БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 01 Математика (по направлениям)

Направление специальности 1-31 03 01-02 Математика (научно-педагогическая деятельность) Учебная программа составлена на основе ОСВО 1-31 03 01 -2013 и учебных планов № G31-138/уч., № G31₃-183/уч. от 30.05. 2013

составители:

Пономарева Светлана Владимировна, доцент кафедры функционального анализа и аналитической экономики механико-математического факультета Белорусского Государственного университета, кандидат физико-математических наук, доцент

Лебедев Андрей Владимирович, заведующий кафедрой функционального анализа и аналитической экономики механико-математического факультета Белорусского Государственного университета, доктор физико-математических наук, профессор.

РЕЦЕНЗЕНТЫ:

Пыжкова Ольга Николаевна, заведующий кафедрой высшей математики Учреждения образования «Белорусский государственный технологический университет», кандидат физико-математических наук, доцент;

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой функционального анализа и аналитической экономики (протокол № 12 от 04.06.2020);

Научно-методическим Советом БГУ

(протокол № 5 от 17.06.2020)

Заведующий кафедрой

А.В. Лебедев

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — «Исследование операций» — повышение уровня профессиональной компетентности в решении проблем оптимизации в различных сферах трудовой деятельности, изучение повышение уровня профессиональной компетентности в исследовании проблем оптимизации сложной организационной деятельности и разрешении конфликтных ситуаций в социальных и производственных структурах, расширение математического кругозора, знакомство с новыми методами доказательств, усвоение новых алгоритмов решения задач оптимизации.

Задачи учебной дисциплины:

- 1. анализ оптимизационных алгоритмов задач исследование операций;
- 2. практическое использование алгоритмов при моделировании сложных технологических процессов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к циклу специальных дисциплин (компонент учреждения образования)

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Изучение дисциплины базируется на знаниях дисциплин «Математический анализ», «Дискретная математика».

Требования к компетенциям

Освоение учебной дисциплины «Исследование операций» должно обеспечить формирование следующих академических, социально-личностных и профессиональных компетенций:

академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-4. Уметь работать самостоятельно.
 - АК-5. Быть способным вырабатывать новые идеи (обладать креативностью).
 - АК-6. Владеть междисциплинарным подходом при решении проблем.
 - АК-8. Обладать навыками устной и письменной коммуникаций..
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-2. Быть способным к социальному взаимодействию.

- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-4. Владеть навыками здоровьесбережения.
- СЛК-5. Быть способным к критике и самокритике.

профессиональные компетенции:

- ПК-28. Проводить учебные занятия по математике и информатике в 5-12 классах учреждений общего среднего образования на базовом и повышенном уровнях.
- ПК-29. Вести преподавательскую работу в высших и средних специальных учебных заведениях в соответствии с полученной квалификацией.
- ПК-30. Осуществлять научно-методическое обеспечение образования, использовать инновационные педагогические технологии в образовательном процессе.
- ПК-31. обучающихся Формировать устойчивый интерес К требовательность преподаваемым дисциплинам, ответственность за результаты обучения, воспитывать ИΧ духе патриотичности, гражданственности, инициативности.

В результате освоения учебной дисциплины студент должен:

знать:

- основные понятия и теоремы теории графов и теории игр;
- основные понятия и теоремы динамического программирования и теории расписаний.

уметь:

- применять теорию графов и теорию игр для решения практических задач;
 - составлять сетевые модели;
 - пользоваться методами динамического программирования.

владеть:

- методами решения экстремальных задач теории графов;
- методами исследования сетевых моделей.

Структура учебной дисциплины

Дисциплина изучается в 7 семестре на дневном отделении, в 5-6 семестре на заочном отделении. Всего на изучение учебной дисциплины «Исследование операций» отведено:

- для очной формы получения высшего образования— 100 часов, в том числе аудиторных занятий 54 часа, из них лекции 34 часов, практические занятия 16 часов, управляемая самостоятельная работа 4 часа.
- для заочной формы получения высшего образования 100 часов, 14 аудиторных часов, из них лекции 8 часов, практические занятия 6 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма текущей аттестации — зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Введение

Предмет исследования операций, содержание курса исследования операций.

