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Curvilinear optical forces
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Accelerating a light beam makes a particle move along a curvilinear trajectory. We show that the curvature
of the trajectory causes a special kind of nonconservative force, which is called a curvilinear force. We obtain
the expression for this force acting on a spherical particle in the Rayleigh approximation and determine its value
for several types of accelerating fields including Bessel, Airy, and arbitrary-trajectory beams. We anticipate
applications of the curvilinear forces in optical micromanipulation with accelerating beams.
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I. INTRODUCTION

The peculiar properties of accelerating electromagnetic
beams were first revealed less than ten years ago in Refs. [1,2].
The Airy beam was the first accelerating light beam to be
realized. The idea of this beam stems from the pioneering
paper by Berry and Balazs on nondiffracting wave packets
in quantum mechanics [3]. The nondiffracting Airy beam has
lobes of parabolic shape (parabolic “channels”), which can be
used for dragging particles by nongradient (nonconservative)
optical forces. Going beyond the paraxial approximation, it is
necessary to deal with the solutions of the Helmholtz wave
equation to describe the behavior of the Airy beams [4–6]. A
nonparaxial Airy beam does not keep its spatial structure upon
propagation and loses its extraordinary features on the short
distance from the beam’s source.

To improve the concept of the diffraction-free nonparaxial
accelerating beam, Kaminer et al. recently proposed [7]
the theoretical method of generation of a beam (similar
to the Bessel field) with circular channels by superposition of
the plane waves. The authors of Ref. [8] derived the conditions
for optimal control of the general ballistic trajectory of the
Airy beams. Generally speaking, accelerating light beams with
arbitrary trajectories are diffractive. An arbitrary trajectory of
a Bessel-like beam can be formed by an ensemble of rays on
the cones with apexes lying on a preassigned curve [9,10].
All light beams accelerating along a convex trajectory [11]
possess universal properties following from the catastrophe
theory [12]. The propagation characteristics of the accelerating
beams can be understood using the traveling-wave approach
as in Ref. [13].

The concept of optical micromanipulation with accelerating
light beams was proposed for the first time in Ref. [14]. There
is also a number of theoretical papers on the optical forces pro-
duced by accelerating fields. Along with investigations of the
gradient forces in the Rayleigh approximation [15,16], the Mie
scattering theory paves the way for the optical manipulation
of large spherical particles using Airy beams [17,18].

In this work, we analyze the set of optical forces exerted
by accelerating light beams and introduce the curvilinear and
polarization forces together with the well-known intensity
gradient and phase gradient forces. The paper is organized
as follows. In Sec. II, we define five optical forces in
the Rayleigh approximation: electrical gradient, magnetic
gradient, phase gradient, polarization, and curvilinear optical
forces. In Sec. III, we consider the curvilinear optical forces for

nondiffracting Bessel and Airy beams. Section IV is devoted
to the investigation of the optical forces produced by the
light beams with arbitrarily designed channels. Finally, Sec. V
concludes the paper.

II. OPTICAL FORCES VIA AN ACCELERATING
LIGHT BEAM

We consider small spherical nonmagnetic particles (dielec-
tric permittivity ε) in vacuum with radii a that are much smaller
than the radiation wavelength λ. The time-averaged optical
force acting on the Rayleigh particle in the monochromatic
electromagnetic field can be written using electric p and
magnetic m dipole moments as [19]

F = 1

2
Re

(
∇(p

↓
E∗) + ∇(m

↓
H∗) − 2k4

0

3
p × m∗

)
, (1)

where ↓ points out the quantities subjected to differentiation,
and E(r) and H(r) are the electric and magnetic field strengths,
respectively, of the incident wave taken at the particle’s center.
Electric and magnetic polarizabilities are introduced as the
proportionality coefficients between the dipole moment and
the field, p = αeE and m = αmH. We briefly show how
the electric and magnetic polarizabilities of a nonmagnetic
sphere can be calculated in the Rayleigh approximation. In
general, the polarizabilities are expressed in terms of the Mie
coefficients a1 and b1 as

αe = 3ia1

2k3
0

, αm = 3ib1

2k3
0

, (2)

where k0 = ω/c = 2π/λ is the wave number in vacuum, ω is
the circular frequency, and c is the speed of light in vacuum.
The Mie coefficients [20]

a1 = n2j1(ns)[sj1(s)]′ − j1(s)[nsj1(ns)]′

n2j1(ns)
[
sh

(1)
1 (s)

