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CuHTe3npyOLIMe TOHBI UTPAIOT BAXKHYIO POJIb B CHCTEMax MPeoOpa3oBaHMs TEKCTa B PeUb TOHAIBHBIX S3bIKOB. 1
3TOTO HEOOXOANMO BBITTOJIHNTH /1BA BAJKHBIX II1ara: OIPE/IeTUTh MapKephl BEICOTHI TOHA TOJIOCOBBIX BHICKA3bIBAHUH 1 CHH-
TE3UpOBaTh TpaekTopuu F, UIs IeKcn4eckux TOHOB. B 3T0i cTaThe MBI Tipeutaraem asa 3(pGEeKTUBHBIX aITOPUTMA, OJUH
13 KOTOPBIX 3aKJIH0YAETCs B PACIOI0KEHUN MAPKEPOB BBICOThI TOHA HA IIMKaX KyMYJIITUBHOI'O CUTHAJIA KAKIOM O3BYUYEH-
HOM 4aCTU BXOZHOTO BBICKA3bIBaHMs, a IPYIOM — B reHepanuu F -TpaeKTopuil TOHOB C KOJIMYECTBEHHBIMH ITapAMETPaMuU
npuommkenust nenu (qTA). DKCriepuMeHT MoKasall, YTo TPEUIOKEHHBIC aNTOPUTMBI PE/ICTABISIOT MapKephl BEICOTHI
3ByKa C BEICOKOW TOYHOCTBIO, YTO MTO3BOJIMIIO HAM T€HEPUPOBATH TOHBI CO CIOXKHOM (POPMO.

Knrouesvie cnosa: mapkepbl OCHOBHOTO TOHA; KyMYISATHBHBIN curHai;, moaens Cioif; qTA; moamHOMHAIbHOE MPH-

OMMKEHHE.
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Synthesizing tones plays an important role in text-to-speech systems of tonal languages. To accomplish this, the two
important steps are to determine the pitch markers of voice utterances and synthesize F, trajectories for lexical tones.
In this paper, we propose two efficient algorithms, one of them is to locate the pitch markers at the peaks of the cumulative
signal of each voiced part of the input utterance and the other is to generate F, trajectories of tones with quantitative target
approximation (qTA) parameters of Xu model. The experimentation has shown that the proposed algorithms present pitch
markers with high accuracy which has enabled us to generate tones with complex shapes.

Keywords: pitch markers; cumulative signal; Xu model; qTA; polynomial approximation.

Introduction

Nowadays, text to speech (TTS) systems and speech to text (STT) systems are increasingly used by the
radiologist to create radiology study reports. Besides, TTS systems and STT systems can help people with
disabilities integrate into the community by using computer easier. With the integration of the laboratory infor-
mation system (LIS) and radiological information systems (RIS) patient identifiers and examination informa-
tion can automatically map into examination reports. There are many potential benefits of report automation to
radiologists including improvements in efficiency, accuracy, and fatigue [1].

Besides, TTS systems can help people with disabilities integrate into the community by using computer
easier. For example the JAWS (job access with speech) software, is the world’s most popular screen reader,
developed for computer users whose vision loss prevents them from seeing screen content or navigating with
a mouse. JAWS provides speech as an output for the most popular computer applications on your PC such as
Microsoft Office, Web browsers etc. JAWS users around the world sent us videos about the impact JAWS has
made on their lives [2].

Due to the application needs, the research on speech representation has been increasingly developed, the
issues of research on estimation and modeling of fundamental frequency trajectories is still open research issues
until now.

Frequency relates to the individual pulsations produced by vocal cord vibrations for a unit of time. The rate
of vibration depends on the length, thickness, and tension of the vocal cords, and thus is different for child,
adult male and female speech. A speech sound contains an important type of frequencies namely fundamental
frequency (F,) which relates to vocal cord function and reflects the rate of vocal cord vibration during phona-
tion (pitch).

Pitch markers (PM) play a central role in phonetics signal analytic because pitch is a big part of hearing
music, we can be tricky sounds without clear F,. In addition PM is also useful for coding or representation for
extracting information of speech for telephony and communication.

The fundamental frequency, pitch markers and hearing quality. The fundamental frequency is the pri-
mary element of speech signal and because the pitch marker indicates the beginning of each cycle of the
waveform, PM plays a very important role in generating and recognizing speech sentences. However, pitch
is an inherently subjective quantity and cannot be directly measured from the speech signal. It is a nonlinear
function of the signal’s spectral and temporal energy distribution. Therefore, PM estimation is an unsolved and
challenging problem. It is one of the key technologies that determines the performance of speech processing.
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Autocorrelation method or average magnitude difference function (AMDF) is commonly used. In addition,
modified autocorrelation method [3] is also commonly used to compute the auto correlation instead of speech
signal [2]. However, these methods suffer from error estimation in noisy environment. Robust algorithm for
pitch tracking (RAPT) is well-known and widely used F, estimation method since it does offer low delay, low
computational amount and robust against noise [4].