Раздел 1. Экстремальные задачи на графах

- Тема 1.1. Примеры экстремальных задач на графах:
- Тема 1.2. Неориентированные графы..
- Тема 1.3. Эйлеровы циклы.
- Тема 1.4. Леса и деревья.
- Тема 1.5. Ориентированные графы. Алгоритмы Дийкстры и Флойда.
- Тема 1.6. Сети, потоки, разрезы
- **Тема 1.7.** Сети с ограниченными пропускными способностями дуг и допустимые потоки.
- **Тема 1.8.** Задача о нахождении допустимого потока максимальной мощности. Алгоритм Форда—Фалкерсона.
- **Тема 1.9.** Задача о построении потока минимальной стоимости. Критерий оптимальности.
 - Тема 1.10. Алгоритмы Басакера-Гоуэна и Клейна.
 - **Тема 1.11.** Задача коммивояжера. Алгоритм Литтла.
 - Тема 1.12. Календарное планирование.

Раздел II. Теория игр

- **Tema 2.1.** Элементарные понятия теории игр. Матричные и биматричные игры.
 - Тема 2.2. Отношения предпочтения и оптимумы.
 - Тема 2.3. Несущественные игры.
 - **Тема 2.4.** Седловые точки и цена игры.
 - Тема 2.5. Правила принятия решений. Теоремы о неподвижной точке.
- **Тема 2.6.** Канонические правила принятия решений и равновесия по Нэшу.
 - Тема 2.7. Смешанные расширения конечных игр.
- **Тема 2.8.** Методы поиска седловых точек и равновесий по Нэшу в смешанных расширениях.
 - Тема 2.9. Смешанные расширения бесконечных игр.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением

		Количество аудиторных часов						ĬĬ
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Экстремальные задачи на графах	22	18				2	
1.1	Примеры экстремальных задач на графах	1						
1.1.1.	История возникновения экстремальных задач теории	1						
	графов. Задача о Кенигсбергских мостах, задача о							
	четырех красках							
1.2	Неориентированные графы.	2	1					
1.2.1.	Псевдо- и мультиграфы, смежные и инцидентные вершины и ребра, степень вершины. Лемма о четности числа вершин с нечетной степенью. Маршруты, цепи, простые цепи, циклы. Выделение из маршрута простой цепи с теми же концами. Лемма о существование цикла. Связные графы, подграфы. Разбиение графа на связные компоненты.	2	1					Проверка индивидуальных заданий
1.3	Эйлеровы циклы	1	0,5					
1.3.1.	Критерий существования эйлерова цикла. Алгоритм	1	0,5					Проверка индивидуальных
	построения эйлерова цикла.		0.7					заданий
1.4	Леса и деревья.	2	0,5					
1.4.1.	Критерии графа быть деревом. Остовное дерево. Задача о	2	0,5					Проверка индивидуальных