]′ − h
(1)
1 (s)[nsj1(ns)]′

,

(3)

b1 = j1(ns)[sj1(s)]′ − j1(s)[nsj1(ns)]′

j1(ns)
[
sh

(1)
1 (s)

]′ − h
(1)
1 (s)[nsj1(ns)]′

can be reduced to the rational functions of the small parameter
s = k0a � 1 for the Rayleigh objects (n = √

ε is the refractive
index), when the series expansion of the spherical Bessel j1

and Hankel h1 functions of the first order is applied. Thus, we
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get to

αe = α0e/k3
0

1 − 2iα0e/3
, αm = α0m/k3

0

1 − 2iα0m/3
, (4)

where the normalized static electric and magnetic polarizabil-
ities equal

α0e = ε − 1

ε + 2
s3, α0m = ε − 1

30
s5. (5)

For the small values of α0e and α0m, the polarizabilities given
by Eq. (4) read

αe ≈ α0e

k3
0

+ 2iα2
0e

3k3
0

, αm ≈ α0m

k3
0

+ 2iα2
0m

3k3
0

. (6)

In the case of lossless dielectric Rayleigh particles, the
real part Reαe ∼ s3 is responsible for the gradient forces,
while the imaginary part Imαe ∼ s6 is responsible for the
nonconservative forces. Since the magnetic polarizability
αm ≈ Reαm ∼ s5 is comparable with the imaginary part of
the electric polarizability, we consider the force due to
the gradient of the magnetic field as well. The interaction
of the electric and magnetic dipole moments is described
by the quantity Re(p × m∗) ∼ ReαeReαm ∼ s8 [see Eq. (1)]
and can be omitted. Then, the optical force is of the form

F = 1
2 Re(αe∇(E

↓
E∗) + αm∇(H

↓
H∗)). (7)

Let the incident field be the accelerating light beam with the
channel defined by the in-plane curvilinear trajectory ξ (x,z) =
const. We look for the optical forces, which can stably trap
and drag a spherical particle within a channel. We associate
the orthogonal curvilinear coordinate system with the moving
particle assuming (ξ (x,z), η(x,z), y). Basis vectors eξ (ξ,η),
eη(ξ,η), and ey are normalized and orthogonal, i.e., |eξ | =
|eη| = |ey | = 1 and eξ eη = eξ ey = eηey = 0. In this section,
we assume that the electric field in a curvilinear coordinate
system reads

E(ξ,η,y) = ei	(ξ,η,y)E(ξ,η,y),
(8)

E = Eξ eξ + Eηeη + Eyey,

where 	 is the phase and E is the complex amplitude vector.
When the particle approaches the stable channel ξ = ξ (x,z),
the ξ component of the optical force should vanish.

Using the relationships

∇(E
↓

E∗) = ∇(E
↓
E∗) − i|E|2∇	 (9)

and

∇(E
↓
E∗) = Eξ∇E∗

ξ + Eη∇E∗
η + Ey∇E∗

y + ∇[E(E∗
ξ

↓
eξ +E∗

η

↓
eη],

(10)

the first term of the force (7) takes the form

1
2 Re(αe∇(E

↓
E∗))

= 1
4 Re(αe)∇|E|2

− 1
2 Im(αe)Im[Eξ∇E∗

ξ + Eη∇E∗
η + Ey∇E∗

y ]

+ 1
2 |E|2Im(αe)∇	 + Im(αe)Im(E∗

ξ Eη)∇(eξ

↓
eη). (11)

In the second term of Eq. (7) we keep only the magnetic
gradient force proportional to Re(αm). So, the force within a
channel in Rayleigh approximation is equal to

F = Fgr + Fpol + Fph + Fcurv + Fm, (12)

where the electric gradient, polarization, phase, curvilinear,
and magnetic gradient forces are given below:

Fgr = 1
4 Re(αe)∇|E|2,

Fpol = − 1
2 Im(αe)Im(Eξ∇E∗

ξ + Eη∇E∗
η + Ey∇E∗

y ),

Fph = 1
2 |E|2Im(αe)∇	,

Fcurv = Im(αe)Im(E∗
ξ Eη)∇(eξ

↓
eη),

Fm = 1
4 Re(αm)∇|H|2. (13)

The electric and magnetic gradient forces differ by a factor
of s2 and vanish simultaneously if |E|2 and |H|2 have the
same position of extremum. The polarization force is also
defined by the gradients of the fields but is much weaker
than the gradient force due to the relation Imαe � Reαe. This
force takes nonzero values for the nonlinear (circular, elliptic)
polarization of the incident wave. The phase force owing to
the phase gradient is a common nonconservative force.