The YIN [5] algorithm uses a difference function based on the autocorrelation function as the candidate
generator in conjunction with a number of optimization steps. Named after the oriental yin-yang principle of
duality, it aims to balance between the autocorrelation and the cancelation that it involves.

The dynamic programming projected phase-slope algorithms (DYPSA) [6] was originally designed for
automatic estimation of glottal closure instants (GCIs) in voiced speech but as a consequence also gives pitch
information. The algorithm is based on an enhancement of the group delay algorithm [7] by R. Smits and
B. Yegnanarayana, which is used as the primary candidate generator. DYPSA uses dynamic programming to
identify the best GCI candidates by minimizing some cost functions. The DYPSA algorithm operates on the
speech signal alone and does not require an electroglottography reference signal. The pitch estimate is derived
from the inter GCI duration and mapped into frames.

F, trajectory representation and analysis-by-synthesis. From a modeling perspective, a model is of
little use if it is not predictive. To make a model predictive, however, it is critical to first determine what the
predictors should be. If, as suggested above, communicative functions like tone, focus and sentence type and
their interactions are directly behind the complex surface F, trajectories in Mandarin, these communicative
functions should then be the predictors. An alternative to such functional modeling is to simulate F; with pre-
dictors whose functional status is ambiguous, or whose definition includes characteristics of observed F, pat-
terns, e. g., pitch accents, F, turning points, etc. From a theoretical perspective, functional modeling provides
a powerful tool for hypothesis testing. That is, by assessing how well surface F, trajectories generated based
on a set of hypothesized predictors, investigators can validate or falsify both general and specific theoretical
assumptions about tone and intonation. Such a process is known as analysis-by-synthesis [8].

Parametric representation of speech often implies F, trajectory as a part of the model. There have been
many attempts over the past decades to build a robust model capable of simulating various prosodic pheno-
mena through F, modeling [9—-12]. These approaches can be divided into two general categories, namely, those
that model F,, trajectories directly and those that attempt to simulate the underlying mechanisms of F, produc-
tion. Models belonging to the first category are derived mainly based on the shape of the F, trajectories, with
minimal consideration about the articulatory process of F, production.

The Fujisaki model is an effective model for approximating the trajectory of the fundamental frequency pre-
cisely for the source model of speech synthesis, representing the coarticulation of spectral frequencies making an
equation for a target model of speech perception and so on [10—12].

Quantitative modeling is one of the most rigorous means of testing our understanding of a natural pheno-
menon. This is particularly true if the model is built directly on assumptions that closely reflect the contested
view about the mechanisms underlying the phenomenon. Modeling can also help to improve our knowledge
by forcing us to make our theoretical postulations as explicit as possible. Thus for improving our under-
standing of human speech, quantitative modeling is also indispensable. In the present paper we report the
results of an attempt to simulate tone, stress, and focus in Mandarin and English with a quantitative model
that generates surface F, trajectories through the process of target approximation TA [13]. qTA model for
generating F, trajectories of speech. The qTA model simulates the production of tone and intonation as
a process of syllable-synchronized sequential target approximation. It adopts a set of biomechanical and
linguistic assumptions about the mechanisms of speech production. The communicative functions directly
modeled are lexical tone in Mandarin and lexical stress in English and focus in both languages. The qTA
model is evaluated by extracting function-specific model parameters from natural speech via supervised
learning automatic analysis by synthesis and comparing the F, trajectories generated with the extracted
parameters to those of natural utterances through numerical evaluation and perceptual testing. The F, trajec-
tories generated by the qTA model with the learned parameters were very close to the natural trajectories in
terms of root mean square error, rate of human identification of tone, and focus and judgment of naturalness
by human listeners.

qTA and improving for generating F, trajectories of words with complex shape. In the detail, to gene-
rate F, trajectories of tones, we are able to use Xu model, which has been widely used for Mandarin [14; 15] to
model the F, trajectories in the context:

fot)=at+b+(ct® +dt+ g)e™ (1)

The linear function ¢ a,t + b,,, called a «pitch target», reflects the tendency of the tone at the end of the

F, trajectory.

n>
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The computational model used in the present study is the quantitative target approximation (qTA) model.
This model simulates the production of tone and intonation as a process of syllable-synchronized sequential
target approximation [15; 16]. Figure 2 illustrates the basic idea of target approximation [15]. The qTA mo-
del represents F; as the surface response of the target approximation process which is driven by pitch targets.
A pitch target is a forcing function representing the joint force of the laryngeal muscles that control vocal fold

tension. It is represented by a simple linear equation x(t) = a't + b given by the formula (1).

