Математика и информатика

УДК 517.9

А.Б. АНТОНЕВИЧ, Я.В. РАДЫНО

О ТЕОРИИ МНЕМОФУНКЦИЙ И ЕЕ ПРИЛОЖЕНИЯХ

The basic ideas of the theory of mnemofunctions or "new generalized functions" which admit everywhere defined multiplication are demonstrated. Differential equations, spectral theory of linear operators and stochastic differential equations are described in sense of mnemofunctions in this paper.

Введение

Теория распределений привела к существенному прогрессу в ряде математических дисциплин, в том числе и в теории линейных дифференциальных уравнений с частными производными и линейной математической физике. Лоран Шварц показал, что невозможно определить ассоциативное умножение распределений [1]. Этот факт является препятствием к использованию распределений в теории нелинейных уравнений и теории уравнений с разрывными коэффициентами. В частности, это приводит к тому, что невозможно придать смысл таким объектам, как δ^2 , δ 1 δ (δ -функция Дирака), которые широко используются, например, в квантовой теории поля.

Рассматриваемая проблема очень естественна и имеет многочисленные применения. Поэтому она привлекла внимание ученых сразу же после создания теории распределений. Обзор работ по этой тематике имеется, например, в [2]. В данной статье излагаются основные идеи, используемые при решении проблемы умножения распределений, а также указываются некоторые направления приложений.

Нетривиальность этой проблемы видна на следующем примере. Пусть $u,v \in D'(\mathbf{R})$ и пусть $u_nv_n \in C^\infty(\mathbf{R})$ такие, что $u_n \to u, v_n \to v$ в $D'(\mathbf{R})$. Последовательность произведений u_nv_n может не сходиться в $D'(\mathbf{R})$, а может иметь предел, зависящий от выбора последовательностей u_n и v_n . Например, для любого $a \in C^\infty(\mathbf{R})$ последовательность $u_n(x) = a(x)\sin(nx)$ сходится к нулю в $D'(\mathbf{R})$, в то время как последовательность $u_n^2(x)$ сходится к $a^2(x)/2$.

Стандартный подход к решению рассматриваемой проблемы основывается на определенном выборе последовательностей u_n и v_n . В этом случае определить произведение можно для некоторых пар u и v. Другой подход основан на введении вместо распределений новых объектов, которые, с одной стороны, обладают основными свойствами распределений, и, с другой — допускают хорошо определенное умножение, т.е. образуют ассоциативную алгебру. Различные варианты введения таких объектов были даны в работах Б.Дамянова и Хр.Христова [3], В.К.Иванова [4], Ж.Коломбо [5] и Ю.Егорова [2]. Общая схема построения алгебр такого типа была предложена авторами в работе [6]. Наш метод позволяет строить различные алгебры с заданными дополнительными свойствами, а также дать решение еще одной задачи: о задании всюду определенной свертки.

Некоторые из уже известных конструкций, например нестандартное расширение, являются частными случаями наших построений.

1. Постановка задачи и общая схема решения

Пусть E' – некоторое пространство распределений и A – плотно вложенная в E' алгебра бесконечно дифференцируемых функций. Требуется построить новую алгебру G и линейное вложение $j: E' \to G$ такие, что A вложена в G как подалгебра, т.е.

$$j(ab) = j(a)j(b), a,b \in A.$$

Имеется определенная тонкость в постановке проблемы. В самом деле, пример Л.Шварца показывает, что нельзя вложить пространство $D'(\mathbf{R})$ в алгебру, удовлетворяющую условию: j(au) = j(a)j(u) для $a \in \mathcal{A}$, $u \in E'$, если $E' = D'(\mathbf{R})$. А = $C^{\infty}(\mathbf{R})$. Поэтому мы можем требовать сохранения умножения только для элементов алгебры гладких функций.

Приведенные далее построения не учитывают того, что пространство E' состоит из распределений, и имеют более общий характер.

Исходными объектами наших построений являются:

- а) отделимое локально выпуклое пространство E' (для элементов которого требуется определить произведение);
 - б) локально выпуклая алгебра A непрерывно и плотно вложенная в E'_i
- с) семейство непрерывных линейных операторов $R_{\text{o.e.}}$: $E' \rightarrow A$, где $\phi \in \Phi$, $\epsilon \in I$; (Φ фиксированное множество, I множество с заданным на нем фильтром F) такое, что для каждого фиксированного ϕ , $R_{\text{o.e.}}(u) \rightarrow u$ в топологии E' по фильтру F для каждого $u \in E'$. Для фиксированного ϕ семейство $R_{\text{o.e.}}\epsilon \in I$ называется методом регуляризации элементов E' элементами A.

