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Pulling extremely anisotropic lossy particles using light without intensity gradient
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We study the effect of pulling optical force acting on a nonmagnetic anisotropic bead in electromagnetic fields
without intensity gradient. Extreme anisotropy can be realized by a hyperbolic metamaterial made of metal-
dielectric multilayers. We find that a passive anisotropic Rayleigh particle cannot be pulled by the electromagnetic
beam without intensity gradient and the nonparaxial incident beams can exert backward negative force acting on
anisotropic dipole spheres. We investigate the validity of the dipole approximation and establish the conditions
for pulling hyperbolic-metamaterial particles. It is important to note that the loss in hyperbolic metamaterial
does not suppress the effect of pulling force. We notice that the nonradial components of the permittivity tensor
strongly affect the optical force and propose the way of material engineering to ensure the optical pulling.
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I. INTRODUCTION

Optical force can be divided in two parts: gradient and
nonconservative force. The force of the first type as F = ∇V (r)
does not perform work in a closed loop and, therefore, is
also called conservative. It has been widely used in optical
manipulation for microparticles, e.g., in optical tweezers [1,2].
Gradient forces are able to shift objects towards either the
intensity minimum or maximum depending on the relation
between the refractive indices of the object and ambient
medium. Hence the particles can be moved along any direction
giving a proper three-dimensional (3D) control [3]. This
control is realized using the continuous tuning of the field
maximum (minimum) by a computer hologram. A single
diffraction-free light beam is an easier solution resulting in
the pulling force within a long distance like a tractor beam.
The intensity of the diffraction-free beam (Bessel beam [4]
and Airy beam [5]) does not change along the direction of
propagation; thus the gradient force is absent in this direction.

Light field without intensity gradient usually creates the
pushing force (light pressure). This well-known effect was
discovered experimentally a hundred years ago by Lebedev [6].
The pulling force F < 0 using the light pressure is not obvious.
It was predicted recently for a superposition of plane waves
having the same value of the longitudinal wave number
(nondiffracting beam) in optics [7–9] and acoustics [10,11].
It can be explained in two ways. First, if the forward-scattered
electromagnetic field results in the great field momentum,
then particle’s recoil momentum is directed towards the
light source [7,12,13]. Second, the interaction of multipole
momenta induced by the incident light in the particle can
originate the negative backward optical force [7,8,14].

It was shown preciously for isotropic particles that non-
paraxial light beams should be used to obtain pulling force [7–
9] and the force in dipole approximation can be negative for a
wide range of material and size parameters of the particle [15].
The present paper generalizes the previous results on the
case of pulling rotationally symmetric anisotropic spherical
particles. Special attention is paid to the influence of different
components of the permittivity tensor on the optical force. We
investigate (i) the light scattering in the case of anisotropic
(including hyperbolic-medium) particles, (ii) paraxiality

criterion for pulling effect by the light without intensity
gradient, (iii) possibilities of pulling anisotropic Rayleigh
particles, and (iv) applicability of the dipole approximation.

The paper consists of seven sections, the first of which
is the Introduction. In Sec. II we formulate the problem to be
solved, demonstrate the realization of particle’s anisotropy, and
propose the energy-based criterion for choosing an adequate
solution inside a spherical particle. In the third and fourth
sections we show for the general nondiffracting beam that
pulling force is impossible for passive Rayleigh particles and
nonparaxial beams are necessary. In Secs. V and VI we analyze
the pulling force effect for dipole beads and Mie spheres in
nonparaxial Bessel beams. Section VII concludes the paper.

II. LIGHT SCATTERING BY ANISOTROPIC
DIELECTRIC BEADS

We consider an anisotropic spherical particle in vacuum
characterized by the radius R, dielectric permittivity tensor

ε̂ = εrer ⊗ er + εt (eθ ⊗ eθ + eϕ ⊗ eϕ), (1)

and magnetic permeability μ = 1. Here er , eθ , and eϕ are the
basis vectors in spherical coordinates. Real parts of the radial
εr and transverse εt permittivities can be positive and negative.
The case Re(εt )Re(εr ) < 0 corresponds to the hyperbolic-
metamaterial particles [16,17]. Unusual permittivity with
extreme values of εr and εt can exist only for the composite
media. Nevertheless, particle’s material is assumed to be a
continuous medium in this paper.

