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Pseudocanalization regime for magnetic dark-field hyperlenses
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Hyperbolic metamaterials (HMMs) are the cornerstone of the hyperlens, which brings the superresolution
effect from the near-field to the far-field zone. For effective application of the hyperlens it should operate in the
so-called canalization regime, where the phase advancement of the propagating fields is maximally suppressed
and thus field broadening is minimized. For conventional hyperlenses it is relatively straightforward to achieve
canalization by tuning the anisotropic permittivity tensor. However, for a dark-field hyperlens designed to image
weak scatterers by filtering out background radiation (dark-field regime) this approach is not viable because
design requirements for such filtering and elimination of phase advancement i.e., canalization, are mutually
exclusive. Here we propose the use of magnetic (μ-positive and -negative) HMMs to achieve phase cancellation
at the output equivalent to the performance of a HMM in the canalized regime. The proposed structure offers
additional flexibility over simple HMMs in tuning light propagation. We show that in this “pseudocanalizing”
configuration the quality of an image is comparable to a conventional hyperlens, while the desired filtering of the
incident illumination associated with the dark-field hyperlens is preserved.
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I. INTRODUCTION

The diffraction limit has been a notorious challenge in a
wide range of applications. Optical subwavelength imaging
is one particularly active research direction, and throughout
the years various solutions have been proposed to circumvent
the diffraction limit. So far practical results have emerged
from a variety of scanning techniques: scanning near-field
optical microscopy (SNOM) [1] and, more recently, stimulated
emission depletion microscopy [2,3]. Given the intrinsic
slowness of scanning methods, there has always been an
interest in alternative ways to achieve superresolution imaging.
With advances in nanofabrication methods optical metamate-
rials have become a very promising research direction. The
idea of using metamaterials for superresolution is also not
particularly new; Pendry [4] proposed to use a double-negative
metamaterial to form a superlens, which would be able to
image details below the diffraction limit. The superlens itself
is somewhat limited in its applicability, as practical consid-
erations restrict experimental realizations of such a device
[5]. A few years later an alternative approach which avoided
double-negative media was proposed [5] and experimentally
demonstrated [6]. This design (the hyperlens) was instead
based on a hyperbolic metamaterial (HMM) structure for
superresolution. The HMM-based design allows us to avoid
the practical challenges of superlenses: unlike double-negative
metamaterials, fabrication of the HMMs is not so challenging,
as they do not rely on resonant parts. More importantly,
due to their nonresonant nature the HMM structures are less
affected by inevitable material losses, especially in the visible
range [5,7,8].

A hyperbolic medium is an anisotropic medium, where
the ordinary and extraordinary permittivities have opposing
signs. Effectively, the medium is metallic in one direction
and dielectric in others. In solving this system for plane-
wave propagation the resulting dispersion relation shows
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that waves with arbitrarily high wave vectors are allowed to
propagate inside the medium [i.e., the isofrequency surface
ω = f (kx,ky,kz) = const is unbounded] [9–11]. This is in
contrast to conventional media, where only a limited range
of waves can propagate, while the rest are evanescent. The
evanescent waves are highly localized and are accessible only
by near-field probes (such as SNOM) [12]. This filtering of
high-k waves in the far field results in the diffraction limit.
The ability of hyperbolic media to carry these waves allows
for superresolution imaging by subverting the diffraction limit.

To facilitate a straightforward imaging process, the hyper-
lens should be designed such that the fields propagate through
the device with minimal distortion [13–16]. This is achieved
when the HMM is engineered to have the permittivity ten-
sor [ε̂ = diag(εx,εy,εx)] feature either the epsilon-near-zero
(εx ≈ 0) or epsilon-near-pole (|εy | � 1) components (i.e., the
HMM is operated in the so-called canalization regime). As
a consequence the plane-wave field components acquire very
little phase, meaning that the image is effectively “canalized”
through the medium, exhibiting very little broadening or
diffraction.

Natural objects for superresolution imaging would be
biological samples on the scale of a few hundred nanometers,
which are relatively weakly scattering (compared to plasmonic
particles, for example). As the usual design of the hyperlens
carries both incident and scattered waves, the available contrast
is not enough in the case of weakly scattering objects.
To facilitate imaging of weakly scattering subwavelength
objects, dark-field hyperlens designs were proposed [17,18].
For example, by appropriately choosing the signs of the
permittivity tensor components [18] a hyperbolic medium
can be engineered to filter out waves with a long effective
wavelength (small wave number). This mode of operation
(termed a type-II HMM) can be used as a basis for a dark-field
hyperlens [18]. However, the design based on the type-II HMM
suffers from the lack of a canalization regime and reduced
device performance.