Compared to Mandarin, Thai and Vietnamese tones have more complex F, shapes [17-20], thus the rep-
resentation formula (1) should be replaced with one that can better model such complex tones. In [21], the
authors present a Thai tone model based on qTA method. However, the result of the authors still has some
limitations, namely:

(L1) there are no numerical computation methods for estimating automatically the coefficients of each
component of the model by fitting methods.

Besides, lack of mathematical foundation to explain the use of second order polynomials in the qTA model.
It is not easy to solve (L1) above because a suitable trajectory must satisfy following two conditions, given
a sample of fundamental frequency trajectory of the tone:

(C1) pitch target constraint (PTC), with big enough time ¢;

(C2) fitting constraint, for any time z.

In this paper, we propose new computational methods to determine the pitch markers of the original speech
signal based on its cumulative signal and quantitative target approximation vectors namely qTA that generate
the fundamental frequency trajectories of two-syllable tones. Our methods include three numerical solutions.
For the first solution, we determine the pitch markers of the original speech signal in a time domain based on its
cumulative signal. The second ones is proposed to calculate the qTA parameters by fitting a given F, trajectory
of a speech syllable. This numerical solution is a tool for determining qTA parameters by fitting a given F,
trajectory of a speech syllable and of a multi-syllable word. The third ones calculates qTA parameters by fitting
a given F trajectory of a multi-syllable word with the first step is the concatenating each F, trajectory of each
speech syllable of the given speech two-syllable word to archieve a continuous F, trajectory and the second
step is according to each syllable, calculating qTA parameters of the its part of the F, trajectory by applying
the second solution.

By using polynominals for the approximation component of qTA model, qTA parameters obtained by the
second solution already generates a F, trajectory with fitting a given complex shape F, trajectory of a mutli
syllable word is better than the results published in [16; 20]. The target and plynominal’s coefficients are namely
qTA vector parameters or qTA representation. By the well-known Weierstrass approximation theorem, any gi-
ven F, trajectory of word is fitting by synthesized trajectories based on qTA parameters. In addition, it should
be emphasized that qTA’s parameter calculation is completely automated.

The rest of the paper is organized as follows. Section 2 presents about RAPT framework, Fujiaki model
and qTA model. Section 3 presents an algorithm to determine the pitch markers of the original voice signal in
a time domain based on the cumulative signal. This section also presents two algorithms to solve (L1) at one
and two-tone levels respectively. Experimental results are given in section 4. Conclusions and future research
direction are in section 5.

Theoretical basis

RAPT framework and instantaneous pitch estimation. This issue requests to develop algorithms in de-
termining parameters for representing fundamental frequency trajectories of word tones of the tonal languages
such as Vietnamese, Mandarin or Thai and so on.

In the tonal languages, by distinguishing the meaning of a syllable and by tone sandhi in which the tones
assigned to individual syllables change based on the pronunciation of adjacent syllables, one of the basic
parameters of speech is PM and the parameters generating the fundamental frequency trajectory of the word.

For determining PMs and calculating the fundamental frequencies of speech samples, there are many algo-
rithms in the literal, such as the results published in [4; 6; 22-25].

Most of these results follow an approach with three main steps: (i) divide a voiced segment into short seg-
ments (frames), (ii) estimate the fundamental frequency value at each frame and (iii) use dynamic program-
ming algorithms to determine the PMs taken from the peak, or valley points of the speech signal and so on.

In details, RAPT estimates overall periodicity of the analysis frame using normalized cross-correlation func-

tion (NCCF). Let s(m) be a speech signal, z — step size in samples and 7 — window size. The NCCF (p(x, k) of
K samples length at lag & and analysis frame x is defined as [4]:
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fen1 k=0, K—1;m=xz;x=0,M-1,
where e, = z s
I=i

The Fujisaki model is a super positional model for representing F, trajectory of speech. According to the
model, F, trajectory is generated as a result of the superposition of the outputs of two second order linear
filters with a base frequency value. The second order linear filters are for generating the phrase and accent
components of speech. The base frequency is the minimum frequency value of the speaker. In other words, F,
trajectory is obtained by adding base frequency, phrase components and accent components.

Fujisaki model has many parameters which described in the below formula, and currently, there is no nu-
merical method to solve fitting problems when knowing a trajectory in advance.

1 J
log Fy(1)=logFy + Y. 4,G,(t=T,,) + ¥, 4,{G,(t-T,,) - G,(r-13,)},
i=1 j=1

o’texp(—o) for 20
G, = :
0forz<0

c min [1 -1+ Bt)exp(—Bt)] fort>0
“ |0forz<0 ’

where F, — baseline value of fundamental frequency; / — number of phrase commands; J—number of accent com-

mands; 4,, — magnitude of / phrase command; 7;, — timing of / phrase command; 4, — amplitude of j accent

command; 7', — onset of j accent command; 7, — offset of j accent command; o — natural angular frequency

of the phrase control mechanism; [ — natural angular frequency of the accent control mechanism; y — relative

ceiling level of accent components.