Let us discuss how continuous-medium permittivity tensor
Eq. (1) could appear. We consider a multilayer spherical
particle shown in the inset of Fig. 1, which consists of
a core (permittivity ε1 and radius R1) and 2N alternating
spherical layers of the same thickness (permittivities ε(1)

and ε(2); thicknesses h(1) and h(2)). When the discrete-
layer system is homogenized, it can be replaced by the
homogeneous anisotropic cladding with effective permittivity
tensor in Eq. (1), the components of which are calculated as
follows [17]:

εt = ε(1)h(1) + ε(2)h(2)

h(1) + h(2)
, εr = ε(1)ε(2)(h(1) + h(2))

ε(1)h(1) + ε(2)h(2)
. (2)
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FIG. 1. (Color online) Dimensionless optical force Fzk
2
0/|c1|2

acting on a multilayer spherical particle in nonparaxial Bessel beam in
Eq. (21) versus permittivity of the core ε1 = ε′

1 + i0 for two types of
hyperbolic-metamaterial coatings formed by 2N alternating spherical
layers with permittivities ε(1) and ε(2): (a) ε(1) = −17.2 + 0.8i,
ε(2) = 2.59 (effective parameters of the periodic structure εr = 6.1 +
0.05i and εt = −7.3 + 0.4i); size parameter of the core 2πR1/λ =
0.25, α = 70◦; (b) ε(1) = −4 + 0.16i, ε(2) = 20 + 0.04i (effective
parameters εr = −10 + 0.5i and εt = 8 + 0.1i), 2πR1/λ = 1.1, and
α = 80◦. Parameters: size parameter of the particle 2πR2/λ = 2,
Bessel beam’s order m = 1, and beam’s amplitude c2 = ic1 (λ is the
radiation wavelength).

Hyperbolic metamaterial can be realized as a periodic metal-
dielectric structure having Re(εt )Re(εr ) < 0. Thus radial
anisotropy of the form (1) appears in the model of spherical
multilayer systems.

In Fig. 1, we compare the optical forces acting on a
multilayer particle and a core-shell particle consisting of a core
and anisotropic coating with effective transverse and radial
permittivities in Eq. (2). The force is calculated using the
integration of the Maxwell stress tensor over a sphere around
the bead, while the scattered electric and magnetic fields
are found from the Mie theory (for multilayer particles we
apply the method described in Ref. [18]). Effective parameters
in Eq. (2) are well applicable, when N is great. However,
smaller N results in the reasonable values of the optical
force, too. Optical force in Fig. 1(a) is positive (pushing)
and corresponds to the hyperbolic metamaterial with Re(εr ) >

0 and Re(εt ) < 0. For the second type of the hyperbolic

metamaterials Re(εr ) < 0 and Re(εt ) > 0 and the force can
be negative (pulling). Parameters ε(1) and ε(2) in Fig. 1 are
exemplary.

When an anisotropic sphere in vacuum is illuminated with
an electromagnetic wave of angular frequency ω = 2πc/λ (c
is the speed of light; λ is the wavelength), the scattered electric
and magnetic fields are computed using the Mie coefficients

al = n2jν−1/2(nx)[xjl(x)]′ − jl(x)[nxjν−1/2(nx)]′

n2jν−1/2(nx)
[
xh

(1)
l (x)

]′ − h
(1)
l (x)[nxjν−1/2(nx)]′

,

(3)

bl = jl(nx)[xjl(x)]′ − jl(x)[nxjl(nx)]′

jl

[
xh

(1)
l (x)

]′ − h
(1)
l (x)[nxjl(nx)]′

,

where jl(x) = √
π/2xJl+1/2(x) and h

(1)
l (x) =√

π/2xH
(1)
l+1/2(x) are the spherical Bessel function and Hankel

function of the first kind of order l, respectively [Jl+1/2(x)
and H

(1)
l+1/2(x) are the Bessel and Hankel functions], j ′

l (y)
stands for the derivative with respect to function’s argument
y, n = √

εt , x = k0R is the size parameter, k0 = ω/c is the
wave number in vacuum, and ν = √

l(l + 1)εt/εr + 1/4.
In the case of isotropic media εr = εt and we arrive at the
ordinary Mie coefficients (ν = l + 1/2) [19].

From the comparison of the Mie series truncated at l = 1
and radiation of the dipole (electric and magnetic dipole
moments are p = αeE and m = αmH, respectively), one
can link the polarizabilities of the bead αe,m with the Mie
coefficients a1 and b1 as

αe = 3ia1

2k3
0

, αm = 3ib1

2k3
0

. (4)

When the size parameter x = k0R � 1, the spherical
Bessel and Hankel functions approximately equal

jm(x) ≈
√

π

2

2−m−1/2


(m + 3/2)
xm,

(5)

h(1)
m (x) ≈

√
π

2

[
2−m−1/2


(m + 3/2)
xm

+ im

π
2m+1/2
(m + 1/2)x−m−1

]
,

where 
(m) is the gamma function. By substituting these
functions into the Mie coefficients, we have the polarizabilities

