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Abstract This paper investigates the singular optics of non-
paraxial light beams in the near field when the light behaves
as a tractor beam. New insights into the optical pulling force,
which is usually represented by integrating the stress tensor
at a black box enclosing the object, are interpreted by the op-
tical singularity of the Poynting vector. The negative noncon-
servative pulling force originates from the transfer of the az-
imuthal Poynting vector to the longitudinal component partly
owing to the presence of a scatterer. The separatrice pattern
and singularity shifts of the Poynting vector unanimously ex-
hibit a differentiable near-field distribution in the presence of
optical pulling force. A new method is established to calcu-
late the near-field optical force using the differential Poynting
vector in the far field. The results obtained provide a clear
physical interpretation of the light–matter interaction and mani-
fest the significance of singular optics in manipulating objects.

Unveiling the correlation between non-diffracting tractor
beam and its singularity in Poynting vector
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1. Introduction

Along with optical manipulation arising in electromag-
netic fields with a gradient [1–3], tractor beams [4–11]
have been showing unprecedented phenomena that once
only existed in science fiction. Unlike conventional optical
tweezers which rely on adjusting the positions of intensity
gradients to move objects, tractor beams can exert non-
conservative pulling forces on particles by continuously
dragging them towards the beam sources. Recently, ex-
periments on tractor beams have been demonstrated using
various structured beams. Stable trapping and bidirectional
transport were achieved by systematically changing the rel-
ative phase of two co-propagating Bessel beams [12, 13].
Lee et al. [14] reported the first experimental observation of
a functioning tractor beam by reversing the helical pitches
of an optical solenoid beam. In addition to optical trans-
port, binding forces from tractor beams can also be used to
maneuver the behaviors of self-arranged structures [15,16].
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As found from many theoretical and experimental studies,
non-diffracting beams [17–19] are promising candidates
for realizing tractor beams due to their unique properties of
maintaining both intensity and spatial extent in the direc-
tion of propagation. Such tractor beams can exert pulling
forces on a particle, which can be explained by using the
law of momentum conservation, i.e. when the forward scat-
tering exceeds the backward one, the particle experiences
a backward-directed momentum [20]. In this paper, the
pulling effect is explained from another perspective by em-
ploying singular optics. It is shown that the optical sin-
gularity of the Poynting vector around the scatterer helps
one to understand the behaviors of the proposed tractor
beams [8–11, 14].

Singular optics became a new branch of modern opti-
cal science nearly four decades ago, starting with the study
of wave front dislocations by Nye and Berry [21]. Opti-
cal singularity is a ubiquitous phenomenon in the interfer-
ence of multiple waves, e.g. between an incident wave and
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reflected [22] or scattered light [23]. Phase singularities in
electromagnetic fields give an additional insight into prop-
agation and interaction of electromagnetic waves. Latest
research, such as that concerning the quantum entangle-
ment of linked phase singularities [24], spin–orbit interac-
tion phenomena within vortex beams [25], and polariza-
tion singularities in vector beam fields [26,27], has greatly
expanded the sphere of modern optics. According to the
condition for eigenvalues of the stability matrix [28, 29],
the singular points in a vector field, such as the Poynting
vector field, can be classified as node, saddle, vortex, and
focus [30], which are accompanied by the concept of wave
dislocation of wave interference [21]. Those singular points
of the Poynting vector can be created, moved, and annihi-
lated [31,32], revealing a change of energy flow in the near
field.

Being a basic concept in electrodynamics, the Poynt-
ing vector plays a pivotal role in understanding the physics
of light scattering [32, 33] and optical force [34, 35]. The
Poynting vector S in a vacuum can be associated with the
linear momentum as G = (1/c2)

∫
SdV (where c is the

speed of light). Based on the Poynting theorem, interpret-
ing the Poynting vector as the energy flux density can be
generalized for nonlinear and spatial dispersive media [36].
In this paper, we relate the optical force of a non-diffracting
beam with the Poynting vector and describe it in terms
of optical singularity. The optical pulling force can be re-
alized by manipulating the distribution of singular points
around the particle. Meanwhile, the interference of trans-
verse electric (TE) and transverse magnetic (TM) Bessel
beams can generate both positive and negative longitudi-
nal components of the Poynting vector [37]. We discuss
below the correlation between near-field (within one wave-
length from the particle’s surface) and far-field Poynting
vectors and we elaborate the origin of the pulling force as a
consequence of the specific energy flow.