In this paper, we propose a method for circumventing
the diffraction limit using a canalization regime. In doing
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this, we provide a detailed discussion of wave propagation
in hyperbolic materials with special emphasis on canalization
solutions. We show from the propagation equations that the
image broadening in hyperbolic media has two different
contributions: absorption (determined by material losses) and
phase accumulation (determined by the dispersion relation).
The absorption term is difficult to circumvent, but the phase
propagation may be decreased (for example, by employing
the canalization regime). However, we show that the canal-
ization regime for a homogeneous hyperbolic medium is
fundamentally incompatible with dark-field imaging (based on
low-k filtering). Relaxing the requirement of a homogeneous
medium leads to the idea of a “pseudocanalization” regime,
where instead of a single medium we aim to use two
complementary media so that each one compensates for the
other’s phase advances (allowing for reduced broadening),
while keeping the low-k filtering properties necessary for dark-
field imaging. This complementary medium can be realized
using a μ-negative HMM, extending the idea for isotropic
media from Ref. [19].

We start by outlining the basic theory of light propagation
in HMMs in Sec. II. We follow with a discussion about the
canalization regime in hyperbolic media (Sec. III). In Sec. IV
we propose and discuss the idea of pseudocanalization by using
μ-negative HMMs for phase compensation. We demonstrate
the applicability of the idea in Sec. V, with a particular focus
on improving a dark-field hyperlens.

II. BASIC THEORY

A. Propagation of waves and dispersion equation

To study the propagation of plane waves in a homogeneous
medium we consider an angular spectrum representation [12]
of the fields, where the initial electric fields at y = 0 are
decomposed with the Fourier transform

E(kx,y = 0) = 1

2π

∫
E(x,y = 0) exp (−ikxx)dx. (1)

Propagated fields after a distance y can then be calculated
with

E(kx,y) = E(kx,y = 0) exp(ikyy), (2)

where ky is the propagation constant (wave-vector component
along the y axis). Using an inverse Fourier transformation, we
find

E(x,y) =
∫

E(kx,y) exp (ikxx)dkx. (3)

To apply Eq. (2) for HMMs we need the expression for
the propagation constant ky in an anisotropic medium. We
assume an anisotropic permittivity [ε̂ = diag(εx,εy,εx) ] and
an isotropic permeability μ. Assuming next a plane-wave
solution for Maxwell’s equations, the dispersion relation for
extraordinary waves becomes (see details in Appendix A)

k2
x + k2

z

εy

+ k2
y

εx

= μk2
0, (4)

which describes the propagation of plane waves through the
medium. In this paper we assume propagation in the x-y plane,

(a)

(c) (d)

(b)

FIG. 1. Isofrequency surfaces for (a) type-I and (b) type-II hyper-
bolic dispersions. The surfaces are unbounded, allowing propagation
of waves with arbitrarily large kx . However, in the type-II HMM in
(b) the low-k waves (kx < kc) are not propagating waves (marked
with a red circle). Propagation of fields from a point source along with
uniform background fields in (c) type-I HMM εx = 1 + 0.05i, εy =
−1 + 0.05i and (d) type-II HMM εx = −1 + 0.05i, εy = 1 + 0.05i.
The important feature of the type-II HMM is that the background
fields are attenuated along propagation.

i.e., kz = 0. We can solve Eq. (4) to yield the propagation
constant in the y direction,

ky = ±
√

εyεx

(
εyk

2
0μ − k2

x

)
/εy. (5)

The sign of ky can be established using the Poynting vector
direction; we are interested in waves propagating towards the
positive y direction. The y component of the Poynting vector
in our case can be written as

Sy = |Hz|2
2ω

Re

(
ky

ε0εx

)
. (6)

To have propagation in the positive y direction, the sign of ky

must be chosen to have Sy > 0.
In the general case the propagation constant has both real

and imaginary parts ky = k′
y + ik′′

y , where the real (imaginary)
part describes phase accumulation (attenuation).