The NCCEF is the most computationally expensive operation in RAPT and so the algorithm performs the
NCCF in a two pass process. A down-sampled version of the input signal issued to estimate the first set of
candidate peaks, followed by a high resolution (full sample rate) NCCF around the candidates of interest.

The algorithm is summarized below:

* periodically compute the NCCF of the down sampled signal for all lags in the range of pitch. Location so
flocal maxima in this 1* pass of the NCCF are recorded;

 compute the high resolution NCCF (signal at original sampling frequency) only around the peak locations
recorded in previous step;

e search for local maxima in the high resolution NCCF to obtain improved peak locations and amplitude
estimates;

* dynamic programming is used to select the set of NCCF peaks or unvoiced hypothesis across all frames.

Fujisaki model. In the Fujisaki model, as illustrated in the fig. 1, the shapes of local F, peaks and global F,
trends are modeled as the on- and off-ramps of step and pulse responses of a second-order linear system. These
responses are assumed to be associated with accent and phrase commands that are linguistically meaningful. Thus
the commands, as the hypothetical underlying components of intonation, are different from the surface F, trajec-
tories. And the latter are the product the underlying commands generated by the articulatory mechanism im-
plemented in the model. The surface F, trajectories are generated by a mechanism that compromises between
maximum smoothness and full realization of the underlying tonal templates. Fujisaki model is also available
for generating intonation trajectories of any language such as Russian, English, Vietnamese and so on. How-
ever, it is a complex model with a lot of parameters.

The qTA model is presented on the fig. 2, which will be detailed in the next section, simulates F, trajec-
tories as syllable-synchronized laryngeal movements toward underlying pitch targets that are either static or
dynamic.

Thus all these models assume that surface F, trajectories result from certain articulatory mechanisms rather
than from direct acoustic manipulations.
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Fig. 2. The qTA model

qTA model (Xu model). In the phrase context, by the tone sandhi occuring, the number of trajectory
shapes of syllables is increasing many times over the isolated syllables. Therefore, it is not easy to model
these variations.

In the tonal languages, for parameterizing fundamental frequency trajectories of speech utterances, it is
usual to use the Fujisaki or Xu models. For example, in [20] Hansjoerg Mixdorf and his colleagues already
used the Fujisaki model to model Vietnamese fundamental frequency trajectories of syllables in the phrase
context.

In the Fujisaki model, fundamental frequency trajectories are formed from the intonation trajectories and
the stress trajectories. This can lead to a change in the shape of the original tone in tones, such as flat tone
being converted to another tone with the fundamental frequency value falling down due to the influence of the
intonation trajectories. In addition, the Fujisaki model requires a lot of parameters to represent the fundamen-
tal frequency trajectories. Therefore, it is not easy to calculate Fujisaki model parameters by fitting the given
fundamental frequency trajectory and until now there are no numerical computation methods to extrace the
parameters by fitting methods.

Tones can be analyzed into two components frequently combined: the pitch (the height of the base bar,
referred to as the static characteristic) and the tone (direction of the high-frequency change, called dynamic
features) in the process of expression. Thus, each tone can be described as a combination of the two.

The static and dynamic characteristics can be modeled using the «pitch target» concept of the Xu model [6].
This is a model that has been investigated and used by Xu and his colleagues to generate fundamental fre-
quency trajectories for tonal languages such as Mandarin and Thai, for example Prom-on and Yi Xu [24; 26].
Advantages of the model are simple, less parameters and can be learned statistically to generate the appropriate
fundamental frequency trajectories representation. About recent results using qTA representations of Xu model
can be read in [21; 27; 28].

The F, control is implemented through a third order critically damped linear system, in which the total

response is the remain component given by formula (1), where the first term x(t) is the forced response of

the system which is the pitch target and the second term is the natural response of the system. The transient
coefficients ¢, d and g are calculated based on the initial F, dynamic state and the pitch target of the specified
segment. The parameter A represents the strength of the target approximation movement. In qTA, the initial F,

dynamic state consists of initial F; level, fO(O), velocity ﬁ)'(O), and acceleration fo”(O). The dynamic state is

transferred from one syllable to the next at the syllable boundary to ensure continuity of F,. The three transient
coefficients are computed with the formula presented on the fig. 2.
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Proposed method for determining PMs and TA representation

In this section, we propose a pitch mark detection algorithm for utterances and F, trajectories generation
algorithms for tones in a tonal language.

PMs with cumulative signals. Let x = {xj }1< . be a voiced segment, without loss of generality, we as-
<j<

sumed that the signal x is sampled from an interval [—a, a] with some a > 0. The cumulative signal s = {Sj }1< y
of x can be defined by <j<

J
—  def
si=x, V=2, N, s,=s,_,+x,= J.xtdt.
1

Example 1. Consider the following utterance extracted in the Vietnamese book «Adventures of a Cricket»,
where PMs (marked by small circles) of the original speech are located at the signal points changing from po-
sitive to negative, as the peaks of the cumulative signal respectively, this case is described by the fig. 3.