2. Methods, results, and discussion

2.1. Calculating optical forces for nonparaxial
Bessel beam

Non-diffracting beams or diffraction-free beams are struc-
tured beams that suppress the universal phenomena of
diffraction and keep their cross-sectional intensity in-
variant during propagation [19]. They exist in vari-
ous kinds of modes, Bessel, Airy, and Mathieu modes
[18,38–40], with the Bessel beam being extensively studied.
In this paper, we use the model of the nonparaxial Bessel
beam (see details in Refs. [9, 10, 37] and similar models
[15, 18, 41, 42]) with the electric field E(r) = exp(imϕ +
iβk0z)(c1ETE(r ) + c2ETM(r )), where m is the beam order
and c1 and c2 are the complex amplitudes of the TE and
TM constituents of the light beam. The normalized longitu-
dinal wavenumber β and the transverse wavenumber q can
be expressed as β = cos α and q =

√
1 − β2, respectively,

with α being an angle between the wave vectors of partial

plane waves and the optical axis z. Thus, the longitudinal
component of the optical force in dipole approximation,
exerted by the non-diffracting beam, can be derived from
Eq. (2) in Ref. [43] (a detailed derivation is presented in the
Supporting Information, Section 1):

〈Fz〉 = k0β

2

(
Im(αe)|E|2 + Im(αm)|B|2)

− k4
0

12πε0c
Re(αeα

∗
m(E × B∗)z) , (1)

where k0 = ω/c is the wavenumber in vacuum, ω is the
angular frequency, and c is the speed of light. Electric and
magnetic dipole moments linearly depend on the fields, i.e.
p = αeE and m = αmB. In general, electric and magnetic
polarizabilities αe,m of a spherical particle are expressed
in terms of the sum of Mie coefficients av and bv (v = 1
for the dipole, v = 2 for the quadrupole, etc.) [44]. When
the higher-order multipole terms (v = 2, 3, . . .) are much
smaller than the dipole terms, the spherical particle can be
approximated as a dipole, i.e. αe = i6πa1ε0k−3

0 and αm =
i6πb1μ0

−1k−3
0 . The first-order Mie coefficients have the

following forms [44]:

a1 = n2 j1(nx)(x j1(x))′ − μ j1(x)(nx j1(nx))′

n2 j1(nx)(xh(1)
1 (x))′ − μh(1)

1 (x)(nx j1(nx))′
, (2)

b1 = μ j1(nx)(x j1(x))′ − j1(x)(nx j1(nx))′

μ j1(nx)(xh(1)
1 (x))′ − h(1)

1 (x)(nx j1(nx))′
, (3)

where x = k0 R, R is the particle radius, n is the spherical
particle refractive index, j1 and h(1)

1 are spherical Bessel
and Hankel functions of the first order, and a prime means
differentiation with respect to the argument.

The first two terms of Eq. (1), describing the radiation
pressure of the bare dipoles, are positive for particles made
of ordinary materials. They can be negative for exotic me-
dia, such as gain particles [45,46]. The necessary condition
for the pulling force is to ensure that the third term is nega-
tive (see further discussion in the Supporting Information,
Section 1). By using a nonparaxial Bessel beam, the small
longitudinal wavenumber β can reduce the positive radi-
ation pressure. Meanwhile, the corresponding transverse
wavenumber q is relatively large, which could provide the
prerequisite of transferring more azimuthal component of
the Poynting vector to the transmitted longitudinal compo-
nent. This results in even greater pulling force. This mech-
anism effectively enlarges forward momentum and gives
an additional degree of freedom to manipulate the optical
force through a non-diffracting beam.