B. Propagation in hyperbolic media

In hyperbolic media components εx and εy have different
signs. In this case the isofrequency contour in Eq. (4) will yield
a hyperboloid, as shown in Figs. 1(a) and 1(b). Two different
configurations can be distinguished: we designate the case of
μεy < 0 < μεx as a type-I hyperbolic dispersion and the case
of μεx < 0 < μεy as a type-II hyperbolic dispersion [20]. We
note that asymptotic behavior for large kx is the same for type-I
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and type-II hyperbolic media:

ky ∝ ±kx

√|εx |/|εy |. (7)

This indicates that ky will stay real for arbitrarily high kx , and
consequently, the high-k waves are always propagating waves
in the hyperbolic medium. This is different from conventional
media, where the propagation constant for high-k waves
turns fully imaginary, signifying the evanescent nature of the
fields [12].

The differences between type-I and type-II hyperbolic
media become apparent for low-k waves. The propagation
constant at kx = 0 becomes

ky(0) = ±
√

εxk
2
0μ. (8)

For a type-II HMM εxμ < 0, so the propagation constant
becomes imaginary; that is, these waves are evanescent (for
a conventional medium) or amplified (in the case of a gain
medium). The transition point kc between low-k and high-k
waves can be seen from Eq. (5) :

k2
c = εyμk2

0, (9)

meaning that in a type-II HMM only waves with |kx | � kc

(high k) will be propagating, whereas waves with |kx | < kc

(low k) will be evanescent. As the subwavelength details of
an image are mostly contained in high-k waves, while the
background field is transported by low-k waves, this filtering
can be used to design a dark-field version of the hyperlens [18].
We use Eq. (2) to calculate the propagation of the fields through
the hyperbolic medium to illustrate the key difference between
type-I and type-II HMMs, namely, the filtering of background
radiation in a type-II hyperbolic medium. Figures 1(c) and 1(d)
show that the type-II HMM filters out background radiation,
unlike the type-I HMM.

III. CANALIZATION REGIME

One of the early proposals for a hyperlens was based on
a metamaterial consisting of a wire medium [21]. In such a
medium the modes propagating in individual wires transport
pixels of the image. In other words, the image is “canalized”
from the inner to outer interface, giving rise to the name of this
mode of operation. This is important for imaging purposes,
as the fields propagate with minimal distortion. However,
such operation is not limited to wire media: similar operation
can be obtained with various configurations of hyperbolic
metamaterials [22–24]. In general, a hyperbolic medium
approaches the canalization regime as εx approaches zero
and/or εy approaches infinity. In these limits the propagation
constant becomes independent of kx , and from Eq. (3) it
follows that fields will propagate in an undistorted manner:

E(x,y) = exp(ikyy)E(x,0). (10)

As a result, fields are canalized through the medium. For
superresolution imaging this regime is strongly desirable, as
it is vital for a distortion-free image. Most hyperlens designs
proposed so far utilize the canalization regime. For a detailed
discussion on HMMs where εx ≈ 0 see Ref. [25].

(a) (b)

FIG. 2. Propagation of fields through (a) a canalizing and
(b) a pseudocanalizing type-II HMM slab. The canalizing HMM
parameters are εx = (−1 + 0.05i)/202, εy = 1 + 0.05i. To achieve
pseudocanalization a slab of a type-II HMM [same as in Fig. 1(d)] is
combined with a compensating slab [given by Eqs. (17) and (18), with
μ(2) = −1] of equal thickness. The initial field is the superposition
of the field of a narrow pointlike source and a uniform background
field. Note that unlike the noncanalizing type-II HMM [Fig. 1(d)],
there is no attenuation of the background fields in (a). However, in
the pseudocanalizing system (b) the background filtering properties
are restored.

The canalization regime also implies minimal broadening
of the image. For waves propagating in the y direction, we can
estimate broadening using the Poynting vector components:

Sx

Sy

= Re(kx/εy)

Re(ky/εx)
, (11)

which in the canalization limit approaches zero (for the
lossless case). This shows that in a canalizing system the
fields propagate directly in the y direction; that is, there is
no broadening. In lossy systems the broadening will have
two contributions: one arises from attenuation of waves which
affects high-k waves more and thus narrows the spectrum in
the reciprocal space. This corresponds to broadening in real
space. Furthermore, the spread of the Poynting vector [as per
Eq. (11)] also causes broadening. This spread is linked to the
phase accumulation of propagating fields and can therefore, in
principle, be compensated. For comparison, compensating for
attenuation losses is impossible without using gain media.