The particles can be trapped within the stable channel
only by the large electric gradient forces. Hence, the channel
is mainly defined by ∇|E|2 = 0. Though this condition is
satisfied for both the maxima and minima of |E|2, the stable
channels correspond to the maxima for the dielectric particles
with ε > 1 situated in vacuum (this case is interesting for
us). The minima of |E|2 can also form stable channels, when
the permittivity of the spherical particle is smaller than the
permittivity of the ambient medium. The nonconservative
forces introduce the corrections to the positions of the
channels. These corrections are small and should not affect
much the results for the stable channels defined by the intensity
maxima.

Thus, the channel position can be found from the set of
equations

∂|E|2
∂ξ

= 0,
∂|E|2
∂η

= 0,
∂|E|2
∂y

= 0. (14)

In the case of the channel equation ξ (x,z) = const, the
direction of the channel is specified by the unit vector eη, and
the forces along the channel can be written as

Fpol = eηFpol = − 1

2hη

Im(αe)

× Im

(
Eξ

∂E∗
ξ

∂η
+ Eη

∂E∗
η

∂η
+ Ey

∂E∗
y

∂η

)
,

Fph = eηFph = 1

2hη

|E|2Im(αe)
∂	

∂η
,

Fcurv = eηFcurv = 1

hη

Im(αe)Im(E∗
ξ Eη)eξ

∂eη

∂η
,

Fm = eηFm = 1

4hη

Re(αm)
∂|H|2
∂η

, (15)
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where hξ and hη are the Lamé coefficients. Having in mind
that the quantity

κ =
∣∣∣∣ ∂eη

hη∂η

∣∣∣∣ (16)

is the curvature of the curve, we can find the traces of it in the
definition of the force Fcurv. The magnetic gradient force Fm

vanishes if |H|2 = |H1|2 + |H2|2 + |H3|2 does not depend on
the coordinate along the channel η. It is feasible, if the field
components depend on η as H1 = |H1| exp(iφ1(η)), etc. Hence,
the magnetic field takes the form H = |H1| exp(iφ1(η)) +
|H2| exp(iφ2(η)) + |H3| exp(iφ3(η)). For instance, such a mag-
netic field appears in the nondiffractive Bessel and Airy beams.

When the channel is a straight line ξ = x = const, we
come to the case of a nondiffracting light beam with constant
intensity in the transverse plane. Then η = z and the basis
vectors coincide with those of the Cartesian coordinates, i.e.,
eξ = ex and eη = ez. The curvilinear force Fcurv obviously
turns to zero. Since ∂E/∂z = 0 for the nondiffracting beam
and the magnetic energy density |H|2 does not depend on z,
the polarization force Fpol and the magnetic force Fm vanish
as well. Only the phase force Fph = (1/2)|E|2Im(αe)∂	/∂z

controls the particle dynamics in this case.

III. NONDIFFRACTING LIGHT BEAMS

A. Nonparaxial Bessel beams

We consider the well-known nondiffracting light beam
formed by the superposition of the plane waves with wave
vectors lying on the cone of angle 2α at the vertex—the
electromagnetic Bessel beam [21]. If α is great, the Bessel
beam is called nonparaxial. In this section, we deal with the
nonparaxial transverse electric (TE)-polarized Bessel beams
of the order m in vacuum. The electric and magnetic fields in
cylindrical coordinates ξ = r , η = ϕ, and y read [22]

E = −k0

q
A

(
iJ ′

m(qr)eϕ + m

qr
Jm(qr)er

)
eimϕ+iβy,

H = A

(
Jm(qr)ey + β

q

(
iJ ′

m(qr)er − m

qr
Jm(qr)eϕ

))

× eimϕ+iβy, (17)

where A is the amplitude, Jm is the Bessel function of the order
m, J ′

m(x) = dJm/dx, and β = k0 cos α and q =
√

k2
0 − β2 =

k0 sin α are the longitudinal and transverse wave numbers,
respectively. The picture of the intensity of the Bessel beam
is illustrated in Fig. 1(a). The electric field components and
phase function equal