αe,m = α(0)
e,m/k3

0

1 − 2iα
(0)
e,m/3

, (6)

where the normalized static electric and magnetic polarizabil-
ities

α(0)
e = εt − ν1/2 − 1/4

εt + ν1 + 1/2
x3, α(0)

m = 0 (7)

are introduced, and ν1 = √
2εt/εr + 1/4 is the quantity ν

at l = 1. It should be noted that αm = 0 only for Rayleigh
particles, whose radiuses are much smaller than the wavelength
(x � 1). For bigger dipole spheres, magnetic polarizability αm

should be described by Eq. (4) as it was discussed in Ref. [20]
in the case of nonmagnetic isotropic particles.

Incident light induces electric and magnetic fields inside
an isotropic bead. Generally these fields can be described by
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a couple of independent solutions described by the Bessel
spherical functions of the first jn(x) and second yn(x) kind.
However, since ym(x) becomes infinite at the center of the
particle, there exists only one solution inside the sphere [21].

For anisotropic particles, both independent solutions can
result in the singular fields at the center. In this case the energy-
based criterion should be used,∫

|E|2dV < ∞. (8)

From the criterion one concludes (see the Appendix A) that
the appropriate solution of the Maxwell equations expressed
by means of the spherical Bessel functions jn(x) should satisfy
condition Re(ν1) > 0.

In conclusion of this section, we have considered three
regimes. The first regime (Rayleigh approximation) corre-
sponds to small particle’s radius compared with the radiation
wavelength R � λ. In the second regime (dipole approxima-
tion) we are confined with the electric p and magnetic m dipole
moments. Particle’s radius is compared with the wavelength
R ∼ λ. The third regime is the exact calculation using the
full Mie series, which includes electric and magnetic dipoles,
quadrupoles, octupoles, etc. Materials with extreme anisotropy
can be realized in practice as a spherical multilayer system.
Then effective parameters are given by Eq. (2). There are two
independent solutions of the Maxwell equations in a spherical
particle. Both of them can be singular at the center of an
anisotropic sphere. In this case we propose the energy-based
criterion Eq. (8).

III. IMPOSSIBILITY OF PULLING PASSIVE
RAYLEIGH PARTICLES

For electromagnetic fields without intensity gradient along
the z axis, the projection of time-averaged optical force onto
this direction equals [15,22]

Fz = k0β

2
[Im(αe)|E|2 + Im(αm)|H|2]

− k4
0

3
Re[αeα

∗
m(E × H∗)z] (9)

in dipole approximation, where β = kz/k0 is the dimension-
less longitudinal wave number; E and H are the fields at the
center of the spherical bead r = 0.

Nonmagnetic Rayleigh particles have no magnetic po-
larizability (αm = 0); hence the sign of the optical force
Fz = (k0β/2)Im(αe)|E|2 depends on the sign of Im(αe). Let
us analyze the imaginary part of electric polarizability

Im(αe) = Im
(
α(0)

e

) + (2/3)
[
Re

(
α(0)

e

)2 + Im
(
α(0)

e

)2]
k3

0

{[
1 + (2/3)Im

(
α

(0)
e

)]2 + (4/9)Re
(
α

(0)
e

)2} . (10)

Since the second term in the nominator is positive, the
necessary condition of pulling reads Im(α(0)

e ) < 0. Rayleigh
spheres with small size parameters x � 1 possess small
static polarizability |α(0)

e | � 1. Having in mind that normally
|Re(α(0)

e )| � Im(α(0)
e ), the optical force is negative (pulling)

when

Im
(
α(0)

e

) + 2

3
Re

(
α(0)

e

)2
< 0. (11)

FIG. 2. (Color online) Dimensionless optical force Fzk
2
0/β|E|2

versus transverse permittivity ε′
t for the beads of size x = k0R = 0.01.

By considering complex quantities as εr,t = ε′
r,t + iε′′

r,t

and ν = ν ′ + iν ′′, we show some typical dependencies for
Rayleigh particles in Fig. 2. For ordinary material parameters,
the force is either positive or negative depending on the sign of
the imaginary part of permittivity. The force can change from
pushing to pulling and vice versa, when the imaginary part of
static polarizability is comparable with the squared real part
and condition (11) holds (dot-dashed curve). In this case, the
material parameters are hardly achievable, because the losses
ε′′
r,t are extremely small and the permittivity ε′

r is great.
Now we show that passive anisotropic Rayleigh particles

cannot be pulled by the light, because necessary condition
Im(α(0)

e ) < 0 does not hold. The imaginary part of the static
electric polarizability in Eq. (7)