Обозначим через \widetilde{G} множество всех отображений из $\Phi \times I$ в A. Это множество является алгеброй и пространство E' вкладывается в \widetilde{G} с помощью отображения $j_0: u \to R_{\rm e}$ $\mathfrak{g}(u)$.

В ряде ситуаций эта естественная и "тривиальная" конструкция вложения E' в алгебру позволяет получать содержательные результаты. Однако поставленной задачи она не решает, так как равенство (1) не выполняется. Кроме того, алгебра \widetilde{G} чрезвычайно обширна и в конкретных задачах оказывается, что различные ее элементы описывают одно и то же физическое состояние и потому они должны быть отождествлены.

Предлагаемая конструкция заключается в следующем. В алгебре \widehat{G} выделяется подалгебра G_M и в ней некоторый идеал N. Искомым объектом является фактор-алгебра G_M / N. Таким образом, конструкция сводится к выбору подходящей пары (G_M \widehat{N}).

Два элемента f и g из \widetilde{G} называются слабо эквивалентными, если $f(\phi,\epsilon)-g(\phi,\epsilon)\to 0$ в E' по F для любого $\phi\in\Phi$. Множество N_0 всех элементов слабо эквивалентных нулю не является идеалом и даже подалгеброй в \widetilde{G} . Поэтому отношение слабой эквивалентности, естественное в других задачах, не решает поставленной выше.

Теорема 1. Предположим, что подалгебра $G_{\!M}$ и идеал N удовлетворяют следующим условиям:

- i) для каждого $u \in E'$ элемент $R_{o,\varepsilon}(u) \in G_M$;
- ii) $N \subset N_0$;

ііі) элементы вида $R_{o,\varepsilon}(ab) - R_{o,\varepsilon}(a) \, R_{o,\varepsilon}(b)$ принадлежат N для любых $a,b \in A$.

Тогда пространство E' вкладывается в фактор-алгебру $G=G_M/N$ как подпространство, а A- как подалгебра.

Если G_M и N инвариантны относительно некоторого линейного непрерывного оператора $L: A \to A$, тогда этот оператор может быть естественным образом продолжен до оператора в алгебре G.

Поскольку условие (ii) ограничивает идеал N сверху, а условие (iii) ограничивает его снизу, то существование идеала, удовлетворяющего условиям (ii) и (iii), не очевидно. Явное описание зависит от выбора семейства методов регуляризации. Способ выбора подалгебры G_M и идеала N может быть предложен с помощью топологии алгебры M

Предположим, что топология на A определена с помощью мультипликативной системы полунорм (p_{α}) , $\alpha \in \Lambda$, т.е. полунорм, удовлетворяющих условию

$$p_{\alpha}(ab) \leq C_{\alpha}p_{\alpha}(a)p_{\alpha}(b).$$

Скалярные функции $p_{\alpha}(R_{\phi,\varepsilon}(u)), u \in E'$, дают типичный рост по ε элементов из G_M , а функции $p_{\alpha}(R_{\phi,\varepsilon}(ab)-R_{\phi,\varepsilon}(a)R_{\phi,\varepsilon}(b)), a.b \in A$ описывают типичное убывание по ε элементов из N.

Пусть H_{α} – алгебра скалярных функций, определенных на $\Phi \times I$, порождена функциями вида $p_{\alpha}(R_{\phi,\varepsilon}(u)), u \in E'$ и пусть N_{α} – алгебра скалярных функций, заданных на $\Phi \times I$, порождена функциями вида

$$p_{\alpha}(R_{\phi,\varepsilon}(ab)-R_{\phi,\varepsilon}(a)R_{\phi,\varepsilon}(b))$$
, $a,b \in A$.

Следующая теорема позволяет свести анализ к более простому случаю скалярных функций.