Figure 1a clearly shows that there is a region of the radii
of a nonmagnetic (μ = 1) particle, 1 < k0 R < 2, where
〈Fz〉 is negative. The pulling force in this configuration
is basically the result of dipole interaction. The force cal-
culated using the dipole Mie coefficients is qualitatively
correct for k0 R < 1.6. The influence of higher-order mo-
ments comes into play only when the particle size is much
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Figure 1 (a) Force of a spherical silica particle at the beam
axis, i.e. d = 0. The inset is a sketch of a nonparaxial Bessel
beam incident on a particle. (b) Force components and Sz as
functions of particle position with respect to the beam axis k0d. (c)
Poynting- and (d) field momentum-based forces taking asymptotic
values (dotted lines) only for a → ∞, where a is the radius of
integrating surface. Default parameters: ε = 3.9, μ = 1, k0R =
1.5, m = 1, α = 70◦, c1 = 1, c2 = i . The incident laser wavelength
is set as 1064 nm and the intensity of the Bessel beam’s center
is normalized to 1 mW μm−2.

larger. Moreover, Eq. (1) for the force is also valid when
the dipole approximation holds. Therefore the pulling force
in Fig. 1a can be simply explained by the interaction of the
electric and magnetic dipoles (artificial magnetic dipole is
discussed in Refs. [47–51]). In Fig. 1b we can observe the
correlation between the Poynting vector Sz and the force
〈Fz〉 in agreement with Eq. (1). At the same time, the radial
component of the force is directed towards the beam axis
attracting the spheres therein.

It is of great importance to analyze larger particles
beyond the dipolar approximation in terms of the total
Poynting vector S̃ = (1/2)Re(Ẽ × H̃∗), which can be re-
lated to the optical singularity. In this paper, the sym-
bol ˜ denotes total fields, i.e. the fields Ẽ = E + Esc and
H̃ = H + Hsc are the sum of the incident and scattered
fields. When the integration surface σ in 〈F〉 = ∫

σ
(n ·

T̂)ds (with n being the normal direction to the par-
ticle surface and T̂ = (1/2)Re[ε0Ẽ ⊗ Ẽ∗ + μ0H̃ ⊗ H̃∗ −
(ε0|Ẽ|2 + μ0|H̃|2)Î/2], ⊗ denoting dyadic products and Î
being the identity matrix) is taken at infinity, the scattered
wave behaves like a spherical wave. The time-averaged
Maxwell stress tensor can be simplified, and consequently
the optical force takes the form 〈F〉 = −(1/c)

∫
σ∞

	Sds,

where the Poynting vector difference is 	S = S̃ − S. Be-
cause scattered waves in the near field are not mere spherical
waves, the formula 〈F(S)〉 = −(1/c)

∫
σ

	Sds is not valid
for all spherical surfaces σ (integration spherical surface at
radius a). Unfortunately, 〈F(S)〉 does not provide accurate
information about the direction of the force. According to
Fig. 1c, the “force” 〈F (S)

z 〉 oscillates between positive and

negative values and will be valid only at sufficiently large
integration radius a.

By investigating the singularity distribution of Poynt-
ing vector difference 	S, we can get better insight into
the oscillatory behavior of 〈F (S)

z 〉. In the x–z plane, the
Poynting vector lines can be described by the solutions
of the dynamic differential equation Sx dz = Szdx [23, 52].
There are two kinds of singular points in this optical dy-
namic system: vortex (for u > 0) and saddle (for u < 0),
where u = ∂Sx

∂x
∂Sz
∂z − ∂Sx

∂z
∂Sz
∂x [28–30]. Alternatively, the type

of singular points can be numerically characterized by the
pattern of flow lines. In Fig. 2, we separate the domains
of positive and negative values of F (S)

z with circles. The
singular points (S̃x = Sx , S̃z = Sz) in these domains can
significantly influence the behavior of F (S)

z because they
change the direction of 	S. The stability of the singular
points alternates for a particle with small radius R (Fig. 2a),
where vortices and saddles can be associated with the neg-
ative and positive F (S)

z , respectively. However, this is not
a universal rule because it is violated when the singular-
ities are located densely but irregularly for larger spheres
(Fig. 2b,c). The singularities appear and disappear in pairs
of stable and unstable points keeping the same Poincaré
index. Importantly, the singular points change the direction
of the Poynting vector lines and, therefore, change the sign
of the “force” F (S)

z .
As depicted in Fig. 2, the dynamics of Poynting vector

singularities around the particle results in oscillation of F (S)
z

in Fig. 1c. The periodicity of oscillation is determined by
the transverse periodicity of the incident Bessel beam and,
therefore, does not depend entirely on the parameters of the
scattering particle. Evanescent waves (corresponding to the
curves with q > 1 in Fig. 1c) take the correct sign of the
resultant force.