It is important to note that the distinction between type-I
and type-II HMMs disappears in the canalization regime. First,
considering the limit where εy → ∞, we see from Eq. (5) that
ky ≈ √

εxμk0 (for large εy), which means that all fields will
be either propagating or evanescent, depending on the sign of
εxμ. As a consequence, there is no distinction between low-k
and high-k waves. In another case (εx → 0) we see that the
distinction between low-k and high-k waves is unaltered [the
cutoff point kc is independent of εx , as per Eq. (9)]. However,
from Eq. (5) it follows that the propagation constant ky scales
with

√
εx . This means that as the system moves closer to the

canalization regime the attenuation constant (Im ky) is reduced,
therefore nullifying the low-k filtering effect.

The lack of low-k filtering is shown in Fig. 2(a), which
shows that in the canalization regime the type-II HMM does
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(a) (b)

(c)

FIG. 3. Broadening of the fields during propagation through a
type-II HMM (εx = −1 + iγ , εy = 1 + iγ , γ = 0.1). Propagation
of fields through the slab for (b) a normal type-II slab and (a) for
phaseless propagation, i.e., Re ky = 0. FWHM of the beam with
various losses is indicated by the solid (γ = 0.1), dashed (γ = 0.2),
and dotted (γ = 0.05) lines. (c) Fields for both cases (normal
and phaseless propagation) after propagation distance z = 0.2. The
dashed and dotted lines indicate the same loss factors γ . The results
indicate that the phase term is responsible for the ∼2 times increase
in FWHM.

not attenuate background fields [compare with Fig. 1(d)]. As
the background fields are not attenuated, the canalization
regime is not applicable for dark-field imaging. However,
working beyond the canalization regime degrades the image
quality of the hyperlens, creating additional challenges [18].
Therefore it would be beneficial to achieve canalizationlike
behavior while still maintaining the low-k filtering properties.

From the propagation equation [Eq. (2)] we note that the
effect of the propagation constant ky can be split into the
real (k′

y) and imaginary (k′′
y ) parts. The real part will yield

a phase term [exp (ik′
yy)], while the other term yields an

attenuating term [exp (−k′′
yy)]. The latter affects the high-k

waves more, causing narrowing of the wave vector spectrum
(broadening in the image space). This broadening is shown in
Fig. 3(a), where only the attenuation term is taken into account.
However, the phase term will also contribute to broadening,
as seen in Fig. 3(b), where both phase and attenuation terms
are considered. Comparing the two cases [Fig. 3(c)], we see
that the phase term causes additional broadening. As the
canalization regime implies minimal phase distortions, the
additional broadening term is suppressed in this regime.

IV. PHASE COMPENSATION WITH A μ-NEGATIVE HMM

The key property of the canalization regime (in the ideal
limit) is that fields propagate with constant phase accumulation
[i.e., Re(ky) = const]. However, the canalization regime is
not a strict prerequisite for having no phase accumulation.
The identical result could be achieved by replacing the
homogeneous HMM medium with two different HMM slabs

with complementary dispersion, such that

d1k
(1)
y (kx) = −d2k

(2)
y (kx), (12)

where d1 and d2 are the thicknesses of two slabs. In most
of the calculations here we assumed d1 = d2, but in general
thicknesses can be varied to allow more freedom in engineering
suitable permittivity and permeability properties. Assuming
full impedance matching (i.e., no reflections) between the
slabs, the propagated fields will have no distortions in the
phase or amplitude. In this case the two slabs form effectively
a canalizing system.

To proceed with calculations, we assume two lossless
hyperbolic media: the first medium has μ(1) = 1, whereas for
the second medium we require μ(2) < 0. We can repeat Eq. (12)
for the two defining cases, first for low-k waves (kx = 0),

d1sgn
(
ε(1)
y

)√
ε

(1)
x = −d2sgn

(
ε(2)
y

)√
μ(2)ε

(2)
x , (13)

and then for high-k waves by taking the limit where kx

approaches infinity:

d1

√
−ε

(1)
x ε

(1)
y kx/ε

(1)
y = −d2

√
−ε

(2)
x ε

(2)
y kx/ε

(2)
y . (14)

Solving Eqs. (13) and (14) yields conditions for two slabs:

