КОМПЬЮТЕРНЫЙ ДИЗАЙН МАТЕМАТИЧЕСКОГО КОНТЕНТА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 80 03 Математика и компьютерные науки

Профилизация: Математика и дидактика математики

2019 г.

СОСТАВИТЕЛИ:

Позняк Юрий Викторович, доцент кафедры веб-технологий и компьютерного моделирования механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой веб-технологий и компьютерного моделирования механико-математического факультета Белорусского государственного университета (протокол № 1 от 30.08.2019г.);

Научно-методическим Советом БГУ
(протокол № 1 от 25.09.2019г.)

Зав. кафедрой

[Подпись]

[Подпись]

В.П. Волков
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Компьютерные технологии уверенно проникают в социум. Большинство социально значимых процессов требуют от субъектов умения наглядно и доступно представить информацию о результатах профессиональной математической деятельности. Весьма актуальными становятся умения дизайн математического контента доступными компьютерными инструментами. Для конструирования математических текстов используются языки разметки. Кроме того, новейшие системы управления контентом позволяют размещать на веб-страницах интерактивные графические элементы. В частности, системы управления обучением позволяют представить математический контент в очень привлекательном виде, благодаря возможностям динамической геометрии и видеоконтента. От преподавателя все чаще требуется умение подготовить иллюстративные материалы для преподаваемого курса, а разработчику программного обеспечения очень часто приходится в доступной форме иллюстрировать свои подходы. А это можно сделать при наличии соответствующих навыков по интеграции в одном коммуникативном продукте информационных материалов различных форматов.

Дисциплина "Компьютерный дизайн математического контента" формирует и развивает у обучающихся представление о технологических аспектах создания коммуникативного продукта с математическим содержанием.

Цели и задачи учебной дисциплины

Цель учебной дисциплины – ознакомление обучающихся с современными видами, средствами и технологическими аспектами разработки коммуникативного продукта по математике.

Задачи учебной дисциплины:
1. Знакомство с современными видами коммуникативного продукта по математике.
2. Изучение современных средств разработки коммуникативного продукта по математике.
3. Освоение технологии создания коммуникативного продукта по математике.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием (магистра).

Учебная дисциплина «Компьютерный дизайн математического контента» относится к профилизации "Математика и дидактика математики" компонента учреждения высшего образования и является дисциплиной по выбору.
Требования к компетенциям
Освоение учебной дисциплины «Компьютерный дизайн математического контента» должно обеспечить формирование следующих универсальных, углубленных профессиональных и специализированных компетенций:

Углубленные профессиональные компетенции:
УПК-4. Быть способным использовать возможности современных программных приложений и математических пакетов для реализации технологии математического моделирования при решении различных прикладных задач.

Специализированные компетенции:
СК-6. Быть способным применять актуальные методы геометрии и алгебры в математических моделях.

В результате освоения учебной дисциплины обучающийся должен:
- **знать:** виды коммуникативного продукта по математике; современные средства разработки коммуникативного продукта по математике; технологические аспекты разработки коммуникативного продукта по математике;

- **уметь:** пользоваться линейкой современного свободно распространяемого программного обеспечения для создания коммуникативного продукта по математике; применять технологию разработки коммуникативного продукта по математике;

- **владе́ть:** навыками дизайна математического контента при помощи компьютерного инструментария.

Структура учебной дисциплины
Дисциплина изучается во 2 семестре. Всего на изучение учебной дисциплины «Компьютерный дизайн математического контента» отведено:
- для очной формы получения высшего образования — 108 часов, в том числе 52 аудиторных часа, из них: лекции — 18 часов, лабораторные занятия — 18 часов, УСР — 16 часов.
- для заочной формы получения высшего образования — 108 часов, в том числе 12 аудиторных часов, из них 8 лекций, 4 лабораторные занятия. Трудоемкость учебной дисциплины составляет 3 зачетные единицы.