				v
	построении остовного дерева минимального веса.			заданий
	Алгоритм Прима, его корректность. Алгоритм Краскала и			
	его корректность.			
.5.	Ориентированные графы. Алгоритмы Дийкстры и	2	0,5	
	Флойда.			
1.5.1.	Маршруты, цепи, циклы, пути, контуры. Выделение из	2	0,5	Проверка индивидуальных
	ориентированного маршрута пути с теми же концами.			заданий
	Задача о нахождении кратчайшего пути между двумя			
	заданными вершинами. Алгоритм Дийкстры, его			
	корректность. Задача о поиске всех кратчайших путей в			
	графе. Алгоритм Флойда, его корректность. Нахождение			
	циклов отрицательной длины. Задача об узких местах.			
1.6.	Сети, потоки, разрезы	2	0,5	
1.6.1.	Сети, источники, стоки, полюса. Дивергенция, поток,	2	0,5	Проверка индивидуальных
	циркуляция. Мощность потока. Разрез, дивергенция на			заданий
	разрезе. Лемма о совпадении мощности потока с его			
	дивергенцией на разрезе. Элементарные потоки. Теоремы			
	о разложении положительных циркуляций и потоков на			
	элементарные циркуляции и потоки.			
1.7.	Сети с ограниченными пропускными способностями	2	0,5	
	дуг и допустимые потоки.			
1.7.1.	Пропускная способность разреза. Лемма о мощности	2	0,5	Проверка индивидуальных
	потока и пропускной способности разреза.			заданий
	Увеличивающие элементарные цепи и потоки. Теорема			
	Форда-Фалкерсона (критерий максимальности потока).			
1.8.	Задача о нахождении допустимого потока	2	0,5	
	максимальной мощности. Алгоритм Форда-			
	Фалкерсона.			
1.8.1.	Конечность данного алгоритма для сетей с	2	0,5	Проверка индивидуальных
	рациональными пропускными способностями дуг.			заданий
1.9.	Задача о построении потока минимальной стоимости.	2	1	
	Критерий оптимальности.			

			1			Τ
1.9.1	Графы модифицированных стоимостей. Взаимосвязи	2	1			Проверка индивидуальных
	между допустимыми потоками в исходной сети и в графе					заданий
	модифицированных стоимостей. Критерий					
	оптимальности допустимого потока.					
1.10	Алгоритмы Басакера-Гоуэна и Клейна.	2	1			
1.10.1	Алгоритм Басакера-Гоуэна для построения потока	2	1			Проверка индивидуальных
	минимальной стоимости среди потоков заданной					заданий
	мощности. Теорема о его корректности.					
1.11	Задача коммивояжера. Алгоритм Литтла.	2	1			
1.11.1.	Гамильтоновы циклы. Метод ветвей и границ. Алгоритм	2	1			Проверка индивидуальных
	Литтла: операции приведения и стягивания матрицы					заданий
	расстояний, константы приведения и штрафы, оценки					
	длин гамильтоновых циклов, исключение частичных					
	циклов.					
1.12	Календарное планирование	2	1		2	
1.12.1.	Постановка задачи, основные этапы решения. Построение	2	1		2	Отчет по практическим
	сетевой модели, ранжирование, нахождение критических					работам с последующей
	путей. Критерий пути быть критическим. Свободный					защитой. Контрольная
	резерв времени, полный резерв времени. Построение					работа №1
	календарного графика работ и распределения трудовых					
	ресурсов. Оптимизация календарного графика.					
II	Теория игр	12	8		2	
2.1	Элементарные понятия теории игр. Матричные и	1	0,5			
	биматричные игры.					
2.1.1.	Стратегии, исходы, функции выигрыша, игры в	1	0,5			
	нормальной форме, игры двух лиц, игры с нулевой					
	суммой.					
2.2	Отношения предпочтения и оптимумы.	1	0,5			
2.2.1.	Доминирующие и недоминируемые стратегии, их	1	0,5			Проверка индивидуальных
	существование. Условия эквивалентности					заданий
	недоминируемых стратегий. Гарантированный выигрыш,					
	осторожные стратегии. Существование недоминируемых					
		·				· · · · · · · · · · · · · · · · · · ·