μ(2)ε(2)
x = ε(1)

x d2
1/d2

2 , (15)

μ(2)ε(2)
y = ε(1)

y . (16)

Although we derived the relations based on only two
cases (kx = 0 and kx = ∞), it is easy to verify that the
phase-matching condition [Eq. (12)] holds for all kx . In the
case of lossy media, we limit the discussion to media where
Im(ε) > 0; that is, we neglect gain media. In lossy media
we require only the real part of Eq. (12) to hold. However,
we do assume d1Im k(1)

y = d2Im k(2)
y , so that we reach the

following conditions for complex permittivities:

μ(2)ε(2)
x = ε(1)∗

x d2
1/d2

2 , (17)

μ(2)ε(2)
y = ε(1)∗

y . (18)

The conditions above ensure that the phase accumulation is
canceled even in lossy media. However, due to losses the
fields will not stay unmodified: the plane-wave components
of the image will be attenuated, where the attenuation factor
Im(ky) depends on kx . As different plane-wave components
experience different attenuations, this will result in broadening
of the image in real space. However, as discussed in the
previous section, the broadening in HMMs is caused by both
phase and attenuation terms. In a pseudocanalizing system the
contribution from the phase term is eliminated. Figure 3(c)
shows that even when considering the losses, the broadening
is greatly reduced in a pseudocanalizing system.

It is important to stress that the constituent media are
not required to be in the canalization regime. This means
that we can have two complementary type-II HMM slabs
(both exhibiting low-k filtering) and combine them in the
pseudocanalizing system with dark-field operation.

From the impedance for oblique incidence (γ = ky/εxk0),
conditions for slab permittivities [Eqs. (15) and (16)], and
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(a) (b)

FIG. 4. (a) Magnetic fields after propagation of a fixed distance
(y = λ, h = λ/2) of a pseudocanalizing type-II HMM, with varying
low-k cutoff kc. Dashed lines indicate expected zeros at nπ/kc,
present due to low-k filtering. Material parameters are εx = −k2

c /k2
0 ,

εy = k2
c /k2

0 . Initial fields are Hz = exp (−x2/�2), where � = λ/10.
(b) Operation of the pseudocanalizing system for kc = 1.5k0. The
figures are calculated using Eq. (19).

wave numbers (12) we see that the pseudocanalizing slabs
are impedance matched for the lossless case. As the designs
of practical interest are limited to the low-loss regime, we
continue to neglect reflections for the lossy system as well.
We later show with full-wave simulations that reflections do
not significantly alter the performance of the device. Therefore
propagation of the initial fields through the two slabs can be
written in accordance with Eq. (2) as

E(kx,y) =
{

E(kx,0) exp
(
ik(1)

y y
)

y < h,

E(kx,0) exp
(
ik(1)

y h
)

exp
[
ik(2)

y (y−h)
]

y > h,

(19)

where h is the thickness of the first slab. In Fig. 2(b) we use this
to show operation of such a pseudocanalizing system. We see
that the original image is transmitted with minimal distortion
(similar to the canalizing medium), except for the background,
which is strongly attenuated.

However, as shown in Fig. 4, the image from the type-
II pseudocanalizing system is not completely distortion free:
attenuation of low-k waves behaves as a high-pass filter for the
image, somewhat reducing the image quality. The exp (ikyy)
term in the propagation equation [Eq. (3)] can be approximated
as a high-pass filter with the cutoff at kc. Assuming a point
source, we can use the Fourier transform of a rectangular
function to approximate the filtered image as

E(x,y) ≈ E0
2

x
sin (kcx). (20)

We see that due to filtering the image will have addi-
tional zeros at nπ/kc (with n = 0, ± 1, . . . ). This is made
worse with increasing kc, as the image will develop more
sidelobes.

Finally, it is worth pointing out that the phase compensation
could be achieved in limited cases without μ-negative materi-
als as well. It is easy to show that the phase compensation
condition for high-k waves [Eq. (14)] will have the same
form even when μ(2) = μ(1) = 1. This means that phase

compensation can be achieved with a medium in which

sgn
(
ε(1)
y

) = −sgn
(
ε(2)
y

)
, (21)

ε(1)
x /ε(1)

y = (
ε(2)
x d2

1

)
/
(
ε(2)
y d2

2

)
. (22)

This only partially solves the problem since for low-k waves
the phase is not canceled [Eq. (13) is not satisfied]. For
example, in superresolution imaging applications most of the
energy will be carried by waves with kx near kc, both due to
their evanescent nature in the medium outside the hyperlens
and also due to material losses having a stronger effect on
waves with higher kx . Since the phase of waves near kc is not
compensated, the image will experience significant distortion.