Теорема 2. Пусть для каждого $\alpha \in \Lambda$ алгебра N_α является идеалом в H_α . Тогда множества

$$\begin{split} G_{M}(\mathcal{A}) &= \Big\{ f \in \widetilde{G} : \forall \alpha \; \exists h \in H_{\alpha}, \; p_{\alpha}\Big(f(\phi, \varepsilon)\Big) \leq h(\phi, \varepsilon) \Big\}, \\ N(\mathcal{A}) &= \Big\{ f \in \widetilde{G} : \forall \alpha \; \exists h \in N_{\alpha}, \; p_{\alpha}\Big(f(\phi, \varepsilon)\Big) \leq h(\phi, \varepsilon) \Big\} \end{split}$$

удовлетворяют условиям теоремы 1 и фактор-алгебра $G = G_M(A) \ / \ N(A)$ дает решение проблемы.

2. Алгебра Коломбо

Первый пример пары (G_N, N) был построен Ж.Коломбо. Пусть $E' = D'(\mathbf{R})$, $A = C^*(\mathbf{R})$. Обозначим через Φ счетное множество

$$\Phi = \{\phi_1, \phi_2, \dots\}, \phi_q \in D(\mathbf{R}),$$
$$\int \phi_q(x) dx = 1, \int x^j \phi_q(x) dx = 0, j = 1, 2, \dots, q.$$

Каждая из функций ф, определяет метод регуляризации формулой

$$R_{q,\varepsilon}(u) = u * \varphi_{q,\varepsilon} = u_{q,\varepsilon}, \quad \varphi_{q,\varepsilon}(x) = \frac{1}{\varepsilon} \varphi_q(x/\varepsilon), \quad \varepsilon \in I = (0,1) \subset R.$$

На алгебре $C^{\infty}(\mathbf{R})$ существует мультипликативная система полунорм:

$$p_{k,n}(u) = \sum_{j=0}^{k} \max_{|x| \le n} \frac{u^{(j)}(x)}{k!}, \quad k = 1, 2, ..., \quad n = 1, 2, ...$$

Функции $p_{k,n}(u_{\mathbf{q},\varepsilon})$ мажорируются некоторой степенью $1/\varepsilon$, когда $\varepsilon{\to}0$. Поэтому естественно определить

$$G_{M=}\Big\{f_{q,\varepsilon}(x)\colon\forall\;k,n\;\exists\;m,c>0\colon\;p_{k,n}\Big(f_{q,\varepsilon}\Big)\leq c\big/\varepsilon^m\Big\}.$$

Функции вида $p_{k,n}((ab)_{q,\varepsilon}-a_{q,\varepsilon}b_{q,\varepsilon})$, $a,b\in C^\infty(\mathbf{R})$ имеют степенное убывание по ε при $\varepsilon\to 0$. Для каждого фиксированного q множество функций со степенным убыванием не является, вообще говоря, идеалом в алгебре функций, растущих с некоторой степенью ε . Ж.Коломбо заметил и использовал тот факт, что скорость убывания этих функций увеличивается с увеличением q. Поэтому множество

$$N = \left\{ f_{q,\varepsilon}(x) : \forall k, n \exists q_0, c_q \colon p_{k,n}(f_{q,\varepsilon}) \le c_q \varepsilon^{q-q_0} \right\}$$

является идеалом в G_M и удовлетворяет условиям теорем 1 и 2. Факторалгебра $G=G_N/N$ является модификацией алгебры Коломбо "новых обобщенных функций".

Отметим, что вложение пространства $D'(\mathbf{R})$ в G зависит от выбора последовательности (ϕ_q) , однако $C''(\mathbf{R})$ вкладывается в G канонически. Общая схема и понимание того, как правильно выбирать семейство методов регуляризации, позволили нам строить различные алгебры новых обобщенных функций. В частности, построены: алгебра, в которую вложены ультрараспределения; алгебра со всюду определенной сверткой и обратимым преобразованием Фурье, в которую вложено $S'(\mathbf{R})$ [7]; алгебры "новых обобщенных функций" с действующими в них интегральными преобразованиями Лапласа, Меллина, Ханкеля и др.[8]; алгебры периодических новых обобщенных функций [9], алгебра, построенная на базе пространств Соболева [10].

Все упомянутые построения сводятся, по существу, к факту, что новая обобщенная функция является семейством гладких функций, зависящих от параметров. Функции, принадлежащие одному классу эквивалентности, не только имеют один и тот же предел, но также и один и тот же способ стремления к этому пределу. Поэтому с этой точки зрения мы можем сказать, что новая обобщенная функция "запоминает" способ стремления к пределу, т.е., она "обладает памятью". В связи с этим мы называем такие объекты "мнемофункциями" (от греческого слова – память).