As we can see, there is a relationship between signal points changing from positive to negative and the
peaks of the correspondent cumulative signal by the following fig. 4.

For the following utterance, it is divided automatically into 7 voiced segments by using a method for loca-
ting the silience/voiced/unvoiced part (see [21]), each segment is shown in a pair of red-blue dashed lines, this
case described by the fig. 5.

The peaks of the cumulative signal are more visible than the peaks of the original voice signal as illustrated
in fig. 6, b.

-2 r il ' L I !

) I ‘ x ‘ f o

“6F Jur (ke : 1 .

8 ; i I

_10 1 1 1 N 1 N 1 1 1 1 1 -
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sample)

Amplitude (sample)

| |
L [\

T T

1 1

Amplitude (sample)

|
(o)}
T
1

_10 Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sample)

Fig. 3. Utterance «Trdi/nghe/trd/gio/Am/Am/trén/mat/nudey
(TPA transcription: «teg:jd neid teg:Vl zo1 gmid gmi teenid ma?tl niok’»;
translation: «God make the rumbling wind on the water») (a)
and the cumulative signal of the voiced part /gi6/(/zo1/, /wind/) (b)
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Fig. 6. A partial signal of the second segment (@) and corresponding cumulative signal ()

The PMs located at peaks of the original voice signal are indistinguishable in amplitude from points sur-
rounding them. In the details, the peaks having higher amplitude than the surrounding ones, usually also are
PMs of the cumulative signal.

The peaks of the cumulative signal are related to the time points at which the original signal changes from
positive to negative. This is the principle that if the PMs of the cumulative signal are well positioned, we will
successfully locate PMs from the peak or valley points of the original voiced signal.

First of all, we will give some definitions and prove some simple properties derived from them.

Definition 1. (The sets of time points at which the original signal changes from positive to negative and
vice versa.)

For x = {x} o we let zI and z_ denote two sets of time points as the following:

Jhi<j<N’
z;d {|x>0/\x,+1<0}, {|x<0/\xl+1>0}.
In addition, we also denote
def
|x >0}
and
_ def |x <0}

and peak (x) denote the peak set of x (to get peak(x), see [28]).
Proposition 1. (i) peak( ) C z and peak(— ) C z,, where s is the cumulative signal of x.

(ll)lfl jcx* then{ S;y 8o cnes J}lsamonotonzcmcreasmgsequence andzfl jcx then{ S, IH,...,Sj}

is a monotonic decreasing sequence.
Proof.

(1) ‘v’iepeak(s):>si>s IAS>S1+1:>(xi:Si_Si—1>O)A(‘xi+1:‘gi - <O):>x>0/\xz+1<0:>

= i€ z!. Sopeak(s)c z;. Similarly, we have peak(—s) < z;.
(ll)l]Cx :>Vk—l] Lx,>0=s85_,,-85=x,,>0=s5, >s.

Moreover, i, j C X = Vk=1i, j—1L,x,<0=s,,, —85=x,, <0=s_,<s,.

From here, we propose a new approach, instead of locating PMs based on the original speech wave, we
determine PMs in the timing of peaks of the cumulative signal of the speech. From the PMs of the cumu-
lative signal we will locate the other PMs, such as the PMs located from the peaks or valleys of the speech
signal.
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Definition 2. Let x= {xj} v be a voiced segment and s = {S}quv the cumulative signal of x. Let

1<j< j

denote pitch marker zeros (PMZ), PMZ! = { pmzf} as the given PMs which located from the peaks of's. We
let PMZ_, PM; and PM_ denote three PM sets derived from PMZ (find in each range of two consecutive
PMs of PMZ?) as the following:

def

Pz 2 {13k =min i e pk(5), <1< o .

def

PM; = {k/EIj:k: min{l/lepeak(x), pmzt_ <1< pmz? }},

j-1—=

PM; = {k/3j: k =min{1/] € peak (~x), pmz} , <1< pmz; }}.

Let s, be the cumulative signal of x,, where x, is the k voiced segment of the utterance. To determine PMZ;
of s,, we can see that the PMs are chosen based on the following two criteria:

(i) the dependencies of the distances between consecutive PMs;

(i1) with two adjacent peaks of s,, the peak with a greater amplitude is preferred over the other.

The process of selecting the appropriate peaks of s, is a looping, multi-step process, consisting of appends,
deletions, insertions and modifications to ensure that the criteria (i) and (ii) described above do not create
redundancy and lost of PMs. With that said, we propose a simple and intuitive R1-R6 rules, to determine

PMZ; .= {Pk, | P € peak (s, )} for s,.
R1. (Appending the first PM.)