V. PSEUDOCANALIZATION IN A
CYLINDRICAL HYPERLENS

We now extend the discussion from planar to cylindrical
geometry as is the case with hyperlens structures. For
cylindrical geometry the hyperbolic permittivity is given as
ε̂ = diag(εθ ,εr ,εθ ). A simple plane-wave analysis suffices for
a qualitative understanding. The detailed numerics is carried
out using a full-wave EM analysis. From geometric principles
it follows straightforwardly that the image is expanded by a
factor of

M = r2

r1
, (23)

where r1 is the initial radius from which the fields start
propagating (inner surface of the hyperlens) and r2 is the final
radius (outer surface of the hyperlens). In angular spectrum
representation this corresponds to a compression of kθ as the
wave propagates from the initial value k′

θ to

kθ = k′
θ /M, (24)

where k′
θ is the initial value. To counteract the effects of

magnification, the second medium (compensation medium)
should be scaled. As we show in Appendix B, ε(2)

r should be
scaled by the total magnification of the hyperlens:

ε(2)
r = ε′(2)

r /M. (25)

To demonstrate the concept, we have chosen relatively
simple material parameters for the HMMs, of the form
εx,y = ±1 + γ i. This allows us to capture the effects related to
losses while keeping the number of free parameters minimal.
However, we point out the choice is made only to demonstrate a
simple analysis, as the conditions in Eqs. (17) and (18) are gen-
eral and are not limited to the simplified parameters used here.

We start by demonstrating the concept with a bright-
field hyperlens [Fig. 5(a)] based on a type-I HMM. This
allows us to directly compare canalizing and pseudocanal-
izing operations in cylindrical geometry. We show that the
pseudocanalizing system works in cylindrical geometry too
[Fig. 5(b)], demonstrating applicability for hyperlens devices.
Figure 5 is obtained by full-wave simulations (using COMSOL

MULTIPHYSICS version 5.1); that is, reflections from interfaces
are taken into account. Standing waves originating from these
reflections are seen on the figures as the modulated intensity
along the direction of propagation.
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(a) (b)

FIG. 5. (a) Simulations of the radiation of a point source close
to the inner interface imaged by a bright-field hyperlens [εθ = 0.2 +
0.02i, εr = −5 + 2.20i ], operating in the canalization regime. (b) A
similar bright-field hyperlens, but using a pseudocanalizing structure
consisting of two HMM layers [ε(1)

θ = 1 + 0.05i, ε(1)
r = −1 + 0.05i,

ε
(2)
θ = ε

(1)∗
θ , ε(2)

r = ε(1)∗
r /2 ]. For all structures the inner radius is r1 =

1.5λ, and the outer radius r2 = 3λ. The dashed line in (b) shows the
split between μ-positive and μ-negative media.

Similar considerations hold for a dark-field hyperlens
(based on a type-II HMM): the scaling for the compensation
layer follows the same relation [Eq. (25)]. Simulation results
for the dark-field hyperlens are shown in Fig. 6: the background
radiation is still filtered out (dark-field operation is preserved),
while scattered fields from the small dielectric object pass
through the device. As discussed in Sec. IV, the filtering of
low-k waves affects the image so that dark-field operation
comes at the cost of image quality. By reducing the low-k
cutoff kc the image quality is improved, as we discussed in the
case of flat geometry [see Fig. 4(a)].

The hyperlens resolution is determined by two factors:
magnification and broadening. The fields on the outer interface
should be imaged by far-field optics and hence must be above
the diffraction limit. Given a hyperlens with magnification M ,
the resolution limit is then λ/2M . In our case, the hyperlens
geometry used has 2× magnification, leading to a resolution
of λ/4. However, the broadening inside the HMM is also
an important consideration: if the beams originating from
a point source are broadened too much, they will overlap

(a) (b)

FIG. 6. Simulations demonstrating the functioning of a dark-field
hyperlens with two complementary HMM layers operating in a
pseudocanalized regime [ε(1)

θ = −1 + 0.05i, ε(1)
r = 1 + 0.05i, ε

(2)
θ =

1 + 0.05i, ε(2)
r = (−1 + 0.05i)/2, μ(1) = 1, μ(2) = −1]. Simulations

(a) without and (b) with a small subwavelength scatterer show that
the incoming background radiation is filtered, whereas scattered fields
from the weakly scattering dielectric object pass through the system.

