных в ходе экспериментальных исследований результатов.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

 Жданов, Г. С. Лекции по физике твердого тела: Принципы строения, реальная структура, фазовые превращения / Г. С. Жданов, А. Г. Хунджуа.– М.: Изд-во МГУ, 1988. – 231 с.

АКУСТИЧЕСКАЯ ЭМИССИЯ ДВУХ ОЧАГОВ ЛАЗЕРНОГО РАЗРУШЕНИЯ В ПРОЗРАЧНОМ ДИЭЛЕКТРИКЕ

С. В. Васильев, А. Ю. Иванов, Е. О. Семенчук, А. Л. Ситкевич

Гродненский государственный университет имени Янки Купалы, ул. Ожешко, 22, 230023 Гродно, Беларусь, e-mail: ion ne@mail.ru

Описана модель нагруженной области, излучающей волны в упругую среду, которая удовлетворительно описывает генерацию акустических волн при лазерном пробое, произошедшем в уединенной зоне (каверне) в объеме прозрачного диэлектрика. Проведен расчет параметров акустической эмиссии каверны при условии существовании второй эмитирующей упругие волны каверны. Показано, что каверны генерируют упругие колебания подобно 2-м связанным осцилляторам. Поэтому в ходе акустической эмиссии двух каверн возможно наблюдение всех эффектов, характерных для связанных осцилляторов.

Ключевые слова: импульсное лазерное излучение; лазерный пробой; зона лазерного разрушения; каверна; продольные упругие волны; биения.

ACOUSTIC EMISSION OF TWO LASER DESTRUCTION CENTERS IN TRANSPARENT DIELECTRIC

S. V. Vasiliev, A. Yu. Ivanov, E. O. Semenchuk, A. L. Sitkevich

Grodno State University named after Yanka Kupala, Ozheshko str. 22 230023 Grodno, Belarus Corresponding author: A. Yu. Ivanov (ion ne@mail.ru)

A model of a loaded region emitting waves into an elastic medium, which satisfactorily describes the generation of acoustic waves during laser breakdown that occurred in a se-