	осторожных стратегий. Оптимальность по Парето и					
	существование оптимумов по Парето.					
2.3	Несущественные игры	1	1			
2.3.1.	Оптимумы по Парето и осторожные стратегии в них. Игра двух лиц с нулевой суммой. Нижняя и верхняя цена игры, связь между ними. Цена игры. Взаимосвязь между играми, имеющими цену, и несущественными играми	1	1			Проверка индивидуальных заданий
2.4	Седловые точки и цена игры.	2	1			
2.4.1.	Взаимозаменяемость седловых точек. Теорема Фон Неймана о минимаксе	2	1			Проверка индивидуальных заданий
2.5	Правила принятия решений. Теоремы о неподвижной точке.	1	1			
2.5.1.	Согласованные стратегии. Теоремы Боля-Брауэра и Какутани о неподвижной точке.	1	1			
2.6	Канонические правила принятия решений и	1	1			
	равновесия по Нэшу.					
2.6.1.	Теорема Нэша. Взаимоотношения между равновесиями по Нэшу, равновесиями в недоминируемых стратегиях, равновесиями в осторожных стратегиях, оптимумами по Парето. Индивидуально рациональные исходы.	1	1			Проверка индивидуальных заданий
2.7	Смешанные расширения конечных игр.	1	1			
2.7.1.	Существование седловой точки и цены в смешанном расширении матричной игры. Существование равновесий по Нэшу в смешанном расширении биматричной игры.	1	1			Проверка индивидуальных заданий
2.8	Методы поиска седловых точек и равновесий по Нэшу	2	1			
	в смешанных расширениях					
2.8.1.	Методы поиска седловых точек в смешанных расширениях матричных игр и равновесий по Нэшу в смешанных расширениях биматричных игр.	2	1			
2.9	Смешанные расширения бесконечных игр	2	1		2	
2.9.1.	Теорема о существовании равновесий по Нэшу в смешанном расширении бесконечных игр	2	1		2	Отчет по практическим работам с последующей

Всего	24	16		1	работа № 2
					защитой. Контрольная

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Заочная форма получения образования с применением

н		Коли	чество ау	диторн	ых час	ОВ	ЛЙ
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний
1	2	3	4	5	6	7	9
1	Экстремальные задачи на графах	4	2				
II	Теория игр	4	4				
	Всего	8	6				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Бахтин В.И., Коваленок А.П., Лебедев А.В., Лысенко Ю.В. Исследование операций. Минск, БГУ, 2003
- 2. Майника Э. Алгоритмы оптимизации на сетях и графах. 1977.
- 3. Басакер Р., Саати Т. Конечные графы и сети. 1974.
- 4. Мицель А.А. Исследование операций и методы оптимизации. Часть 1. Лекционный курс. ТОМСК: Изд. ТГУ, 2016. 167 с.

Перечень дополнительной литературы

- 1. Ху Т. Целочисленное программирование и потоки в сетях. 1974.
- 2. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. 1966.
- 3. Харари Ф. Теория графов. 1973.
- 4. Ope O. Теория графов. 1980.
- 5. Мулен Р. Теория игр и экономические приложения. 1979.
- 6. Фон Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение. 1970.
- 7. Льюс Р.Д., Райфа Х. Игры и решения. 1961.
- 8. Оуэн Г. Теория игр. 1971.
- 9. Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр. М., Высшая школа, 1998.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Формой текущей аттестации по дисциплине «Исследование операций» учебным планом предусмотрен зачет.

Контроль работы студента проходит в форме собеседования, контрольной работы в аудитории или выполнения самостоятельных работ и практических упражнений в аудитории, а также самостоятельной работы вне аудитории с предоставлением отчета с его устной защитой. Задания к контрольным работам составляются согласно содержанию учебного материала.

Зачёт по дисциплине проходит в устной или письменной форме.

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Формирование оценки за текущую успеваемость:

- контрольные работы -50 %;
- письменные отчеты по лабораторным работам— 50 %;

Примерный перечень заданий для управляемой самостоятельной работы студентов работы студентов

Тема 1.12. Календарное планирование. (2ч.)

Построить сетевую модель, ранжирование, найти критические пути. Построить календарный график работ и распределения трудовых ресурсов.

Форма контроля – отчет с последующей защитой.

Тема 2.9. Смешанные расширения бесконечных игр. (2ч.)

По теореме о существовании равновесий по Нэшу выяснить существование равновесия в задаче.

Форма контроля – отчет с последующей защитой.