3. Мнемочисла

Если алгебра A содержит единицу, то в фактор-алгебре $G=G_M/N$ существует подалгебра \widetilde{C} , состоящая из скалярных функций. Мы назовем эту алгебру алгеброй мнемочисел, а ее элементы — мнемочислами. Мнемочисла оказываются удобным аппаратом во многих вычислениях. Это связано с тем фактом, что в \widetilde{C} существуют бесконечно малые и бесконечно большие числа.

Пусть E' – сопряженное к локально выпуклому пространству E и $\langle f, \psi \rangle$ значение функционала f на элементе $\psi \in E$.

Всякое \widetilde{C} — линейное отображение из E в \widetilde{C} будем называть \widetilde{C} -функционалом.

Каждой мнемофункции $f(\phi,\epsilon)$ соответствует \widetilde{C} -функционал f на E, определенный формулой

$$\langle \widetilde{f}, \psi \rangle = \langle f(\phi, \varepsilon), \psi \rangle, \quad \psi \in E.$$

Мнемофункцию f и элемент $u \in E'$ будем называть ассоциированными, если $\langle f(\phi, \varepsilon), \psi \rangle \rightarrow \langle u, \phi \rangle$ по фильтру F для каждых $\phi \in \Phi$ и $\psi \in E$.

Отметим, что много различных мнемофункций может быть ассоциировано с одним элементом $u\in E'$ и что \widetilde{C} -функционал \widetilde{f} неоднозначно определяет мнемофункцию f. На первый взгляд это может казаться недостатком теории. Однако, с другой стороны, эта неоднозначность является новым шагом к решению ряда проблем. Например, моделирование частицы посредством δ -функции Дирака вполне приемлемо в линейных задачах. Однако такой подход является весьма грубым в нелинейном случае и здесь имеются определенные трудности. Чтобы их преодолеть, мы нуждаемся в дополнительной информации относительно объекта нашего рассмотрения. Такая информация приводит к необходимости моделирования частиц мнемофункциями, ассоциированными с δ -функцей.

4. Примеры

1. Пусть δ_{ϕ} – образ δ -функции при вложении $D'(\mathbf{R})$ в G, где Φ – множество вида (2). Тогда $\delta_{\phi} = \frac{1}{\varepsilon} \phi_q(x/\varepsilon)$. И пусть

$$a_q = \int \phi_q^2(x) dx \neq 0$$
, $\psi_q(x) = \frac{1}{a_q} \phi_q^2(x)$, $\widetilde{a} = (a_q) \in \widetilde{C}$.

Последовательность ψ_q также определяет вложение $D'(\mathbf{R})$ в $G(C^\infty(\mathbf{R}))$ вкладывается при этом как векторное пространство, но не как алгебра). Пусть δ_ψ – образ δ -функции при этом вложении. Тогда $\delta_0^2 = \frac{\widetilde{a}}{\varepsilon} \delta_0$, т.е. δ^2 имеет вид мнемофункции δ_ψ с бесконечно большим коэффициентом $\widetilde{a}/\varepsilon$ из \widetilde{C} .

2. Умножение непрерывных функций не совпадает с умножением в G, когда

 $D'(\mathbf{R})$ вложено в G. Однако оно отличается от умножения в G только на бесконечно малые значения. Например, пусть $|x|_0 -$ образ функции |x| при вложении ϕ . Тогда $|x|_0^2 \neq x^2$, но $|x|_0^2 - x^2 = \varepsilon^3 c \delta_n$, где $c \in \widetilde{C}$, т.е. разность есть δ -функция с бесконечно малым коэффициентом. Различие между новой теорией и классической может быть разъяснено на примере выражения $(|x|^2 - x^2)\delta^3$. В

классической теории $\left|x\right|^2-x^2=0$ и δ^3 не определено. В новой же теории $\left(\left|x\right|_{\mathsf{o}}^2-x^2\right)\!\delta_{\mathsf{o}}^3=c\,\delta_{\mathsf{\psi}}$, где c – некоторое мнемочисло.