FIG. 7. Magnetic field norm along the outer interface of the
hyperlens due to two point sources. The two sources near the inner
interface are separated by λ/4. The blue line shows the behavior
of a canalizing bright-field hyperlens [Fig. 5(a)], while the orange
line shows the corresponding case for a pseudocanalizing hyperlens
[Fig. 5(b)].

in the output. In such a case the resolution will be limited
by the broadening of the beams. In Fig. 7 we show that
both canalizing and pseudocanalizing bright-field hyperlenses
have comparable performance in the limiting case of λ/4
separation. In Fig. 7 we show that both canalizing [Fig. 5(a)]
and pseudocanalizing bright-field hyperlens [Fig. 5(b)] have
small enough broadening that the required resolution λ/4 can
be reached. However, for the hyperlens used here, if a better
resolution is needed, then losses must be reduced; otherwise,
the broadening will be a limiting factor.

In Fig. 8(a) we compare the performance of the pseudo-
canalizing bright-field [Fig. 5(b)] and dark-field hyperlenses
(Fig. 6). At the resolution limit the pseudocanalizing dark-field
hyperlens offers competitive performance with respect to
the bright-field hyperlens. We even see an edge-enhancing
behavior associated with high-pass filtering due to filtering
low-k waves, which enhances the contrast between the two
peaks.

However, as shown in Fig. 8(b), the behavior of a dark-field
hyperlens is not straightforward. Although a (magnification-
limited) resolution of λ/4 is reached with relative ease, the
sidelobes associated with low-k filtering are present and
could be problematic for some configurations. In our case,
the worst case happens for a source separation of 0.36λ,
where the sidelobes of two sources interfere constructively.
Nonetheless, here the effect is not strong enough to pose
serious problems: the ratio between the main peak and the

(a) (b)

FIG. 8. (a) Magnetic field norm along the outer interface of a
pseudocanalizing bright-field hyperlens (orange line) and a pseudo-
canalizing dark-field hyperlens (blue ling). The two point sources are
separated by λ/4. (b) Magnetic field norm along the outer interface
as a function of the point source separation d . The dotted lines show
the location of the main peaks from the two point sources.
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highest sidelobe is about 1.2. This is comparable to the
worst-case performance of the bright-field pseudocanalizing
hyperlens, shown in Fig. 8(a), where the ratio between the
peaks and the valley between the peaks is also around 1.2.

VI. CONCLUSIONS

We have shown that the effect of the canalization regime
can be understood as the propagation of fields without
phase accumulation. This suppression of the phase term
minimizes the signal broadening in the HMM and prevents
distortions of the image. We have extended the idea of the
canalization regime from homogeneous hyperbolic media to
systems consisting of two complementary hyperbolic slabs
(pseudocanalizing system), where the phase propagation in
one slab cancels that of the other so that the propagated fields
have no additional phase term. Unlike a canalizing system, a
pseudocanalyzing system allows us to sustain the dark-field
imaging properties along with image quality comparable to
that of a canalizing HMM.

This idea of pseudocanalization also applies for cylindrical
geometries, i.e., for typical hyperlens designs. Magnification
stemming from the cylindrical geometry creates some new
considerations for the material parameters, but we show
that the principle still stands and a pseudocanalizing system
performs as well as a canalizing system. Furthermore, this
pseudocanalizing system could be used to improve dark-field
hyperlens designs in terms of the image quality.
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION FOR HMMS

Since the system is invariant in the z direction, we can
effectively consider a two-dimensional case and limit the
derivation to TM waves (for TE waves we would end up
with isotropic dispersion). The procedure in Ref. [26] can
be followed for a general derivation. We start with

E = Ex x̂ + Ey ŷ, (A1)

H = Hzẑ. (A2)

With the help of the constitutive equations we write the D and
B fields as

D = ε0(εxEx x̂ + εyEy ŷ), (A3)

B = μ0μHzẑ. (A4)

After combining the above relations and (source-free)
Maxwell’s curl equations

∇ × E = −iωB, (A5)

∇ × H = iωD (A6)

and using ∇ · D = 0, we end up with (for i = x,y)

1

εy

∂2Ei

∂x2
+ 1

εx

∂2Ei

∂y2
+ ω2ε0μ0μEi = 0. (A7)

After substituting the plane-wave solution E =
E0 exp (ik · r), we derive the dispersion equation:

k2
x/εy + k2

y/εx = μω2/c2. (A8)

We point out that the magnetic permeability can be anisotropic
[μ̂ = diag(μx,μy,μz)], but since one component (Hz) is
nonzero, only the μz component would enter the dispersion
relation for TM waves.