Форма текущей аттестации по учебной дисциплине — зачет.
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Формы представления математического контента. Место и роль математики как науки. Цели изучения учебной дисциплины КДМК. Уровни потребления математического контента. Традиционные, современные и гибридные формы представления математического контента. Научный, образовательный и популярный математический контент. Понятие коммуникативного продукта. Представление математического контента в виде коммуникативного продукта.

Тема 2. Разметка математического контента. Формулы. Изображение математического контента: текст и гипертекст, двумерная и трехмерная графика, анимация. Стили в представлении веб-ресурсов, HTML-теги. Набор формул в TeX. Оформление математических текстов в TeX.

Тема 3. Компьютерные математические системы (КМС). История развития КМС. Компьютерная алгебра. Классификация КМС. Конвертация математического контента из КМС в .tex, .html и .CDF-форматы.

Тема 4. Возможности динамической геометрии для дизайна математического контента. КМС и динамическая геометрия. Общая характеристика GeoGebra. Основные инструменты визуального программирования и команды GeoGebra. Создание тематической демонстрации в Geogebra, возможности оформления, форматы сохранения данных. Рекомендации по использованию GeoGebra. Дидактические возможности GeoGebra. Облачные сервисы.

Тема 5. Коммуникативный математический продукт и видеоресурсы. Видеозахват экрана. Место и роль видеоматериалов в конструировании сетевых математических ресурсов. Анализ сетевые математических видео-ресурсов. Средства захвата изображения с монитора, сохранение его в форматах, позволяющих последующую обработку и монтаж.

Тема 6. Видеомонтаж. Основы видеомонтажа. Видеомонтаж в доступных пользовательских системах. Синхронизация видео и звука.

Тема 7. Среды разработки сетевого коммуникативного математического продукта. Обзор систем управления образовательным контентом (LMS). Свободно распространяемая LMS Moodle — современная среда дизайна образовательного контента. Архитектура образовательных ресурсов на основе системы управления обучением, сетевая и локальная версии системы Moodle, платформы, установка, настройка интерфейса,
варианты авторизации пользователей. Авторизация в системе Moodle: настройка профиля, заполнение необходимых данных. Добавление в категорию разработчиков, создание своего курса, настройка интерфейса курса.
Система файловых папок курса. Краткая характеристика инструментальных средств разметки контента, коммерческий анализ.
Создание и настройки курса в Moodle. Дизайн контента (элементы курса: веб-страница, книга, и др.). Функциональное наполнение. Модули активности Moodle (задание, рабочая тетрадь, семинар, урок и др.).
Установка дополнительных плагинов. Выбор индивидуальной темы. Создание пользовательской темы. Графические объекты на веб-странице.
Свободно распространяемая OJS — современная среда дизайна научного контента. Издательская система TeX.

Тема 8. **On-line анализ выполнения проектов.** Коллективная работа по анализу заданий, выявление типичных ошибок. Выработка путей выхода из спорных ситуаций.
УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением дистанционных образовательных технологий