Вычисление \widetilde{C} -функционалов, ассоциированных с мнемофункциями, может быть сведено к исследованию асимптотики интегралов, зависящих от параметра. Бесусловно, что такие вычисления были сделаны намного ранее, чем была создана теория новых обобщенных функций. Например, асимптотическое по-

ведение δ -образной последовательности $\frac{1}{\pi} \frac{1}{x^2 + \epsilon^2}$ проанализировано в [12],

т.е. соответствующий \widetilde{C} -функционал оценен.

Подобные оценки используются в теории дифференциальных уравнений с малым параметром, теории сингулярных возмущений и т.п. В общем, ситуация сложившаяся после создания теории новых обобщенных функций, напоминает ранее извествую в математическом "фольклоре". Л.Янг [13] пишет, что после появления книги Л.Шварца по теории распределений все математики разделились на три класса: первый класс образовали те, которые говорили, что они знают это лучше Шварца; во второй класс попали те, которые утверждали, что они знали это раньше Шварца; третий же класс состоял только из рецензента книги Шварца, который называл все это бессмыслицей!

5. Дифференциальные уравнения в пространстве мнемофункций

Рассмотрим в качестве модели дифференциальное уравнение

$$u' = \delta u + \delta$$
, $u(-1) = 1$.

Это уравнение не имеет решений в пространстве непрерывных в нуле функций. Если же функция u разрывна в нуле, то произведение δu не определено. Это означает, что в классической теории обобщенных функций нет понятия решения этого уравнения.

При рассмотрении уравнения (3) в пространстве мнемофункций необходимо выбрать некоторые мнемофункции, ассоциированные с δ -функцией, например δ_0 и δ_w , и исследовать уравнение

$$u' = \delta_0 u + \delta_w$$

Решение этого уравнения ассоциируется с обыкновенной функцией вида

$$u_0(x) = \begin{cases} 1, x \le 0 \\ \mu, x > 0 \end{cases}$$

где число μ зависит от выбора мнемофункций, который мы сделали. Подчеркнем, что информация относительно числа μ была получена в результате выбора мнемофункций, т.е. в результате уточнения постановки задачи.

6. Спектральная теория операторов

Пусть A — банахова алгебра с единицей e, в частности алгебра L(A) — линейных ограниченных операторов в банаховом пространстве X, и пусть $G_M(A)$ — алгебра медленно (не быстрее некоторой степени) растущих последовательностей из A, а N — идеал в G_M , состоящий из быстро (быстрее любой степени) убывающих последовательностей из A. Тогда фактор-алгебру $G=G_M/N$ обозначим через A_* , а соответствующее ей кольцо мнемочисел через C_* .

Алгебра A_* является \mathbb{C}_* -алгеброй, т.е. модулем над кольцом \mathbb{C}_* и, как выяснилось [14], естественная топология на ней – неархимедова топология.

Если $\widetilde{a}\in A$, то обобщенным спектром элемента \widetilde{a} называется подмножество $\widetilde{\sigma}(\widetilde{a})$ из \mathbb{C}_* вида

$$\widetilde{\sigma}(\widetilde{a}) = \left\{ \widetilde{\lambda} \in \mathbf{C}_* \colon \widetilde{\lambda} \widetilde{e} - \widetilde{a} \right.$$
 — не обратим в $A_* \right\}.$

В работе [15] установлено, что A_* является банаховой неархимедово нормированной C_* -алгеброй и обобщенный спектр любого элемента из A_* замкнут и не пуст в C_* . Это позволяет развить спектральную теорию элементов алгебры A_* .

Элементы алгебры $L(\lambda)_*$ естественно называть обобщенными операторами. Поскольку многие неограниченные операторы можно трактовать как обобщенные, то этот подход позволяет по-новому взглянуть на многие вопросы спектральной теории и функционального исчисления для неограниченных операторов.

7. Алгебра обобщенных случайных процессов

Параллельно с развитием теории обобщенных функций шло развитие теории обобщенных случайных процессов. Так на основе теории распределений И.М.Гельфандом была создана теория обобщенных случайных процессов. К.Урбаником предложена своя трактовка обобщенных случайных процессов, опирающаяся на секвенциальный подход Я.Микусинского. Надо сказать, что, несмотря на значимость данных теорий в современной теории случайных процессов, они не нашли широкого использования в дифференциальных уравнениях со случайными функциями в силу неприменимости их для решения нелинейных задач.