Im(α(0)
e ) = x3 A

(ε′
t + ν ′

1 + 1/2)2 + (ε′′
t + ν ′′

1 )2
(12)

is negative, if the nominator is negative, i.e.,

A = (ε′′
t − ν ′′

1 /2)(ε′
t + ν ′

1 + 1/2)

− (ε′
t − ν ′

1/2 − 1/4)(ε′′
t + ν ′′

1 ) < 0 (13)

or

ν ′′
1 ε′

t > ε′′
t (ν ′

1 + 1/2). (14)

Let us study when this condition is met in the case |ε′′
r,t | �

|ε′
r,t |. We expect that, for greater losses, the pulling is less

feasible because of nonelastic momentum transfer from light
to particle resulting in pushing force [7,8].

(i) ε′
t /ε

′
r > −1/8. Then ν1 ≈ |ν1|(1 + iϕ) (note that we

choose a solution with ν ′
1 > 0 to guarantee the finiteness of

the electromagnetic energy), where

|ν1| =
√∣∣∣∣2 ε′

t

ε′
r

+ 1

4

∣∣∣∣, ϕ = ε′′
t ε

′
r − ε′

t ε
′′
r

ε′2
r |ν1| . (15)

For passive media ε′′
r,t > 0. The necessary condition in Eq. (14)

presented as

ε′′
r

ε′′
t

<
1

p2

(
− p − 1

4
− 1

2

√
2p + 1/4

)
< 0 (16)
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contradicts with the medium passivity and, therefore, cannot
be satisfied for any ratio p = ε′

t /ε
′
r > −1/8. When ε′′

r,t < 0,
the inequality in Eq. (16) can be satisfied.

(ii) ε′
t /ε

′
r < −1/8. This means that the medium is hyper-

bolic. In this situation ν1 ≈ ±|ν1|(ϕ + i). The sign should be
chosen to ensure ν ′

1 > 0: “+” for ϕ > 0 and “−” for ϕ < 0.
Using ν ′

1 > 0 the necessary condition (14) to have a pulling
force takes the form

±|ν1|ε′
t > ε′′

t /2. (17)

We choose sign +, if ϕ > 0 or ε′′
t ε

′
r − ε′

t ε
′′
r > 0. For

passive media ε′′
r,t > 0 the above inequality together with

ε′
t /ε

′
r < −1/8 requires ε′

r > 0 and ε′
t < 0. However, in this

case the condition in Eq. (17) fails, i.e., −|ν1||ε′
t | > |ε′′

t |/2. For
any amplifying media ε′′

r,t < 0 we derive opposite inequalities
ε′
r < 0 and ε′

t > 0, which bring us to identical inequality
|ν1||ε′

t | > −|ε′′
t |/2 as Eq. (17).

The similar reason is valid for the sign −, resulting in
the same conclusion that passive spherical beads in Rayleigh
approximation cannot be pulled to the light source.

To summarize, passive anisotropic Rayleigh particles are
always pushed by the light, while the gain assists pulling force.
In the case of transparent particles ε′′

r,t = 0 (ϕ = 0) we still
have two cases.

If ε′
t /ε

′
r > −1/8, ν1 is a real number, Im(α(0)

e ) = 0, and
Im(αe) > 0. This means that the force is always pushing.

If ε′
t /ε

′
r < −1/8 (hyperbolic media), ν1 = ±i|ν1| is an

imaginary number. Since Re(ν1) = 0, the solution with finite
electromagnetic energy inside the sphere cannot be found. The
case of transparent media is a peculiar situation between two
normal cases: medium with an absorption (pushing optical
force) and medium with a gain (pulling force). Point ε′′

r,t = 0
is the singular point, at which the optical force flips.

IV. NONPARAXIAL LIGHT BEAMS

In this section we study the correlation between normalized
longitudinal wave number β = kz/k0 and pulling force for a
particle in dipole approximation. The necessary condition for
β to obtain optical force Fz < 0 reads

β <
2k3

0Re[αeα
∗
m(E × H∗)z]

3[Im(αe)|E|2 + Im(αm)|H|2]
. (18)

Aiming estimation, we assume |E|2 = |H|2 and Re(E ×
H∗)z � |E|2, then

β < g(ε′
r ,ε

′
t ) = 2k3

0Re(αeα
∗
m)

3[Im(αe) + Im(αm)]
. (19)

When ε′
t /ε

′
r > −1/8, the condition for β can be derived

in the closed form for transparent spheres εr = ε′
r , εt = ε′

t .
Indeed,

β <
k3

0Re(αeα
∗
m)

3
√

Im(αe)Im(αm)

<
y1y2 + (4/9)y2

1y2
2

3
√[

1 + (4/9)y2
1

][
1 + (4/9)y2

2

] , (20)

where static polarizabilities y1 = α(0)
e and y2 = α(0)

m are real.
The maximum of the function on the right-hand side f (y1,y2)

FIG. 3. (Color online) (a) Function g(ε′
r ,ε

′
t ) calculated for a non-

magnetic spherical bead of size parameter x = k0R = 1 (ε′′
r,t = 10−8).