Eξ = Er = −mk0

q2r
AJm(qr),

Eη = Eϕ = − ik0

q
AJ ′

m(qr),

	 = mϕ + βy. (18)

1

0φ

eξeη

(a)

(b)

k0x

k0z

1 2-1-2

1

2

-1

-2

0

k0r

FIG. 1. (Color online) (a) Sketch of the spherical particle in the
Bessel beam’s cross section (k0x, k0z). The curvilinear trajectory
is the circle ξ = r = const. The particle is trapped by the gradient
force and moves in the stable channel due to the nonconservative
forces. (b) The gradient and nonconservative optical forces acting on
the Rayleigh particle of radius k0a = 0.1 and dielectric permittivity
ε = 2.25 in the field of the nonparaxial Bessel beam of the order
m = 1 (q/k0 = 0.5).

Since |E|2 = (k0A/q)2[J ′2
m + (m/qr)2J 2

m] depends only on
the coordinate r , the channel equation takes the form

d

dr

(
J ′2

m (qr) + m2

q2r2
J 2

m(qr)

)
= 0. (19)

Maxima of the function |E|2 correspond to the stable
channels r = rc or, in other notation, x2 + z2 = r2

c . The
channels are the cylinders of radius rc. The particle is not
allowed to move along a curved trajectory, when rc = 0;
therefore, we exclude this case from consideration. We ignore
the particle’s movement in the straight y direction assuming
that it is trapped at y = 0 by the standing-wave Bessel beam.
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The forces in the channel r = rc can be written as

Fpol = 0, Fph = m

2r
Im(αe)|E|2,

Fcurv = − mk2
0

q3r2
A2Im(αe)Jm(qr)J ′

m(qr),

Fm = 1

4r
Re(αm)

∂|H|2
∂ϕ

= 0. (20)

The r dependencies of all nonzero forces are depicted in
Fig. 1(b). Zero gradient force Fgr ∼ d|E|2/dr corresponds to
the position of the channel. Half of the channels are stable.
They attract the particles; i.e., the gradient force is positive at
r < rc and negative at r > rc. The stable channels are indicated
in Fig. 1(b) by vertical dotted lines.

The curvilinear optical force Fcurv can take both positive
and negative values. It is always smaller than the phase force
Fph; therefore, the net nonconservative force is positive:

Fph + Fcurv � mk2
0A

2

q3r2
Im(αe)

× |JmJ ′
m|(m − sign(JmJ ′

m)) � 0, (21)

where sign(JmJ ′
m) = +1 for JmJ ′

m > 0 and sign(JmJ ′
m) = −1

for JmJ ′
m < 0. The nonconservative force turns to zero at m =

0. Thus, the particle moves in the direction governed by the
sign of the beam order m (dragged by the orbital momentum
of the light beam). Though the curvilinear force cannot be
negative in the stable channels of the nonparaxial Bessel light
beam of the order m = 1 [see Fig. 1(b)], Fcurv < 0 for the first
channel in the case m > 1 as shown in Fig. 2.

In fact, from the channel equation (19) we derive

J ′
mJm = m2J 2

m + J ′2
m (qrc)2

qrc(2m2 − (qrc)2)
. (22)

The curvilinear force in the channel is negative, if J ′
mJm is

positive [see Eq. (20)]; i.e., the denominator 2m2 − (qrc)2 > 0
or

k0rc <

√
2m

q/k0
. (23)

For m = 1 [Fig. 1(b)] the curvilinear force in the channel
cannot be negative, because the stable channel is out of
the domain k0rc <

√
2 × 1/0.5 = 2

√
2. However, the first

channel position satisfies the conditions k0r < 20
√

2 at m = 2
and k0r < 30

√
2 at m = 3. That is why the curvilinear force

Fcurv < 0 in the first channel as depicted in Figs. 2(a) and 2(b).