В работах [16],[17] на основе теории мнемофункций предложена конструкция алгебры обобщенных случайных процессов. Рассмотрим наиболее простой

случай алгебры мнемофункций Ю.И.Егорова.

Пусть $T=[0,a]\in \mathbf{R}$, (Ω, \mathbf{A}, P) — полное вероятностное пространство. Рассмотрим множество последовательностей случайных функций $f_n: T\times\Omega\to\mathbf{R}$ $G_M(T,\Omega)=\left\{\left(f_n(t,\omega)\right): f_n(t,\omega)\right\}$ — случайная величина при фиксированных n и t; $f_n(t,\omega)\in C^\infty(T)$ для почти всех $\omega\in\Omega\}$.

Выделим в $G_M(T,\Omega)$ идеал $N(T,\Omega) = \{(f_n) \in G_M(T,\Omega):$ существует n_0 , что для любого $t \in T$ и для любого $n \ge n_0$ $f_n(t,\infty) = 0$ для почти всех $\infty \in \Omega\}$. Алгебру $G(T,\Omega) = G_M(T,\Omega) / N(T,\Omega)$ назовем алгеброй случайных мнемопроцессов.

Далее, пусть $\tilde{\mathbf{R}}$ – расширенная прямая по Егорову, а

$$\widetilde{T} = \left\{ \widetilde{t} = [(t_n)] \in \widetilde{\mathbf{R}} : \forall (t_n) \in \widetilde{t}, \quad 0 \le t_n \le a, \quad n = 1, 2... \right\}$$

Через $G(\widetilde{T},\Omega)$ обозначим алгебру случайных мнемофункций вида $\widetilde{F}(\widetilde{t},\omega)$ = = $[(f_n(f_n,\omega))]$, где $\widetilde{t}=[(t_n)]\in\widetilde{T}$, $[(f_n(t_n,\omega))]\in G(T,\Omega)$ для любого $t\in T$. Алгебру $G(\widetilde{T},\Omega)$ также назовем алгеброй случайных мнемопроцессов. Заметим, что конструкция алгебры $G(\widetilde{T},\Omega)$ новая и для неслучайного анализа.

В работе [17] на основе аппарата алгебр случайных мнемопроцессов предложен единый подход исследования всех известных классов дифференциальных уравнений со случайными функциями. Этот подход базируется на понятии обобщенного стохастического дифференциала в $G(\widetilde{T},\Omega)$.

Пусть

$$H = \left\{ \widetilde{h} = \left[(h_n) \right] \in \widetilde{\mathbf{R}} \setminus \{0\} : \lim_{n \to \infty} h_n = 0 \right\}.$$

Тогда положим по определению

$$d_{\widetilde{h}} = \widetilde{F} \Big(\widetilde{h} \,, \omega \Big) = \Big[\Big(f_n \Big(t + h_n, \omega \Big) - f_n \Big(t, \omega \Big) \Big) \Big], \text{ где } \widetilde{h} = \Big[\Big(h_n \Big) \Big] \in H \,, \ \widetilde{t} + \widetilde{h} \in \widetilde{T} \,.$$

Выделим во множестве H следующие подмножества:

$$S = \left\{\widetilde{h} \in H: h_n = o(1/n), n \to \infty \right\}$$
 — область Стратановича ; $I = \left\{\widetilde{h} \in H: (1/n) = o(h_n), n \to \infty \right\}$ — область Ито.

Известно, что дифференциальные уравнения, содержащие в правой части обобщенные случайные процессы типа "белого шума", невозможно исследовать классическими методами теории обыкновенных дифференциальных уравнений. Для этого К.Ито была специально разработана теория стохастических дифференциальных уравнений, базирующаяся на понятиях стохастических интегралов Ито и Стратановича. В работе [18] показано, что решения стохасти-

ческих дифференциальных уравнений Ито и Стратановича могут быть аппроксимированы решениями уравнений в дифференциалах в алгебре $G(\widetilde{T},\Omega)$. Методика доказательства этих утверждений опирается на понятия обобщенного стохастического дифференциала и областей Ито и Стратановича.

В работе [19] показано, что данные методы могут быть успешно применены для исследования решений новых классов нелинейных дифференциальных уравнений со случайными функциями.