(b) The cuts of function g(ε′
r ,ε

′
t ) at ε′

r = ±10.

follows from solving equations ∂f/∂y1 = 0 and ∂f/∂y2 = 0.
The maximum requires y1 = y2 resulting in β < 1/2. In terms
of the cone angle α = arccos(β) for a nonparaxial Bessel beam
we get to α > 60◦ as for isotropic particles [15]. For absorbing
spheres, the angles α should be greater.

The situation ε′
t /ε

′
r < −1/8 is basically different, because

the static polarizability α(0)
e is a complex number even for

transparent spheres. However, we can expect that the condition
β < 1/2 (i.e., α > 60◦) holds for all dipole particles. To
support this assumption, we demonstrate the quantity g(ε′

r ,ε
′
t )

from Eq. (19) in Fig. 3. Since g(ε′
r ,ε

′
t ) is in the interval from

−0.5 to 0.5, parameter β cannot be greater than 0.5. When
function g(ε′

r ,ε
′
t ) is greater, the pulling force is more feasible.

From the diagram in Fig. 3(a) we conclude that the normal
dielectrics (ε′

r > 0, ε′
t > 0) can be pulled towards the light

source, while metallic particles (ε′
r < 0, ε′

t < 0) cannot be
pulled in dipole approximation. Only one type of hyperbolic
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metamaterial (ε′
r < 0, ε′

t > 0) can result in the backward
optical force. Minimum angle α for hyperbolic media can
be estimated to be 70◦. The previous conclusion of minimum
angles α is invalid beyond the dipole approximation.

V. ANISOTROPIC DIPOLE PARTICLES IN NONPARAXIAL
BESSEL BEAMS: PULLING FORCE FOR LOSSY

PARTICLES

We consider nonparaxial Bessel beam as an incident light
beam illuminating an anisotropic particle in vacuum. In the
following analysis, the Bessel beam is used as a model of
nondiffracting light beam; however, the beam model itself
does not play a crucial role for presented results. Electric and
magnetic fields of a nonparaxial Bessel beam in cylindrical
coordinates (r , ϕ, z) can be written as [8,15,23]

E = eimϕ+iβk0z

(
Jm(qk0r)c2ez − c1

q
(ez × b) + β

q
c2b

)
,

(21)

H = eimϕ+iβk0z

(
Jm(qk0r)c1ez + β

q
c1b + c2

q
(ez × b)

)
,

where b = iJ ′
m(qk0r)er − (m/qk0r)Jm(qk0r)eϕ , J ′

m(qk0r) =
[dJm/d(qk0r)], m is beam’s order, (er , eϕ , ez) is the set of basis
vectors in cylindrical coordinates, and β = kz/k0 and q =√

k2
0 − k2

z /k0 =
√

1 − β2 are the dimensionless longitudinal
and transverse wave numbers. Complex coefficients c1 and c2

introduce TE-polarized and TM-polarized field contributions
for the nonparaxial Bessel beam.

Bessel beam can be treated as a superposition of elementary
plane waves, the wave vectors of which occupy the cone
with angle 2α at the vertex [see the inset in Fig. 4(a)].
Then the longitudinal β and transverse q wave numbers can
be represented in terms of the angle α as β = cos α and
q = sin α. Paraxial Bessel beams are characterized by small
angles α, while nonparaxial Bessel beams have large α (small
longitudinal wave number β = kz/k0).

In the dipole approximation, pulling optical force Fz < 0
is predicted using Eq. (9). Approximation certainly works for
small size parameters x = k0R � 1. But even for greater sizes
x the force in dipole approximation is adequate. Color spots
in density plots of Fig. 4 illustrate the regions of radial ε′

r

and transverse ε′
t permittivities, for which the force in dipole

approximation is negative, Fz < 0. White area is occupied by

FIG. 4. (Color online) Density plots of the time-averaged pulling optical force Fzk
2
0/|c1|2 < 0 in dipole approximation exerted by a

nonparaxial Bessel beam on an anisotropic particle for (a) Bessel beam’s order m = 1, particle’s loss parameter ε′′
r,t = 0.1; (b) m = 1, ε′′