Примерный перечень заданий для контрольных работ

Контрольная работа №1

- 1. Найти кратчайшие пути от вершины S до всех остальных вершин.
- 2. Построить максимальный поток и указать минимальный разрез в сети.
- 3. Построить поток мощности т минимальной стоимости с помощью алгоритма Клейна. Доказать, что стоимость минимальна.

4. Докажите, что положительный поток положительной мощности можно разложить в сумму элементарных положительных потоков вдоль контуров и вдоль путей, идущих от источника к стоку(считая, что в сети один источник и один сток)

Контрольная работа №2

ВАРИАНТ № 1

 Найти все решения задачи коммивоя жера, определяемой матрицей стоимостей

$$\begin{pmatrix} \infty & 7 & 7 & 5 & 7 \\ 4 & \infty & 5 & 4 & 10 \\ 5 & 4 & \infty & 4 & 5 \\ 7 & 9 & 5 & \infty & 9 \\ 2 & 5 & 4 & 3 & \infty \end{pmatrix}$$

Построить сетевую модель, найти критический путь и построить график распределения трудовых ресурсов.

Nº	Каким работам предшествует	Сроки выпол- нения	Потребность в рабочей силе
1	2	9	6
2	_	5	9
	6, 10, 11	7	4
4	3, 5	5	7
5	6, 11	6	5
6	2	7	5
7	6, 10, 11	8	4
8	6, 10, 11	5	3
9	1, 8	3	8
10	2	9	3
11	_	8	8

- 3. В условиях предыдущей задачи
 - а) оптимизировать распределение трудовых ресурсов;
 - б) составить оптимальный график работ, при котором потребность в рабочей силе не превосходит 17.
- 4. Доказать, что если мощность потока f в сети положительна, то его можно разложить в сумму элементарных положительных потоков вдоль контуров и путей, ведущих из s в t.

Примерная тематика практических занятий

Занятие № 1. Критерии графа быть деревом. Остовное дерево. Задача о построении остовного дерева минимального веса. Алгоритм Прима, его корректность. Алгоритм Краскала и его корректность.

Занятие № 2. Алгоритм Дийкстры, его корректность. Задача о поиске всех кратчайших путей в графе.

Занятие № 3. Алгоритм Флойда, его корректность. Нахождение циклов отрицательной длины. Задача об узких местах.

Занятие № 4. Сети, источники, стоки, полюса. Дивергенция, поток, циркуляция. Мощность потока. Разрез, дивергенция на разрезе. Алгоритм Форда-Фалкерсона.

Занятие № 5. УСР. Алгоритм Басакера—Гоуэна для построения потока минимальной стоимости среди потоков заданной мощности..

Занятие № 6. Гамильтоновы циклы. Метод ветвей и границ. Алгоритм Литтла

Занятие № 7. Календарное планирование. Постановка задачи, основные этапы решения. Построение сетевой модели, ранжирование, нахождение критических путей.

Занятие № 8. Стратегии, исходы, функции выигрыша, игры в нормальной форме, игры двух лиц, игры с нулевой суммой.

Занятие № 9 Оптимумы по Парето и осторожные стратегии в них. Игра двух лиц с нулевой суммой. Нижняя и верхняя цена игры, связь между ними. Цена игры.

Занятие № 10. УСР: Методы поиска седловых точек в смешанных расширениях матричных игр и равновесий по Нэшу в смешанных расширениях биматричных игр.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса могут быть использованы следующие подходы и методы: *эвристический подход*, *практико*-

ориентированный подход, метод проектного обучения, метод учебной дискуссии, методы и приемы развития критического мышления, метод группового обучения. которые предполагают:

- осуществление студентами значимых открытий;
- демонстрацию многообразия решений большинства профессиональных задач;
- творческую самореализацию обучающихся в процессе создания образовательных продуктов;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;
 - освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций;
- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники;
- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

Все результаты и достижения группируются на основе основных видов деятельности студентов: учебной, научно-исследовательской и иной. Методы обеспечивают появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение представляют способов решения. Также они собой формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления и являются организацией учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск (подбор) и обзор литературы и электронных источников по изучаемой теме;
 - выполнение домашнего задания;
- работы, предусматривающие решение задач и выполнение упражнений;
 - изучение материала, вынесенного на самостоятельную проработку;
 - подготовка к практическим семинарским занятиям;
 - научно-исследовательские работы;
- подготовка и написание рефератов, докладов, эссе и презентаций на заданные темы;
 - подготовка к участию в конференциях и конкурсах.