The formula 〈F〉 = −(1/c) lima→∞
∫
σ

	Sa2ds, with
the integrand a2	S(a) independent of the radial position
r , can be rewritten as an average over the radial coordinate
〈F〉 = − limL→∞(1/cL)

∫ R+L
R

∫
σ

	Sa2drds. One can di-
vide the integral into two parts: [R, R′] and [R′, R + L], in
which R′ is a large number. The integral within [R, R′]
is finite, and it vanishes when being divided by an in-
finitely large value L . With R′ being large enough, one
can write a2	S(a) ≈ r2	S(r ). Then previous 〈F〉 can be
rewritten over the whole region [R, R + L] as the following
expression:

〈F〉 = − lim
L→∞

1

cL

∫ R+L

R

∫
σ

	S(r)dV . (4)

After introducing the field momentum as G =
(1/c2)

∫ ∞
R

∫
σ

S(r)dV , the force takes a more significant
meaning than it takes in terms of the Poynting vector. The
force 〈F〉 = 	G/	t is that of Newton’s second law, where
	G = −(G̃ − G) is the momentum received by a particle
during the time 	t = L/c of the momentum transfer.
Therefore, to ensure the pulling force is in the z direction,
it is necessary to enhance the linear momentum of the field
after scattering in the propagation direction. The force
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Figure 2 (color online). Distribution of 	S for a particle at the beam axis d = 0 for various radii of the sphere: (a) k0R = 1.0, (b)
k0R = 1.5, and (c) k0R = 2.5. Red curves represent F(S)

z , while the white circles pass through the zeros of F(S)
z . The pink circles

represent silica particles. Wave propagates from left- to right-hand side. Parameters: ε = 3.9, μ = 1, m = 1, α = 70◦, c1 = 1, c2 = i .

calculated as 〈F(G)〉 = −(1/c(a − R))
∫ a

R

∫
σ

	S(r)dV
converges to the asymptotic value for large integration
radius a (see Fig. 1d), and the correct sign of the force can
be derived faster than in Fig. 1c.

2.2. Explanations of nonconservative pulling
force with singular optics

In what follows, we choose three typical situations (almost
zero force but still pushing in Fig. 3a,b, pulling force in
Fig. 3c,d, and pushing force in Fig. 3e,f) to illustrate the
relations between the near-field singular points and opti-
cal force. For a relatively small dielectric sphere, the pairs
of saddle–vortex Poynting vector singularities appear far
away from the particle, as shown in Fig. 3a. The Bessel
beam does not interact significantly with the particle and
basically maintains its profile after transmission through
the particle. Since there is a considerable amount of scat-
tered light in the backward direction, the momentum of the
incident beam is larger than that of the transmitted one,
prompting a small pushing force. By increasing the size of
the dielectric sphere, the energy flow of the Bessel beam is
greatly twisted around the particle. Meanwhile, new singu-
lar points are created and move towards the particle, which
alters the energy flow at those regions.

In the vicinity of the particle, six pairs of saddle–vortex
singularities redirect the central energy channel through
the particle (see Fig. 3c). For example, taking the middle
two saddle–vortex pairs (marked 2 and highlighted in
cyan), the light passes through the saddle points, makes a
loop around the vortex points, comes back to the saddle
points, and travels along the propagation direction. Energy
flows, from the first ring of the non-diffracting Bessel
beam, are captured by the particle while rotating around
vortex points. Their combined effect can be visualized: the
saddle points “grab” the light from the surrounding and the
vortex points “store” the light within the rotation area. The
other four pairs of saddle–vortex points (marked 1 and 3)

behave similarly. These singular points attract, guide, and
focus the energy flow into the center of the particle. This
kind of mechanism is similar to the phenomenon whereby
fish in fluid flow capture energy from surrounding vortices
to reduce muscle activity [53]. By further increasing the
particle size, the crucial saddle–vortex points 3 are annihi-
lated and the energy-capturing mechanism is undermined.
Although other vortex–saddle points can still redirect
energy flow from the second ring of the Bessel beam, the
strength is much weaker and far away from the particle
(Fig. 3e). So the pulling force decreases from maximum to
zero and then becomes a pushing force again.