r,t = 1;
(c) m = 1, ε′′

r,t = 2; (d) m = −1, ε′′
r,t = 1. Dashed line indicates the case of isotropic permittivity εr = εt . In the insets in the middle of the

figure, the optical forces in the dipole approximations Fz and beyond F Mie
z are shown for (a)–(c) ε′

t = 8 and (d) ε′
t = 25. Parameters: particle’s

size parameter k0R = 1, beam’s cone angle α = 80◦, and beam’s amplitude c2 = ic1.
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the values of positive force. Four plots in the middle column of
Fig. 4 show the comparison of the optical forces calculated in
dipole approximation Fz and beyond F Mie

z (using the higher-
order multipoles as quadrupoles, octupoles, etc.). In Figs. 4(a)
and 4(b) the deviation of the dipole force Fz from the exact
Mie-theory force F Mie

z is negligible compared with the values
of Fz, that is |F Mie

z − Fz| � |Fz|. In this case the pulling force
can be predicted using the dipole approximation. However,
when the values of the force |Fz| are small, the deviation
|F Mie

z − Fz| is comparable with |Fz| and the dipole ap-
proximation cannot be used. For instance, in Fig. 4(c) the
optical force is positive for ε′

r < 0, though negative force
appears in dipole approximation. Contrariwise the pulling
optical force for small ε′

r in Fig. 4(d) is not predicted in dipole
approximation. The dipole force is applicable when ε′ and ε′′
are not great [Figs. 4(a) and (b)]. Then |√ε′ + iε′′|k0R entering
Mie coefficients is quite small.

Real parts of radial and transverse permittivities can be
positive and negative numbers. From Figs. 3(a) we notice that
the pulling force effect is feasible for the passive hyperbolic-
metamaterial particles with ε′

t > 0 and ε′
r < 0. One could

expect the pulling in a wide range of ε′
r for near-transparent

particles (small ε′′
r,t ) as in Fig. 4(a). However, it is quite

surprising that the backward force exists in a wide range of
ε′
r for particles with large losses [see Fig. 4(b)]. This means

that the composite metal-based materials, such as hyperbolic
media, can be exploited for optical pulling using gradientless
light beams. When the losses further increase [Fig. 4(c)],
the hyperbolic-metamaterial sphere is no more attracted by
the light source, though the positive ε′

r and ε′
t result in

Fz < 0. The dependence of the force Fz on ε′′
r is weak.

Estimating for the metal-dielectric periodic structure of co-
centric spherical layers ε′′

t = Im[(h(d)ε(d) + h(m)ε(m))/(h(d) +
h(m))] ≈ Im[ε(m)]h(m)/(h(d) + h(m)) ∼ A, we can establish the
limitations on the imaginary part of the metal permittivity
Im[ε(m)] ∼ A(1 + h(d)/h(m)), where ε(d) and ε(m) are the
permittivities of dielectric and metal, and h(d) and h(m) are
the thicknesses of dielectric and metal. Thus the metal losses
can be quite high, if h(d) > h(m). When ε′′

t is great, the pulling
force turns into a pushing one as in Fig. 5.

Reaction of the negative-order Bessel beam (m = −1) is
the same as that of the positive-order Bessel beam (m = 1)
after the sign change in amplitude c2 → −c2. In Fig. 4(d)
we show the force Fz in the case of m = −1, which cannot
be backward either for negative ε′

r or for small ε′
t . However,

for greater cone angles α the pulling optical force is feasible,
when ε′

r < 0. Decreasing ε′′
r,t below 0.1, one can reduce the

cone angle α up to 70◦. It should be noted that the negative
force in the range ε′

r < 0 is forbidden for α = 70◦ and m = 1.
Anisotropy enhances the force values compared with the

case of isotropic particles (isotropic parameters are marked
with the dashed lines in Fig. 4). The force minima are shifted
towards the greater positive permittivities ε′

r . In the case of the
hyperbolic-metamaterial particles the pulling is weaker than
for isotropic ones; nevertheless, Fz < 0 is realized in a broad
range of permittivities ε′

r .
Thus we have justified that the optical force in dipole

approximation is applicable for enough small permittivities
and losses, when |√ε|k0R ∼ 1. Particle’s loss parameter ε′′

t

should not be a small quantity to ensure pulling, but it should be

FIG. 5. (Color online) Dimensionless optical force Fzk
2
0/|c1|2

calculated using the dipole and Mie solutions as function of the loss
parameter ε′′

r = ε′′
t (k0R = 1, α = 80◦, and c2 = ic1).

small compared with the permittivity ε′
t . Another permittivity

tensor component ε′
r does not influence much and, therefore, it

can take values smaller than ε′′
r as in Fig. 4(b). We have shown

how the loss parameters ε′′
r,t should be engineered to guarantee

the pulling effect. It should be noticed that the above results
are valid for other nonparaxial light beams and the Bessel
beam is used as one of the possible electromagnetic beam
models.