B. Airy beams

The curvilinear coordinates in the plane (x, z) adopted for
the Airy light beam can be written as (see Fig. 3)

ξ = x

x0
− z2

4x2
0

, η = x

x0
+ 2 ln

(
z

x0

)
, (24)

where x0 is the scale factor. The basis vectors of the orthogonal
coordinate system are equal to

eξ = ex − (z/2x0)ez√
1 + (z/2x0)2

, eη = ez + (z/2x0)ex√
1 + (z/2x0)2

, (25)

FIG. 2. The curvilinear optical forces in the case of the nonparax-
ial Bessel beam of the order (a) m = 2 and (b) m = 3 (q/k0 = 0.1) for
the particle’s radius k0a = 0.1 and dielectric permittivity ε = 2.25.

x/x0

z/
x 0

ξ=c
ons

t

η=const

eξ

eη

FIG. 3. Coordinate lines ξ = const and η = const of the orthog-
onal curvilinear coordinate system. ξ = const is the trajectory of the
Airy beam.
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while the Lamé coefficients take the form

hξ = x0√
1 + (z/2x0)2

, hη = z/2√
1 + (z/2x0)2

. (26)

Using the expression for magnetic field

H = A0e
i	Ai(ξ )ey (27)

as the solution of the paraxial wave equation valid at k0x0 	 1,
we derive the electric field from Maxwell’s equations:

E = i

k0
∇ × H = − A0e

i	√
1 + (z/2x0)2

× [(Az/2x0 + B)eξ + (A − Bz/2x0)eη], (28)

where

	 = k0z − z3

12k3
0x

6
0

+ xz

2x2
0

,

A =
(

− k0 + z2

4k3
0x

6
0

− x

2x2
0

)
Ai(ξ ) − iz

2x2
0

Ai′(ξ ),

B = z

2x2
0

Ai(ξ ) − i

x0
Ai′(ξ ). (29)

Since the magnetic field is written in the paraxial approxi-
mation, we should use the same approximation (k0x0 	 1) in
the expression for the electric field. Then

A ≈ −k0Ai(ξ ), B ≈ − i

x0
Ai′(ξ ),

√
1 + (z/2x0)2 ≈ 1.

(30)

The vectors eξ and eη are oriented approximately along the
z and x axes, respectively. Having the above expressions in
mind, we make the conclusion that the vector of the gradient
force has only a ξ component, because |E|2 does not depend
on η:

Fgr = A2
0

4
Re(αe)

d

dξ

(
k2

0Ai2(ξ ) + 1

x2
0

Ai′2(ξ )

)
eξ . (31)

Using the Airy equation, we present the gradient force as

Fgr = A2
0k

2
0

2
Re(αe)Ai′(ξ )Ai(ξ )

(
1 + ξ

k2
0x

2
0

)
eξ . (32)

Then the channels are defined from the condition

Ai′(ξ )Ai(ξ )

(
1 + ξ

k2
0x

2
0

)
= 0. (33)

The guiding forces are directed along the channel which is
specified by the unit vector eη:

Fpol = −k0A
2
0

2x2
0

Im(αe)Ai(ξ )Ai′(ξ ),

Fph = k0A
2
0

2
Im(αe)

(
k2

0Ai2(ξ ) + 1

x2
0

Ai′2(ξ )

)
,

Fcurv = k0A
2
0

2x2
0

Im(αe)Ai(ξ )Ai′(ξ ),

Fm = 1

2z
Re(αm)

∂Ai2(ξ )

∂η
= 0. (34)

FIG. 4. The curvilinear optical force at k0z = 1 for the Airy
light beam (k0x0 = 10). Particle’s radius k0a = 0.1 and dielectric
permittivity ε = 2.25.

Being nondiffracting, the Airy beam is beneficial for
long-distance movement of the particle without a gradient
force. In the paraxial regime, the trajectories are close to
the straight lines, the curvature is small, and the beam’s
polarization is almost linear. Therefore, the force owing to the
phase gradient is much greater than the other nonconservative
(polarization and curvilinear) forces characterized by the
factor 1/(k0x0)2. The curvilinear force can take both positive
and negative values, though it vanishes within the stable
channels (see Fig. 4). It should be noticed that since Fcurv

is totally compensated by the polarization force Fpol, the
net nonconservative force Fph + Fpol + Fcurv = Fph is always
positive and the Rayleigh particle cannot be pulled.

IV. ARBITRARY-TRAJECTORY LIGHT BEAMS

A. Electromagnetic field

Following Ref. [11], we write the magnetic and electric
fields of the beam in vacuum in the plane (x, z) as

H = ψ(x,z)ey − i

k0

(
∂χ

∂x
ez − ∂χ

∂z
ex

)
,

E = i

k0

(
∂ψ

∂x
ez − ∂ψ

∂z
ex

)
+ χ (x,z)ey, (35)

where the functions ψ and χ specify the solutions in the form
of transverse magnetic (TM)- and TE-polarized electromag-
netic beams, respectively.