APPENDIX B: PHASE ACCUMULATION FOR
CYLINDRICAL WAVES

We use Maxwell’s curl equations [Eqs. (A5) and (A6)] to
obtain the wave equation

∇ × (ε̂−1∇ × H) = k2
0μH, (B1)

for which we assume TM fields of the form H(r,θ ) =
F (r) exp (imθ )ẑ. Solving the differential equation yields a
general solution for the fields H = Hzẑ in the form

Hz(r,θ ) = exp (imθ )
[
aH (1)

ν (krr) + bH (2)
ν (krr)

]
, (B2)

where ν = m · √εθ/εr and kr = k0
√

εθ . The angular momen-
tum mode number m is the number of wavelengths per angle
of full rotation (2π ). By analogy with plane waves, it is useful
to introduce a tangential wave number kθ (i.e., the number of
wavelengths per unit length), which is related to the angular
momentum mode number by m = kθ r . As m is fixed for a
given wave component, we have k′

θ r0 = kθ r , from which it
follows that

kθ = k′
θ

r0

r
, (B3)

which shows that the wave vectors are compressed during
propagation, corresponding to the magnification of the image.

As for a planar system, the aim here is to obtain expressions
for phase accumulation. However, obtaining the analytical
expressions in a cylindrical basis is not straightforward.
Instead, we approach the problem with modified plane waves.
The key difference between planar and cylindrical geometries
is magnification of the image [i.e., scaling of kθ , given
by Eq. (B3)]. In planar geometry the phase propagation is
expressed with

E2 = E1 exp[iky(x2 − x1)], (B4)

where the acquired phase is just Re(ky)(x2 − x1). To account
for magnification arising from cylindrical geometry we can
express the acquired phase by

Re
∫ r2

r1

kr (r) dr. (B5)

In our case kr is the propagation constant and a function of
r (via kθ ). The propagation constant ky is given by Eq. (5);
however, here kx is scaled as given by Eq. (B3). As shown
in Fig. 9, this approach of using plane waves with scaled
kθ manages to capture the phase accumulation effects in
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FIG. 9. Acquired phase per distance d

dr
arg Hz. For plane waves

(solid blue line) the phase is linearly dependent on propagated
distance [arg Hz = ky(x2 − x1)]. However, in cylindrical geometry
the phase propagation is not linear; as seen for Hankel waves (solid
yellow line), the phase propagation depends on the propagation
distance. The dashed blue line shows phase propagation using scaled
plane waves [Eq. (B5)], which offers a good approximation for
cylindrical waves.

cylindrical geometry. Unlike the solution in cylindrical basis,
this approach allows for analytical integration of Eq. (B5).

We anticipate that the material parameters of the second
medium must be scaled to counteract the effect of magni-

fication. We note that compression of the dispersion relation
[Eq. (4)] in the kθ direction is achieved by scaling εr . Therefore
we alter the second medium as follows: ε(2)

r = ε′(2)
r /ξ .

Integration of Eq. (B5) can be carried out analytically, re-
sulting in an analytical expression for the total acquired phase
as a function of the wave vector kθ , geometric magnification
factor M = 1 + h/r1 (where r1 is the inner radius and h is the
hyperlens thickness), and scaling parameter ξ . Taking the limit
kθ → ∞ allows us to obtain a simple expression for material
scaling:

ξ = {ln[(M + 1)2/4]/ ln[(M + 1)2/4M2]}2. (B6)

For small magnification factors (i.e., h ∼ r1) the expression
further simplifies to

ξ ≈ M. (B7)

It is easy to verify that the resulting expression [Eq. (B7)]
is a good approximation for our geometry. Furthermore, we
numerically verified that the resulting scaling parameter is the
optimal choice when operating in a proper cylindrical basis
using Hankel functions [Eq. (B2)].
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