VI. ANISOTROPIC MIE PARTICLES IN NONPARAXIAL
BESSEL BEAMS: DIPOLE PULLING FORCE BEYOND THE

DIPOLE APPROXIMATION

For anisotropic particles of larger radius, the dipole
approximation fails and higher-order multipoles should be
taken into account. Extending the results obtained in dipole
approximation (Fig. 4) one can expect the greatest pulling
optical force near transverse permittivity ε′

t = 8. In Fig. 6
the radial permittivity is chosen as ε′

r = −10 (the case of
hyperbolic medium ε′

r ε
′
t < 0). Low losses of particle’s material

ε′′
r,t and large cone angle α of the Bessel beam are the

beneficial conditions for pulling force (solid curve in Fig. 6).
In this case the first strong dip around k0R = 1 appears due
to the interaction of electric and magnetic dipoles [the last
term in Eq. (9)]. Weaker dips for greater k0R appear as the
superposition of interaction terms of dipole and higher-order
multipoles. Negative optical force near the first dip is quite
stable with respect to the losses, but quickly fades away,
when the cone angle α gets smaller. Thus the hyperbolic-
metamaterial lossy particles are pulled to the light source
mainly for small parameters k0R (in dipole approximation).

The first dip in Fig. 7(a) is well described in the dipole
approximation, while the following dips require higher-order
Mie terms. Nevertheless, all negative-force dips in Fig. 7(a)
definitely correspond to the interaction of electric and magnetic
dipoles. The quadrupole interaction is able to be the reason
for the optical pulling forces, too, but the dipole resonances
are stronger than the quadrupole ones in the considered
example. Since the quadrupole dips are basically narrower
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FIG. 6. (Color online) Dimensionless optical force Fzk
2
0/|c1|2

beyond the dipole approximation versus the size parameter x = k0R

of the hyperbolic-metamaterial bead (ε′
r = −10, ε′

t = 8, m = 1, and
c2 = ic1).

FIG. 7. (Color online) (a) Dimensionless optical force Fzk
2
0/|c1|2

versus the size parameter k0R for a hyperbolic-metamaterial particle
(ε′′

r,t = 0.1, α = 80◦). (b) Cone angle α dependence of the optical
force beyond the dipole approximation. Parameters: ε′

r = −10, ε′
t =

48, m = 1, and c2 = ic1.

than the dipole dips, the losses inevitably destroy the pulling
force effect beyond the dipole approximation. So, the dipole
interaction is the main mechanism to get the stable pulling
forces with respect to the losses. One can propose a technique
to engineer material and size of particles, which enables
the backward force: (i) ensure the pulling optical force in
dipole approximation, and (ii) require the dipole moments
are greater than the higher-order multipoles ({|a1|,|b1|} �
{|al>1|,|bl>1|}).

The dependence of the optical force on the cone angle α

is shown in Fig. 7(b) for the three dips found in Fig. 7(a).
When k0R = 1.347, the optical pulling force exists for the
cone angles α of the nonparaxial Bessel beam less than 70◦.
Limitation of 70◦ is justified by the diagram in Fig. 3(a), but
smaller angles are not forbidden, because the size k0R = 1.347
is beyond the dipole approximation. Smaller losses ε′′

r,t mean
smaller α is possible [see Fig. 7(b)].

VII. CONCLUSION

We have revealed that mainly the transverse permittivity
component influences the pulling optical force without inten-
sity gradient. Since the radial component can vary in wide
ranges resulting in Fz < 0, the permittivity tensor can be
engineered in a way to reduce the loss parameter ε′′

t and obtain
the proper value of ε′

r . This is achieved by judiciously selecting
the material parameters and thicknesses of the multilayer
system forming a homogeneous anisotropic medium with
permittivity tensor components Eq. (2).

We have shown that the dipole approximation is valid for
anisotropic particle sizes k0R ∼ 1. Moreover, the dipolar term
in the optical force ∼ Re(p × m∗)z plays an important part
beyond the dipole approximation [see Fig. 7(a)]. We have
noticed that the dipole-based pulling force is more robust
to the losses than the higher-order-multipoles-based pulling
force.

We have proved that passive anisotropic Rayleigh particles
cannot be pulled by a gradientless light and have given the
limitations on the nonparaxiality characteristics (longitudinal
wave number β = kz/k0) in dipole approximation. To support
our conclusions we have used the optical force calculations for
the model of a nonparaxial Bessel beam (no intensity gradient
along the direction of beam’s propagation).