‘Sk, n
dif ne peak{sk}

PMZ; .= { pk,l}, where mean, =

s Pi = argmin {‘sk,n > meank} (the first PM p, | of s, is

#peak{sk} n e peak{s, }

the first n peak whose amplitude s, , is over the threshold mean,).
R2. (Appending the next temporary PM.)

If there exist some m € peak(s,) and m — Dy € [fs/f0 max> ]ﬁ/j;)’mm], where p, = max{PMZZ,x} then
PMZ; . =PMZ; U {m}.

R3. (Delete a temporary PM.)

If there exist some two consecutive temporary PMs, Pijvs Di, € PMZZ’X such that DPij—Prj1 &

2 [f; /f(), max fs/fO, min :|’ then PMZZ,X = PMZZ,X\ {pk,j }
R4. (Delete a temporary PM.)

. . +
If there exist some three consecutive temporary PMs p, ;_,, p, ;» Py ;1 € PMZ;  such that 5, <

. . *
< mm{sk,pk.,,,’ Sk,pk,,ﬂ} A mm{pk,_/ T Prj-1o Prji —pk,j} <05 max{pk,_/ T Prj-1 Prji —pk,j}, then

PMZ;  =PMZ; M p, ]
RS. (Insert a peak into the temporary PM set.)

If there exist some three consecutive temporary PMs p, .\, p, ;, p, ;,, € PMZ . such that p, ., —
—p > o (pk’j - p,w._l) then PMZ; . =PMZ; U {m}, where m is m e peak (S, ): Py <M< P [m—
- ( Pt Pi )/ 2‘ — min and o is an experimental parameter, o > 1.

R6. (Replace value of a temporary PM.)
If there exist some three consecutive temporary PMs p, . |, p, ;s Py ;41 € PMZ;  such that Im e

def

€ peak(S[pk ]) A (‘v’t € [pk’j -T/2, p, ; + T/2] =5, < sk’m) then reassign p, ; = m, where T =

-T2, p +T12

def .
= mln{pk,j = Prj-1 Prjn1 _pk,j}'

Using R1-R6 rules, the proposed algorithm determining the PMs based on the cumulative signals includes
some simple main steps, it is described by the fig. 7.
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Source signal

Divede the original speech signal into
voiced/unvoiced speech segments

1

Calculate the cumulative signal of each
voiced segment and extrace its peaks

1

Estimate PMs of each cumulative signal

'

Go back the original speech signal
to estimate PMs

Estimate pitch marker

Fig. 7. Scheme of estimate PMs of a speech utterance

The algorithm of EPM is given as follows.
Algorithm 1. EPM (Estimating the PMs of speech waves.)

Input:

speech signal {xm} in time domain.

1<m<N

Sampling frequency value: f,, [ Jo. min> fo’max] is the range of F values.

Output: number of voiced segments K, PMs according to four types

+ - - +
i} {pm)} {Pi) {pi;}
{p kilh<k<k1<j<n’ P 1<k<K1<j<n’ Pu. ISk<K 1<j<n,’ Pr.j Isksk1<j<n,’

where { pm; } , { pm; } are the two traditional PMs.
S l<k<k 1< j<nf JI1<k<K 1< j<n;

Step
method,

1: segment the signal {xm} into K voiced segments, {xm}

see [14]).

and other ones (a simple

1<m<N Ny SmsN,

Step 2: Tmin :Ji/fo, max? Tmax :fv/fO min*

Step 3: repeat, on each voiced segment {xm}

3.1:
3.2

3.3:
3.4
3.5:
3.6:
3.7:
3.8:
3.9:

3.10: determine the PMs according to the local maximum point criterion of k£ segment {xm}

k=1,K to determine PMZ ,:

2
Ny 1 Sm<N,

calculates the cumulative signal s, = {sm} k=1,K following the formula (1).

5
N 1Sms< N,

determine the peak of s5,, compute the average amplitude at the peak of s:
mean, = z ‘sk,n /#peak{sk’n}.
ne peak{Sk}

determine the first PM of PMZ] , by using rule R1.

repeat the substeps 3.5-3.8 when at least one of the conditions of the rules R2—R6 is true.
using the rule R2 to extend PMZ ,.

using the rules R3 and R4 to reduct PMZ] ,.

using the rule RS to extend PMZ} ,.

using the rule R6 to change the element values of PMZ_ .

stop and obtain PMZ , .

N, Sm<N,

For each range of two consecutive PMs of PMZ7, find pm; , = max {peak{xn }p ansp } and obtain

PM:,k = {pml-:j}

3.11: determine PMs according to the local minimum point criterion of k£ segment {xm}

NkAISmSNkVZ
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For each range of two consecutive PMs of PMZ;, find pm,_ ;= min {peak{—xn}p } and obtain

PM_, = {pm,;j}.
Step 4: determine PMs like pulse points for Praat type [24], the same as step 3 above, but taking the local
k=1,K.