It is pertinent to show the three-dimensional distri-
bution of Poynting vectors in the presence of vortices
and scatterer, as this reveals the interaction between the
singularity and the energy flow and helps in understanding
how their combined effect facilitates the pulling force.
Figure 3d presents, for the very first time, the singular
optics of the tractor beam and the intriguing energy flow
in the context of optical pulling force. One can clearly see
that energy flow streamlines are strongly twisted around
particles. These nonuniform helical distributions of the
field can induce additional spin curl forces [54], which
can be exploited to control objects near the particle. The
vortex circle [55] in the vicinity of the particle front (see
Fig. 3d) can redirect energy flows to the forward direction.
By enlarging the particle size from k0 R = 1 to k0 R = 2,
we find the position and size of the vortex circle play a
vital role in realizing pulling force. As the vortex circle
approaches the particle (the circle’s radius also decreases
simultaneously), its ability to focus energy is enhanced and
the strength of the pulling force increases correspondingly.
After the vortex circle disappears, the pulling force
becomes weaker and eventually turns into a pushing force.

The subsequent discussion will elucidate the momen-
tum enhancement in Poynting vector S̃z . For a plane wave,
the straight lines of the Poynting vector will be diverted
away from the propagation direction due to the scattering
of particles. Therefore, the transmitted Poynting vector in
the propagation direction is always less than that of the
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Figure 3 (color online). Two-dimensional distributions of the Poynting vector S̃ (in a.u.) for various radii of the sphere: (a) k0R = 1.0,
(c) k0R = 1.5, and (e) k0R = 2.5. (b, d, f) The corresponding three dimensional distributions of S̃. Some vortex points in two dimensions
may form vortex circles in three dimensions. The pink circles in the two-dimensional images and red spheres in three-dimensional
images represent the silica particles. Note that the colors of streamlines do not correspond to the color bar. Different colors are used to
visually differentiate these Poynting vector lines at different regions. The streamlines in (b), (d), and (f) only demonstrate the trajectory
of a few representative Poynting distributions showing the singular optics behavior. Parameters: ε = 3.9, μ = 1, m = 1, α = 70◦, c1 = 1,
c2 = i .

initial wave. According to momentum conservation, the
plane wave always pushes the particle. The force could be
pulling if the transmitted momentum is increased by using
gain media [45]. This pulling force can be understood from
stimulated emission of new photons initiated by the external
pumping. In contrast, it is counterintuitive to “amplify” the
Sz component in a totally passive system. Fortunately, we
find that it is possible to transfer azimuthal Sϕ to longitu-
dinal Sz , which can be amplified via a passive light–matter
scattering setup.

An incident non-diffracting Bessel beam has both lon-
gitudinal Sz and azimuthal Sϕ components of the Poynt-
ing vector S(r) = (0, Sϕ, Sz) [37]. As a result of the
scattering process, the longitudinal component of the to-
tal Poynting vector takes the form S̃z = M1(r, E, H)Sϕ +
M2(r, E, H)Sz , where M1,2 are two operators acting on
the incident Poynting vector components. For paraxial
beams (Sϕ � Sz) and plane waves (Sϕ = 0), the longitu-
dinal component S̃z cannot be enlarged or effectively con-
trolled using Sϕ . On the contrary, the nonparaxial beam
stores much energy in the azimuthal Poynting component
which can be effectively reallocated to the longitudinal
component.

The mutual transformation between S̃ϕ and S̃z is illus-
trated in Fig. 4. Large azimuthal component Sϕ (blue lines)
is associated with two series of saddle–vortex pairs that are
marked with Arabic numerals (between the first ring and the
beam center) and Roman numerals (between the first ring
and the second ring) in Fig. 4b. Small particles (Fig. 4a)
slightly disturb the incident Bessel beam. For larger
particles shown in Fig. 4b, the azimuthal component of the