We have discovered that hyperbolic-metamaterial particles
with ε′

t > 0 and ε′
r < 0 can be attracted to the light source.

Metal-containing hyperbolic-medium particles should possess
significant losses. It is important that the pulling force is stable
with respect to the particle’s losses, the values of which can
achieve ε′′

t,r ∼ 1.
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APPENDIX: CHOOSING APPROPRIATE SOLUTION
INSIDE AN ANISOTROPIC SPHERICAL PARTICLE

Electric field inside an anisotropic sphere with permittivity
tensor Eq. (1) can be written as [18]

E =
∞∑
l=1

l∑
m=−l

Flm(θ,ϕ)[Em
l (j ) + Em

l (y)],

(A1)

Em
l (z) =

(
zl(

√
εtk0r)A(l,m)

1 eθ + zν−1/2(
√

εtk0r)

r
A

(l,m)
2 er

+ [
√

εtk0rzν−1/2(
√

εtk0r)]′

r
A

(l,m)
3 eϕ

)
,

where Flm(θ,ϕ) is the tensor function of angles in spherical
coordinates θ and ϕ, derivative is calculated over the argument√

εtk0r of the spherical function z, and A
(l,m)
1 , A(l,m)

2 , and A
(l,m)
3

are constant amplitudes. Vector Em
l depends on the spherical

function z, e.g., spherical Bessel functions j and y.
Electric field (A1) in the vicinity of the center of the sphere

r = 0 can be approximated by the greatest term in the first sum

∣∣Em
l=1(j )

∣∣ ∼ jν1−1/2(
√

εtk0r)

r
∼ rν1−3/2 (A2)

and Em
l (y) = 0 as nonphysical singular solution, if Re(ν1) > 0.

Here ν1 = √
2εt/εr + 1/4 is the quantity ν for l = 1. When

Re(ν1) < 0, Em
l (j ) = 0 as nonphysical singular solution and

|Em
1 (y)| ∼ r−ν1−3/2.
When 0 < Re(ν1) < 3/2, electric field at the center of

spherical particle becomes infinite for both spherical Bessel
functions jn and yn. Condition 0 < Re(ν1) < 3/2 holds
true for a wide class of lossless anisotropic materials with
−1/8 < εt/εr < 1 including the hyperbolic metamaterials
characterized by εtεr < 0.

We claim that the criterion for choosing an appropriate
solution is the finiteness of the electromagnetic energy stored
inside the sphere Eq. (8). Electric field according to Eq. (8)
is a quadratically integrable function as a wave function in
quantum mechanics. By substituting solution (A2) into Eq. (8)

we derive ∫ R

0
|E|2r2dr ∼

∫ R

0
r2 Re(ν1)−1dr. (A3)

If Re(ν1) > 0, the integral always results in the finite energy
inside the sphere. If Re(ν1) < 0, we should use another solu-
tion |Em

1 (y)| ∼ r−ν1−3/2 expressed by means of the spherical
Bessel function of the second kind. The only exception is
the case Re(ν1) = 0, which brings us to the logarithmically
divergent integral

∫ R

0 r−1dr = ln(r)|R0 .
The situation Re(ν1) = 0 corresponds, e.g., to the model

of the lossless hyperbolic metamaterial or, more strictly,
anisotropic medium with Im(εt/εr ) = 0 and Re(εt/εr ) +
1/8 < 0. Complex transverse and radial permittivities should
be linked using a real coefficient C as follows:

εt = Cεr, C < −1

8
. (A4)

In this case both independent solutions do not ensure finite
electromagnetic energy. Electric field E ∼ ri Im(ν1)−3/2 rapidly
oscillates. Peculiar case (A4) is a very sharp condition
and cannot be realized in practice. For example, it is not
feasible to realize perfectly transparent (lossless) anisotropic
media. Passive transparent media can be characterized by the
permittivities εt + iδt and εr + iδr , where δt,r > 0 is a very
small quantity. This situation recalls instable equilibrium point
of the pendulum, which is not realizable in practice.

The infinite electric (magnetic) field at the center of the
spherical particle can be understood as follows. In realistic
situation anisotropic particle can be presented as a very small
isotropic core covered with anisotropic shell (we believe it is
technologically difficult to create the required anisotropy at
the center). Then there is a regular solution at the center, while
the field in the vicinity of r = 0 is great, but not infinite.

Thus the appropriate solution Em
l (j ) [Em

l (y)] should satisfy
condition Re(ν) > 0 [Re(ν) < 0]. In computations, we ordi-
narily choose positive Re(ν) > 0 and solutions in terms of the
spherical Bessel functions jn(x).
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