The function ψ (the same is valid for χ ) satisfies the
Helmholtz wave equation(

∂2ψ

∂x2
+ ∂2ψ

∂z2

)
+ k2

0ψ = 0. (36)

The solution of this equation can be represented in the
form [11]

ψ(x,z) = ik0

2

∫ ∞

−∞
A(x ′)eiφ(x ′) z

r
H

(1)
1 (k0r)dx ′, (37)
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where r(x,z,x ′) =
√

(x − x ′)2 + z2 and H (1)
m (k0r) is the

mth-order Hankel function of the first kind. The ampli-
tude A(x ′) and phase φ(x ′) describe the field ψ(x,0) =
A(x) exp(iφ(x)) at the “initial” plane z = 0. For great argu-
ments of the Hankel function H

(1)
1 the asymptotic behavior is

H
(1)
1 (k0r) ∼ exp(ik0r)/

√
k0r . Therefore, the phase under the

integral equals k0r + φ = kx(x − x ′) + kzz + φ, where kx and
kz(kx) =

√
k2

0 − k2
x are the projections of the wave vector.

The phase function φ(x ′) controls the form of the channel’s
trajectory to guide a particle and can be determined using the
stationary phase approximation. After differentiation of the
stationary phase equation

kx(x − x ′) + kzz + φ(x ′) = const (38)

over x ′,

−kx + dφ(x ′)
dx ′ = 0, (39)

and over kx ,

x − x ′ + dkz

dkx

z = 0, (40)

we arrive at the expression for the wave number kx ,

kx = dφ(x ′)
dx ′ = φ′, (41)

and at the ray equation

x = x ′ − k′
z(φ

′)z. (42)

Here k′
z = dkz/dkx .

On the other hand, the channel in the plane (x, z) is
described by the equation xc = f (zc). Then the ray equation
of the channel is equal to

x ′ − k′
z(φ

′)zc = f (zc). (43)

Differentiating this equation over zc, we get the relation
between the ray trajectory and initial phase φ(x ′):

f ′(zc) = −k′
z(φ

′) (44)

or

f ′(zc) = φ′√
k2

0 − φ′2
, (45)

where f ′ = df/dz is the derivative. Thus, the phase equals

φ(x ′) =
∫

k0f
′(zc(x ′))√

1 + f ′2(zc(x ′))
dx ′. (46)

The dependence of zc on x ′ required in Eq. (46) can be deduced
from Eq. (43) as

f (zc) = x ′ + f ′(zc)zc. (47)

Summing up, the electric and magnetic fields (35) with
an arbitrary trajectory xc = f (zc) are described by a couple of
scalar functions ψ and χ . These functions are the solutions (37)
which form the set of stable channels xc = f (zc), if the phase
φ(x ′) is governed by Eq. (46).

B. Curvilinear coordinates

To use the previously derived formulas for the optical
forces, it is necessary to introduce the orthogonal curvilinear
coordinates. One of the coordinates defines the trajectory as
ξ = const. The couple of curvilinear coordinates in the (x, z)
plane reads

ξ = x − f (z), η = x +
∫

dz

f ′(z)
. (48)

Taking the partial derivatives of the coordinates (48) over ξ

and η, we derive the relationships

∂x

∂ξ
= 1

1 + f ′2(z)
,

∂z

∂ξ
= − f ′(z)

1 + f ′2(z)
,

(49)
∂x

∂η
= f ′2(z)

1 + f ′2(z)
,

∂z

∂η
= f ′(z)

1 + f ′2(z)
.

The Lamé coefficients are of the form

hξ =
√(

∂x

∂ξ

)2

+
(

∂z

∂ξ

)2

= 1√
1 + f ′2(z)

,

(50)

hη =
√(

∂x

∂η

)2

+
(

∂z

∂η

)2

= |f ′(z)|√
1 + f ′2(z)

.