<table>
<thead>
<tr>
<th>Номер темы</th>
<th>Название темы</th>
<th>Количество аудиторных часов</th>
<th>Форма контроля знаний</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Формы представления математического контента</td>
<td>2(ДО)</td>
<td>Опрос</td>
</tr>
<tr>
<td>2</td>
<td>Современные языки разметки математического контента</td>
<td>2(ДО) 2(ДО) 2(ДО)</td>
<td>Отчет по проекту на образовательном портале</td>
</tr>
<tr>
<td>3</td>
<td>Компьютерные математические системы (КМС)</td>
<td>2(ДО) 2(ДО) 2(ДО)</td>
<td>Опрос Анализ кейсов</td>
</tr>
<tr>
<td>4</td>
<td>Возможности динамической геометрии для дизайна математического контента</td>
<td>2(ДО) 4(ДО) 2(ДО)</td>
<td>Отчет по проекту</td>
</tr>
<tr>
<td>5</td>
<td>Коммуникативный математический продукт и видео-ресурсы. Видеозахват экрана</td>
<td>2(ДО) 2(ДО) 2(ДО)</td>
<td>Отчет по проекту на образовательном портале</td>
</tr>
<tr>
<td>6</td>
<td>Видеомонтаж</td>
<td>2(ДО) 4(ДО) 2(ДО)</td>
<td>Отчет по проекту деловая игра</td>
</tr>
<tr>
<td>7</td>
<td>Среды разработки коммуникативного математического продукта</td>
<td>4(ДО) 4(ДО) 4(ДО)</td>
<td>Отчет по проекту</td>
</tr>
<tr>
<td>8</td>
<td>On-line анализ выполнения проектов</td>
<td>2(ДО)</td>
<td>Отчет по проекту на образовательном портале, эссе</td>
</tr>
<tr>
<td></td>
<td>Итого</td>
<td>18 18 16</td>
<td></td>
</tr>
<tr>
<td>Номер темы</td>
<td>Название раздела, темы</td>
<td>Количество аудиторных часов</td>
<td>Форма контроля знаний</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Лекции</td>
<td>Практические занятия</td>
</tr>
<tr>
<td>1</td>
<td>Формы представления математического контента</td>
<td>2(ДО)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Современные языки разметки математического контента</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Компьютерные математические системы (КМС)</td>
<td>2(ДО)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Возможности динамической геометрии для дизайна математического контента</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Коммуникативный математический продукт и видеоресурсы. Видеозахват экрана. Видеомонтаж</td>
<td>2(ДО)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Среды разработки коммуникативного математического продукта</td>
<td>2(ДО)</td>
<td></td>
</tr>
<tr>
<td>Итого</td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

1. Анизимов А.М. Работа в системе дистанционного обучения Moodle. Учебное пособие. – Харьков, ХНАДХ, 2008. - 275 стр.
2. Клименко С.В., Лисина М.В., Фомина Н.М.. Руководство для пользователя AMS-TEX. 1999. -141 стр.
6. Запись видео с экрана. Обзор программ. [Электронный ресурс]. Режим доступа https://pcpro100.info/programmyi-dlya-zapisy-video-s-ekrana/.

Перечень дополнительной литературы

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Диагностика результатов учебной деятельности по дисциплине проводится преподавателем, как правило, во время аудиторных занятий. Для диагностики используются:
- устный опрос;
- отчет по проекту;
- эссе;
- анализ кейсов.
Формой текущей аттестации по дисциплине учебным планом предусмотрен зачет.
Зачет выставляется при выполнении всех лабораторных работ и сдаче индивидуального проекта.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 2. Разметка математического контента. Формулы. Изображение математического контента: текст и гипертекст, двумерная и трехмерная графика, анимация. Стили в представлении веб-ресурсов, HTML-теги. Набор формул в TeX.
Оформление профессионального математического текста индивидуального проекта в TeX.
(Форма контроля – Отчет по проекту на образовательном портале).

Тема 3. Компьютерные математические системы (KMC). История развития KMC. Компьютерная алгебра. Классификация KMC. Конвертация математического контента в .tex, .html и .CDF -форматы.
Создание собственного стиля оформления образовательного ресурса в KMC. Создание образовательного ресурса в KMC.
(Форма контроля – анализ кейсов по математике на образовательном портале).

Тема 4. Возможности динамической геометрии для дизайна математического контента. Создание тематической демонстрации в облаке Geogebra.
(Форма контроля – отчет по проекту на образовательном портале).

Тема 5. Видеозахват экрана. Захват изображений на экране по заранее разработанному сценарию.
(Форма контроля – отчет по проекту на образовательном портале).

Тема 6. Видеомонтаж. Видеомонтаж в доступных пользовательских системах ранее захваченных с монитора изображений и звуковых эффектов.
(Форма контроля – деловая игра на образовательном портале).