Работа выполнена при финансовой поддержке Фонда фундаментальных исследований Республики Беларусь и международного фонда Сороса.

- Schwartz L. // C.R. Acad. sci. Paris, 1954. V.239. P.874.
- 2. Егоров Ю.В. // Успехи мат. наук. 1990. Т.45. №5(275). С.3.
- 3. ХРИСТОВ ХР., ДАМЯНОВ Б.П. // Bulgar. J.Phys. 1978. Ч.1. №6. С.543; 1979. Ч.2. №1. Р.3; 1979. Ч.3. №2. Р.245. 1979. Ч.4. №4. Р.377.
 - 4. Иванов В. К. // Изв. ВУЗов. Математика. 1971. №1. С.41.
 - 5. Colombeau J.F. New generalized functions and multiplication of distributions. Amsterdam, 1985.
 - 6 Антоневич А.Б., Радыно Я.В. // ДАН СССР. 1991 Т.43, №3, С.680.
- 7. Радыно Я.В., Нго Фу Тхань, Сабра Рамадан.∥Докл. РАН. 1992 Т.327. №1. C.20.
 - 8. Радыно Я.В., Ромашевский А.Б.//Докл. РАН. 1995. Т.345. №1 С.22.

 - 9. Мазель М.Х., Радыно Н.Я.//Докл. АН Беларуси. 1992. Т.36. №7,8. С.585. 10. Антоневич А.Б., Фурсенко Н.В.//Дифф. уравнения. 1994. Т.30. №8. С.1317.
- 11. Антосик П., Микусинский Я., Сикорский Р. Теория обобщенных функций. Секвенциальный подход. М., 1976.
 - 12. Тихонов А.Н., Самарский А.А. // ДАН СССР. 1959. Т.126. №1. С.26.
 - 13. Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М., 1974. 14. Радыно Н.Я. // Актуальные проблемы информатики: математическое, программное и ин-
- формационное обеспечение: Мат. межгос. научн.-практ. конференции. 16-20 мая 1994 г. Мн., 1994.
- 15. Гулецкая О.И., Радыно Н.Я. // Докл. РАН. 1995. Т.343. №1. С.7, 16. Лазакович Н.В., Радыно Я.В. Теоретические и прикладные проблемы математики: Тез. конф. Тарту, 1990. С.281.
 - 17. Лазакович Н.В. // Докл. АН Беларуси. 1994. Т.38 №5. С.21.
 - 18. Он же. // Там же.1995. Т.39. №3. С.20.
- 19. Лазакович Н.В., Сташуленок С.П. Аппроксимация стохастических дифференциальных уравнений и интегралов в алгебре обобщенных случайных процессов // Там же. 1994. Т.39. №6. C.34.

УДК 517.977

А.И. КАЛИНИН, И.В. ГРИБКОВСКАЯ

АСИМПТОТИЧЕСКАЯ ОПТИМИЗАЦИЯ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ, СОДЕРЖАЩИХ ПРИ ПРОИЗВОДНЫХ ПАРАМЕТРЫ РАЗЛИЧНЫХ ПОРЯДКОВ МАЛОСТИ

The paper summarizes the results of authors' investigations of optimal control problems for linear singularly perturbed systems with different order-infinitesimal parameters multiplying the derivatives.

Многие прикладные задачи оптимального управления в своих математических моделях содержат малые параметры, причем зачастую модели существенно упрощаются (понижается порядок дифференциальных уравнений, исчезают сложные члены и т.п.), если эти параметры положить равными нулю. В таких случаях целесообразно использовать асимптотические методы, основное достоинство которых состоит в том, что при их применении исходные задачи сводятся к сравнительно несложной коррекции решений более простых задач оптимального управления.

Возмущенным задачам оптимального управления посвящено значительное число работ. Обзоры основных результатов содержатся в [1-3]. В рамках теории оптимальных процессов асимптотические методы развиты в основном для задач с открытой областью управления, т.е. задач классического вариационного типа. В то же время в прикладных задачах ограничения на значения управляющих воздействий, как правило, имеют вид замкнутых неравенств. В [4] предложен подход к исследованию возмущенных задач оптимизации динамических систем с прямыми ограничениями замкнутого типа на значения управляющих воздействий, в основе которого лежит идея специальной конечномерной параметризации оптимальных управлений. С помощью этого подхода разрабо-