The basis vectors of the curvilinear coordinates equal

eξ = 1

hξ

(
∂x

∂ξ
ex + ∂z

∂ξ
ez

)
= ex − f ′(z)ez√

1 + f ′2(z)
,

(51)

eη = 1

hη

(
∂x

∂η
ex + ∂z

∂η
ez

)
= f ′

|f ′|
ez + f ′(z)ex√

1 + f ′2(z)
,

while Cartesian basis vectors can be written as

ex = eξ + |f ′(z)|eη√
1 + f ′2(z)

, ez = f ′

|f ′|
eη − |f ′(z)|eξ√

1 + f ′2(z)
. (52)

By substituting these vectors into the equation for the
electric field (35) we obtain

E = i

k0

√
1 + f ′2(z)

[
−

(
∂ψ

∂x
f ′(z) + ∂ψ

∂z

)
eξ

+ f ′(z)

|f ′(z)|
(

∂ψ

∂x
− f ′(z)

∂ψ

∂z

)
eη

]
+ χey. (53)

Using Eq. (48), the coordinates x and z can be expressed by
means of the curvilinear coordinates ξ and η. Then E is written
entirely in the curvilinear coordinates.

C. Optical forces

In this section, we write the optical forces acting on the
particle in the field of the accelerating beam in question. The
electric gradient force

Fgr = 1

4k2
0

Re(αe)∇
(∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+
∣∣∣∣∂ψ

∂z

∣∣∣∣
2

+ k2
0 |χ |2

)
(54)

can be neglected only in the diffraction-free channels defined
as

∇
(∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+
∣∣∣∣∂ψ

∂z

∣∣∣∣
2

+ k2
0 |χ |2

)
= 0. (55)
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However, the light beams under consideration are not non-
diffracting ones. The electric gradient force does not vanish
except at the point where |E|2 takes an extreme value.

The magnetic gradient force in the channel’s direction is
much smaller than the electric gradient force in the Rayleigh
approximation and equals

Fm = eηFm

= 1

4k2
0hη

Re(αm)

[
k2

0
∂|ψ |2
∂η

+ ∂

∂η

∣∣∣∣∂χ

∂x

∣∣∣∣
2

+ ∂

∂η

∣∣∣∣∂χ

∂z

∣∣∣∣
2]

.

(56)

There are three types of nonconservative forces. We present
the curvilinear optical force as

Fcurv = − κ

k2
0

f ′′

|f ′′|
f ′

|f ′| Im(αe)Im

(
∂ψ

∂x

∂ψ∗

∂z

)
, (57)

where

κ = |f ′′(z)|
(1 + f ′2(z))3/2

(58)

is the curvature of the trajectory. It should be noted that the
curvilinear optical force is defined by the TM polarization of
the beam (function ψ) and the curvature. The direction of the
force depends on the sign of the first and second derivatives of
the curve function f .

The explicit function of the phase is not specified in the
definition of the electric field; hence, we are not able to divide
the polarization and phase forces. Their sum can be written as

Fph + Fpol = − 1

2hη

Im(αe)

× Im

(
Eξ

∂E∗
ξ

∂η
+ Eη

∂E∗
η

∂η
+ Ey

∂E∗
y

∂η

)
. (59)

By substituting the field components we arrive at the
following expression:

Fph + Fpol

= − Im(αe)

2k2
0hη

Im

(
∂ψ

∂x

∂2ψ∗

∂η∂x
+ ∂ψ

∂z

∂2ψ∗

∂η∂z
+ k2

0χ
∂χ∗

∂η

)
−Fcurv. (60)

The net nonconservative force is equal to

Fph + Fpol + Fcurv

= − Im(αe)

2k2
0hη

Im

(
∂ψ

∂x

∂2ψ∗

∂η∂x
+ ∂ψ

∂z

∂2ψ∗

∂η∂z
+ k2

0χ
∂χ∗

∂η

)
. (61)

D. Example: Circular trajectory

In the case of the circular trajectory described by the equa-
tion xc = f (zc) = √

R2 − z2
c , the channel ray equation (47)

takes the form √
R2 − z2

c = x ′ − z2
c√

R2 − z2
c

. (62)

0

k x

k
z

12 24 36 48 60

12

24

36

48

60

0.02

0

eξ

eη

φ

FIG. 5. (Color online) Dimensionless function |ψ(x,z)|/A0 with
the circular caustic of radius k0R = 50 (γ = 1). The optical forces in
Fig. 6 are calculated along the dashed line of radius k0R1 = 52.