Примерный перечень вопросов к зачету

- 1. Графы. Маршруты, цепи, циклы, связные компоненты.
- 2. Три леммы о неориентированных графах.
- 3. Эйлеровы графы. Теорема Эйлера.
- 4. Алгоритм построения эйлерова цикла.
- 5. Деревья и их свойства.
- 6. Остовные деревья. Алгоритм Прима и его обоснование.
- 7. Алгоритм Краскала и его обоснование.
- 8. Ориентированные графы, маршруты, цепи, пути, циклы, контуры.
- 9. Алгоритм Дийкстры и его обоснование.
- 10. Алгоритм Флойда и его обоснование.
- 11. Нахождение контуров отрицательной длины.
- 12. Сети, потоки, разрезы. Леммы о дивергении и мощности потока.
- 13. Элементарные потоки. Разложение циркуляции на элементарные потоки.
- 14. Разложение потока на элементарные потоки.
- 15. Допустимые потоки. Лемма о мощности допустимого потока.
- 16. Увеличивающие цепи и теорема Форда-Фалкерсона.
- 17. Алгоритм Форда-Фалкерсона.
- 18.Потоки минимальной стоимости. Действия над потоками в исходной сети и в графе модифицированных стоимостей.
- 19. Критерий оптимальности допустимого потока.
- 20. Алгоритм Басакера-Гоуэна и его обоснование.
- 21. Алгоритм Клейна.
- 22. Метод ветвей и границ.
- 23. Задача коммивояжера. Алгоритм Литтла.
- 24. Сетевое планирование. Работы, события, алгоритм построения сетевой модели, ранжирование событий.
- 25. Минимальный и максимальный сроки наступления событий, их свойства. Критический путь. Свободный и полный резерв времени.

- 26.Игры (бескоалиционные, матричные, биматричные).
- 27. Доминирующие и недоминируемые стратегии. Их существование.
- 28. Осторожные стратегии и их существование. Гарантированный выигрыш.
- 29. Оптимальные по Парето исходы, их существование.
- 30. Несущественные игры, их свойства.
- 31. Игра двух лиц с нулевой суммой. Нижняя и верхняя цена игры. Связь цены игры с несущественностью.
- 32. Цена игры и седловые точки. Свойства седловых точек.
- 33. Теорема фон Нойманна.
- 34. Правила принятия решений и равновесия. Теоремы о неподвижной точке.
- 35. Канонические правила принятия решений. Равновесия по Нэшу и теорема Нэша.
- 36.Смешанные расширения конечных игр. Равновесия в них.
- 37.Смешанные расширения бесконечных игр.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение,
учебной	кафедры	об изменениях в	принятое
дисциплины,		содержании учебной	кафедрой,
с которой		программы	разработавшей
требуется		учреждения высшего	учебную
согласование		образования по	программу (с
		учебной дисциплине	указанием даты и
			номера
			протокола)
1. Экстремальные	Функционального	нет	Вносить
задачи и	анализа и		изменения не
вариационное	аналитической		требуется
исчисление	экономики		(протокол № 12
			от 04.06.2020)
2. Теория	Функционального	нет	Вносить
вероятностей и	анализа и		изменения не
математическая	аналитической		требуется
статистика	экономики		(протокол № 12
			от 04.06.2020)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/	учебный учебный	год

№ п/п	Дополнения и изменения	Основание
11/11		
Учебн	ная программа пересмотрена и одобрен (протоко.	а на заседании кафедры л № от 201_ г.)
Завед	ующий кафедрой	
	РЖДАЮ факультета	