Тема 7. Среды разработки сетевого коммуникативного математического продукта. Создание и настройки курса в Moodle. Дизайн контента (элементы курса: веб-страница, книга, и др.). Функциональное наполнение. Модули активности Moodle (задание, рабочая тетрадь, семинар, урок и др.).
Выбор и установка дополнительных плагинов. Создание пользовательской темы. Графические объекты на веб-странице.
Работа в свободно распространяемой OJS — современной среде дизайна научного контента.
(Форма контроля – отчет по проекту на образовательном портале).

Тема 8. On-line анализ выполнения проектов. Выработка путей выхода из спорных ситуаций.
(Форма контроля – эссе на образовательном портале).
Примерная тематика лабораторных занятий

Занятие 1. Языки разметки математических текстов. Разметка текста индивидуального проекта при помощи TeX.
Занятие 2. Разметка математического текста в компьютерных математических системах.
Занятие 3-4. Работа в GeoGebra. Создание динамических объектов для индивидуального проекта.
Занятие 5. Видеозахват экрана.
Занятие 6-7. Монтаж видеоролика.
Занятие 8. Дизайн курса в системах ДО путем интеграции объектов динамической геометрии и видеоматериалов.

Описание инновационных подходов и методов к преподаванию учебной дисциплины (эвристический, проектный, практико-ориентированный)

При организации образовательного процесса используются:
— эвристический подход, который предполагает:
 - осуществление студентами личностно-значимых открытий окружающего мира;
 - демонстрацию многообразия решений большинства профессиональных задач;
 - творческую самореализацию обучающихся в процессе создания образовательных продуктов;
 - индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;
— практико-ориентированный подход, который предполагает:
 - освоение содержания образования через решения практических задач;
 - приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
 - ориентацию на реализацию групповых студенческих проектов, развитие предпринимательской культуры;
 - использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций;
— метод анализа конкретных ситуаций (кейс-метод), который предполагает:
 - приобретение студентом знаний и умений для решения практических задач;
 - анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литератuru и иные источники;
— метод проектного обучения, который предполагает:
способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;

- приобретение навыков для решения творческих, социальных, предпринимательских и коммуникационных задач;

- для достижения максимально возможных результатов каждый студент получает задание, результат которого будет интегрирован в социально значимый проект более высокого уровня на ресурсе www.dl.bsu.by.

— метод деловой игры, который представляет собой вид имитационно-ролевого моделирования, в котором играемая ситуация максимально приближена к решению реальных проблем профессиональной деятельности. Данный метод предполагает моделирование определенной проблемы делового характера.

В процессе деловых игр студенты приобретают конкретный профессиональный опыт, развивают творческое мышление, получают опыт социальных отношений.

Методические рекомендации по организации самостоятельной работы обучающихся, кроме подготовки к экзамену, подготовка к зачету

Для организации самостоятельной работы студентов по учебной дисциплине используются современные информационные ресурсы: на портале смешанного и дистанционного обучения БГУ (dl.bsu.by) разработан курс https://dl.bsu.by/course/view.php?id=1603, в котором размещен комплекс учебных и учебно-методических материалов (учебно-программные материалы, задания, методические указания к лабораторным занятиям, список рекомендуемой литературы и др.).

Примерный перечень вопросов к зачету

1. Языки разметки математических текстов.
2. Основные способы разметки математического текста в компьютерных математических системах.
3. Работа в GeoGebra. Создание динамических объектов.
4. Видеозахват экрана.
5. Основные правила при монтаже видеоролика.
6. Интеграция в системы ДО объектов динамической геометрии и видеороликов.
ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

<table>
<thead>
<tr>
<th>Название учебной дисциплины, с которой требуется согласование</th>
<th>Название кафедры</th>
<th>Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине</th>
<th>Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ
на _____/____ учебный год

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Дополнения и изменения</th>
<th>Основание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Учебная программа пересмотрена и одобрена на заседании кафедры
__________________________ (протокол № _____ от _______ 201_ г.)

Заведующий кафедрой

УТВЕРЖДАЮ
Декан факультета