The solution of this equation establishes the dependence of zc

on x ′ as follows:

zc(x ′) = R

x ′
√

x ′2 − R2. (63)

Then the phase (46) of the field at the initial plane equals

φ(x ′) = −k0R
√

x ′2/R2 − 1 + k0R arccos(R/x ′). (64)

If |x ′| > R, the wave is propagating (phase is a real
number). If |x ′| < R, the phase is complex and the wave
is evanescent; hence, its contribution is negligible. One can
choose the amplitude as in Ref. [11]: A(x ′) = A0x

′−γ H (|x ′| −
R), where γ is the constant, and H (x) is the Heaviside
step function (H (x) = 1 for x > 0 and H (x) = 0 for x < 0).
However, the Heaviside step function is not necessary here,
because the domain |x ′| < R contributes little owing to the
evanescent character of waves.

The dependence of the function ψ (y component of the
magnetic field H) on coordinates is demonstrated in Fig. 5.
The trajectory is indeed close to the quarter of the circle
though some deviations occur. These are connected with the
approximate treatment of the considered accelerating beams
based on the use of the Hankel function asymptotics. The
field is not nondiffracting, but it possesses the gradient in both
directions eη and eξ .

All gradient optical forces discussed in the paper are shown
in Fig. 6(a) for the case of a TM-polarized accelerating beam
(χ = 0): two projections of the electric gradient force Fξ =
Fgreξ and Fη = Fgreη as well as the magnetic gradient force
Fm = Fmeη. If Fξ = 0, the electric gradient force is tangent to
the circle. However, this occurs only at some angles φ. The
gradient forces Fη and Fm � Fη vanish at the same point,
which corresponds to the intensity maximum on the circle.
The nonconservative forces in Fig. 6(b) can be divided into two
parts: the great phase-polarization force and small curvilinear
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FIG. 6. (a) The gradient and (b) nonconservative optical forces
at the circular trajectory of radius k0R1 = 52 (see the dashed line in
Fig. 5). The particle radius is k0a = 0.1 and dielectric permittivity is
ε = 2.25.

one. Thus, for the given electromagnetic beam, we can rank
the forces as follows: Fξ ∼ Fη > Fph + Fpol > Fm > Fcurv.
The force due to the curvilinear beam’s trajectory Fcurv is
negligible. Its dependence on the angle φ is similar to that of
the gradient force Fξ , but not the same. It can be expected that,
in the channel defined by Fξ = 0, the curvilinear force should
decrease.

The curvilinear force can be enlarged due to the increase
of the curvature κ = R−1 of the curve x = f (z), i.e., to the
decrease of the radius R of the circular trajectory. When
k0R ∼ 1, the curvilinear force is comparable in magnitude

with the sum of phase and polarization forces. However, in this
case the diffraction plays an important part and the method of
the light beam composition considered in the current section
does not provide the curvilinear trajectory. Nevertheless, the
model of the nondiffracting Bessel beam as an exact solution
of the Maxwell equations is applicable even for the small
trajectory radii R (notice that the forces Fcurv and Fph are
comparable in Fig. 1).

V. CONCLUSION AND OUTLOOK

We have discussed the types of optical forces acting on
the nonmagnetic spherical particles calculated in the Rayleigh
approximation. We take into account the gradient force owing
to the magnetic polarizability of the particle Fm and the
nonconservative force Fcurv due to the accelerating behavior
of the field. The magnetic gradient force is comparable with
the nonconservative force and, therefore, cannot be neglected
in general.

In this paper we only propose the concept of curvilinear
optical forces and demonstrate its application to several
examples. The curvilinear force is proportional to the curvature
of the trajectory of the accelerating beam. Hence, it is stronger
on the steeper parts of trajectories. The curvilinear force
cannot be omitted, because it can be of the same order of
magnitude as the traditional nonconservative force produced
by the phase gradient. To illustrate how the curvilinear force
can be increased, one can consider the bigger particles. If we
limit ourselves by the dipolar approximation, which is valid
until the effects of the quadrupole moments are negligible,
we can generalize the results of the Rayleigh approximation
quite easily. The size parameters in dipolar approximation are
up to s ∼ 1.5 [23]. The polarizabilities of dipolar particles
are described by the Mie-theory-based formulas Eq. (2) and
the types of the optical forces are determined from Eq. (1).
The further derivation of the optical forces is straightforward,
leading to the electric and magnetic curvilinear forces. We
expect that the curvilinear optical forces can be used in optical
micromanipulation by the accelerating beams.
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