Poynting vector is captured inside the particle, while the in-
cident Sz from the first ring of the Bessel beam contributes
to the amplification of the total Poynting vector component
S̃z . The singular points (marked 5) prevent the flow of the az-
imuthal component and redirect the flow of the longitudinal
component. The singularities I–V operate similarly for the
outer rings of the Bessel beam. Eventually, the extra energy
flux that originates in the transformation from azimuthal
component Sϕ to longitudinal component Sz drags the parti-
cle towards the light source. Larger particles lose a singular
point on the right-hand side of it and corresponding mutual
transformation is not carried out effectively. Note that the
above explanation of momentum enhancement is not lim-
ited to the nonparaxial Bessel beams of first order (m = 1).
It is also valid for other orders, such as the zero-order
nonparaxial Bessel beams considered in Chen et al. [9].
However, the zero-order Bessel beam with Sϕ = 0 was used
as an example of nonparaxial Bessel beams in their work,
and hence there was no contribution from the transfer of
azimuthal to longitudinal components. This explains why
the magnitude of the pulling force by beams with Sϕ = 0
is much weaker than by beams with Sϕ = 0. Hence, Bessel
beams with considerably large azimuthal component Sϕ

are more favorable for acting as tractor beams.
The far-field scattering is in accordance with near-field

singular points. For a tiny particle, singular points exist
only in the region of small incident energy flux density,
providing small perturbations due to scattering. The scat-
tering becomes stronger and the singular points marked
3 in Fig. 3c move to the intense main lobe of the incident
Bessel beam. This means that the magnitude of the scattered
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Figure 4 (color online). The transformation of longitudinal and azimuthal components of the Poynting vector: (a) k0R = 1.0, (b) k0R =
1.5, and (c) k0R = 2.5. The color represents the value of log[S̃z/S̃ϕ ]. The Bessel beam propagates in vacuum without transformation
between Sϕ and Sz. Interacting with a particle, these components are coupled and transfer one to another. A considerable amount of
the azimuthal component of the Poynting vector should be transferred to the longitudinal component to ensure the backward optical
force (k0R = 1.5).

Figure 5 (color online). Far-field scattering diagrams for particles: (a) k0R = 1.0, (b) k0R = 1.5, and (c) k0R = 2.5. The other param-
eters are the same as in Fig. 3.

field in the forward direction is comparable with that of the
incident field. When the forward scattering is significant
enough (Fig. 5b), the optical force becomes pulling. This
occurs when the singularities in front of the object drift to
the geometrical shadowed region. In this case, the particle
effectively transmits the energy flux through it due to the
singular points denoted 2 in Fig. 3c, providing strong for-
ward scattering. The increase of the particle radius R moves
singularities 3 towards the optical axis and simultaneously
towards the particle interface. When the singularities pene-
trate into the sphere, the scattering no longer focuses on the
forward direction (see Fig. 5c), and thus the force becomes
pushing again.

3. Conclusions and outlook

In conclusion, optical pulling force is realized owing to an
increase of the field momentum. The necessary condition
of pulling force exerted on small dielectric objects is a large

positive longitudinal Poynting vector at the particle center.
Backward force on larger dielectric particles is achieved
due to the emergence of singular points in the forward
direction. These singular points of the Poynting vector
result in large forward scattering and serve to redirect the
stored angular momentum Sϕ into linear momentum Sz .
We extended the far-field calculations of the optical force,
〈F〉 = −(1/c)

∫
σ∞

(S̃ − S)ds, to the near field. In this case,
the calculated forces show oscillating behavior due to the
singular points in the near field and eventually tend to the
asymptotic value in the far field.

The insight into the optical pulling force is not only
helpful in understanding light–matter interactions, but
also provides new principles for the design of intriguing
classes of tractor beams. The optical singularity can be
designed to mold the energy flow in optical systems, which
could extend the manipulation from trapping to rotating
and sorting. For instance, non-diffracting tractor beams,
carrying certain angular momentum, will rotate chiral
particles with different handedness in opposite directions.
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This rotational effect can be exploited to sort left-handed
and right-handed DNA molecules. Meanwhile, apart from
light interaction with matter associated with linear momen-
tum, comprehensive investigation is required for angular
momentum as well. Singular optics could be an alternative
powerful tool for revealing the intrinsic mechanism of
exotic phenomena and very fundamental wave properties
in the near field of objects, e.g. counterintuitive left-handed
optical torque which has a direction opposite to that of the
optical angular momentum of incident light [56].
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