GSNS P

minimum point of the cumulative signal, obtain PMZ_, = { p]:’j} on k segment {xm}

N, sms<N,’
Step 5: putPMZ; = U PMZ;,,PMZ = U PMZ_ ,,PM;= U PM],and PM; = U PM, .

1Sk<K 1<k<K 1<k<K ’ 1Sk<K

Return: number of voiced segments K, PMZ', PMZ_, PM; and PM_.

After obtaining PMs of tonal word speech signals, the next step is to stylize F, trajectory of the tones and fi-
nally use an algorithm such as the PSOLA [29] to create the desired speech word from multiple input syllables.

The following proposed algorithms will focus on generating F, trajectories of tones by using the pitch target
model.

Generating F, trajectories of Vietnamese isolated syllables. We will apply the method to identify PMs to
synthesize tones of Vietnamese isolated syllables. To stylized tones, we use Xu model, which has been widely

used for Mandarin [30] to model F, contours of the tones (for tonal languages). F' (t) ~o'e™+a't+b such

that a F, contour is created from the combination of the two components: the linear approximation ot + b and
the non-linear approximation o.'e *'.
The computing of the coefficients of the model, given trend-line F,, value also uses the least squares method,
instead of finding the coefficients a, b, o, A we determine a, b, k (k= ¢ *) by minimize the objective function:
n—1 P
(i —a'(i+1)=b=K'(F,,—da'i=b)) - min, )

i=1

where 7 is the number of speech frames, {E),i}:’:l is a F,; sequence of each frame corresponding. The stylized
method using Xu model is built as follows.
Step 1: select syllables with level tone, drop tone with syllables ending p-#-c/ch, determine F, trajectory
of them.
Step 2: determine the PMs of this wave of tone by algorithm 1.
Step 3: using least squares method to fit Xu model’s parameters as a, b, k. Generate target F, trajectory
by the Xu model.
Step 4: using PSOLA algorithm to synthesize a syllable with the target tone.
The algorithm of synthesis of tones is given as follows.

Algorithm 2. (Synthesis of tone for a Vietnamese syllable signal.)
Input: voice signal x,, in time domain of a Vietnamese syllable with any given tone {level, falling, raising,
drop, curve, broken}. Sampling frequency value f.
Parameters [a,, b,, c,. d,, g, k,] represent the target tone fn belong to {level, falling, raising, drop, curve,
broken}. Need to synthesize in the form of qTA in formula (2), 0 <k, < 1.
A > 0 is the width parameter of the frame with measure units of milliseconds, N, M are the length of input
syllable length and synthesis syllable, the calculating unit is milliseconds.
Output: x_, the sound wave has the tone .
Step 1: use the value of £, convert N, M, A to the number units of sample.
Step 2: determine the set PM;, (starting assign PM;(O) =) of input sound waves using the proposed
algorithm 1. Notice that on the unsound we assign:

PM; (k)=PM; (k—1)+ A, ke (1, Ny ).
Step 3: generating F trajectory of target syllables using formula (2), concretely calculated as follows:

foon()=ayt+b,+(k,) (c,2+d,1+ gm), 1=1,T,

ut 2

where T, = [M/A].

Step 4: determine the set PM_ , as the following formula:

ut(k) = PMout(k - 1) + »fs /fO,out (k/A)’ k = 1’ N

out ?

out

PM,.(0)=0, PM,

O

where N, = max {k:PM, (k)< M}.
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Step 5: use the algorithm PSOLA [29] getting:
X, = PSOLA (x,,, PM;,, PM

in? in? out )

Output: wave signal x_ . syllable has new tone is .

out

Experiment

In order to experiment with proposed algorithms, we use Vietnamese voice data to illustrate. The Vietna-
mese language is a monosyllabic and tonal language with six tones (see table) and is the most complex lexical
tone in tonal languages.
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Fig. 8. The typical F,, trajectories shape of some tones
of Vietnamese isolated syllables rising tone (a), broken tone (b),
drop tone (c¢) and A F, trajectory (d) of the word /duin/day/ (z un z aj\) with tone sandhi

Experimental data. In order to experiment the algorithms, a single speaker story reading corpus was created,
uttered by a female speaker of standard Vietnamese voice. Sentences are extracted in the Vietnamese book «Ad-
ventures of a Cricket».

Experiment to extract the PM points. The formulas show that algorithm 1 has a smaller computational
complexity than dynamic programming-type algorithms [4] because it does not require the steps to segment
the whole speech utterance into short time frames and choose a suitable time point of each short time frame
that gives high autocorrelation value. For the reliability of algorithm 1, we will compare algorithm 1 with the
Talkin-type algorithm implemented in software Praat [23]. The parameter f, .. = 50 Hz, f; .., = 550 Hz and
a = 1.6 for the RS rule.

To compare the similarity between the two PM sequences of the same voiced segment, we give the follo-
wing objective indexes that is based on the edit-distance (about a related work, see the algorithm for alignment
of the reference epochs (EGG epochs) to the test epochs [18]).

Firstly, let PM, = { pm, }f"_ ,and PM; = { pm; }n - then we define the measured value DPM(PM ;» PM J) by:
i= j=
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Dpa(PM, PM,) D, ({pm " {pr ) Jimin o, n},

D

i—1,j°

D,

i-1,j-1

vijz2.

Secondly, over the whole utterance, we get the average of the D,,, values calculated from the same voiced
segment sequence of the utterance. The average ED is defined as follows:

where D, | =|pm, — pm]| and D, ;= ‘pml. - pm]" + min{D

i, j—1

ED = iDPM(PM,,k, PM, , )/K.
k=1

where < PM * and {PM }K are PM sequences of k voiced segment of the utterance that have K voice
Lk f4=1 Sk =1

segments total.
To compare with another PM estimation method such as Praat [23], we use the algorithm 1 to obtain the

PMs PM_ with valley type for each voiced segment received by Praat, then we calculate ED values. Table
below shows the similarity between the estimated PM_ and PMs (called pulse points, PPs) of the Praat type.

Measuring the similarity between PM_ and PPs of Praat

Utterance Content K E, ms

«Pirng lo xem mdy vdn troi dém nay cé co doi gio»
«dind] 1od1 semid moj11 va?nil teg;jdl demd
#1 najid ko1 ko:14 dojid zod1» 7 0.5022
«Do not worry, looking at the clouds,
the wind may change direction tonight

«Ttr ché nay muon qua ché khdc ching t6i chi ldch nhich tirng teoy
«tid] teo?011?najdJamuonilokwa:14
teo?011?xa:k1lateunIntojdd teidld lajk41 nikdTktindlte?wd12»

«To move from one place to another, we have to move little by little»

#2 13 0.3234

«Chiii bao chiii khéng nhin thay»
#3 «teu?uj11?6a; ?ujthteu?uji1?xownHwnind Ithoj419j» 5 0.3671
«Chui claimed he could not see anything»

«Troi nghe tré gié am am trén mat nuwéc»
#4 «teq;j41 nedd teq; 114 2041 amil amdl teendd ma?td] niokd1» 4 0.2751
«God makes the rumbling wind on the water»

«Thi ra bé chiing téi tir hiic ndo da tréi vao gan mét bo coy
«thid] za: 41 Bed] teund1 toj 41 tidl luk41 na;wil da?adl
teojdd va;wil yandl mo?tdl 69;41 koil4»

«Turns out our boat has drifted toward the grasslands»

#5 13 0.2292

«Ay vay ma liic d6 chén ngon ddao dé»
#6 «j11 va?jdl ma;d] lukd1 do11 teend1 nonid da:wA1 dedlH» 7 0.2217
«The food was surprisingly yummy to me though»

As we can see, the PMs determined by the algorithm 1 are more noticeable than the result of Praat when
directly observing by eyes the speech signals as illustrated in fig. 9, a, and fig. 9, b, below.

However, Praat can ignore some pulse points, this case is described by the fig. 10, @, and fig. 10, b (whereas
algorithm 1 does not).

Conclusion

In this paper, we propose two algorithms to determine the pitch markers of the original voice signal based
on the cumulative signal and generate F, trajectories of tones.

The first algorithm is effective, with no need to divide a voiced segment into short segments (frames) as
other methods, yet still achieving high accuracy. With the Vietnamese speech data of the lexical tones and
phonetics tested (the full coverage of the Vietnamese phonetics was included), the results of calculating the
pitch markers according to the new approach proved to be correct. The second algorithm used for generating
F, trajectories of tones with qTA parameters of Xu model.
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Fig. 10. With the utterance #2 (see table)
in the second voice segment, mising a PP around 355" sample (),
and in the five voice segment, mising a PP around 497" sample (b)

Yi Xu has focused on how lexical tones of Mandarin were produced and perceived in continuous speech
and has proposed the qTA model which considers the segmental phonemes, tones, and pitch accents as abstract
units called pitch targets. In Mandarin, pitch targets are separated into static targets-[high] and targets-[low],
and dynamic ones-[rise] and ones-[fall], which are associated with the four lexical tones respectively. This
model gives a more accurate description of lexical tone variations in the syllable than the Fujisaki model.
However, the qTA model needs labels on the onset and offset of the pitch target, and is difficult to implement
on training speaker dependent prosodic styles. Prosody is employed to express attitude, assumptions and atten-
tion in daily speech communication and has been studied by linguists, phoneticians, speech therapists. In re-
cent artificial intelligence developments, people seek to communicate effectively with intelligent machines
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on a more personal and human level. To synthesize natural and human-sounding speech by computers, prosody
plays an important role, which related to pause, pitch, speech rate and loudness. Among the factors which weave
the prosody, pitch or fundamental frequency (in this paper we consider pitch and fundamental frequency (F,) as
the same) is the most characteristic.
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