
About gravitational interaction in astrophysics in

Riemann-Cartan space-time

A.V. Minkevich

Department of Theoretical Physics and Astrophysics, Belarusian State University, Minsk

Belarus

Department of Physics and Computer Methods, Warmia and Mazury University in

Olsztyn, Olsztyn, Poland

E-mail: minkav@bsu.by, awm@matman.uwm.edu.pl

Abstract. The gravitational interaction at astrophysical scale is discussed within the

framework of minimum gauge gravitation theory in Riemann-Cartan space-time. It is shown

that the interaction of the vacuum torsion with the spin momenta of gravitating objects can

lead into appearance of additional gravitational force in non-relativistic approximation, that

can be manifested on astrophysical scale (galaxies, galactic clusters).
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1. Introduction

The application of gauge invariance principle, which underlies the modern theory

of fundamental physical interactions, by construction of gravitation theory leads to

generalization of metric gravitation theory. Gauge gravitation theory in 4-dimensional

Riemann-Cartan space-time U4 (GTRC) which is known in literature as Poincaré gauge

theory of gravity is the necessary generalization of metric gravitation theory by including

the Lorentz group into the gauge group corresponding to gravitational interaction. After

the appearance of the pioneer works [1-3], which initiated the development of GTRC, many

scientists were engaged in the research of this theory, which is currently one of the important

directions in the modern theory of gravitation ‡ Gravitational equations of GTRC and their

physical consequences depend on the choice of gravitational Lagrangian Lg as function of

gravitational field strengths - the curvature F ik
µν and torsion Si

µν tensors, and also on

‡ See bibliography on gauge gravity theory in the monograph [6], including more than 3 thousand

publications.
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the coupling of matter with gravitational field §. By using minimal coupling the energy-

momentum and spin momentum tensors of gravitating matter play the role of sources of

gravitational field. In the frame of gauge approach the Lagrangian of gauge field usually is

given as function quadratic in the gauge field strength; existence of many invariants, that

are quadratic in the curvature and torsion tensors, is notable feature of GTRC, moreover

there is linear in the curvature invariant - scalar curvature ∥. Because the detailed form of

gravitational Lagrangian is unknown, GTRC based on the sufficiently general expression of

Lg, including both the scalar curvature and various invariants quadratic in the curvature and

torsion tensors with indefinite parameters, was investigated (see e.g. [7-16]). Restrictions on

indefinite parameters of Lg can be found in the request, that satisfying the correspondence

principle with general relativity theory (GR), GTRC allows to solve some principal problems

of GR and physical consequences of this theory are the most satisfactory. Some such

restrictions were found from analysis of isotropic cosmology, built in the frame of GTRC

(see [10, 11, 13] and Refs herein). It was shown, that gravitational interaction, in the case

of usual gravitating matter with positive values of energy density and pressure, differs from

the one that is given in the frame of GR, at extreme conditions (extremely high energy

densities and pressures), where limiting (i.e. maximum allowable) energy density appears

[11], and also when energy density is very small (comparable with average energy density

in the Universe at present epoch) and the vacuum gravitational repulsion effect is essential.

This effect appears, because the physical space-time in the vacuum has the structure of

Riemann-Cartan continuum with de Sitter metric, but not Minkowski space-time [10]. As

result, the solution of the problem of cosmological singularity and the dark energy problem

was obtained in the frame of GTRC.

This article is devoted to study gravitational interaction in astrophysics in the case of

various objects, for which energy density is much smaller than limiting energy density. In

general case the description of such systems in the frame of GTRC is difficult problem

because of complexity of gravitational equations. The situation was simplifying, when

minimum GTRC was determined [14]. Gravitational equations of minimum GTRC include

three indefinite parameters, entered earlier in the frame of isotropic cosmology (see below)

and in the case of spinless gravitating systems with energy densities, which are much smaller

than limiting energy density, lead to gravitation equations for metric in the form of Einstein

gravitation equations with effective cosmological constant [14]:

Gµ
λ = − 1

2b

[
Tλ

µ + δµλ
(1− b

f0
)2

4α

]
, (1)

§ The definitions and notations of our previous work (see e.g. [9]) are used below. With the purpose to

make quantitative estimations the light velocity c is conserved in formulas.
∥ Pioneer works dedicated to GTRC were connected with investigation of Einstein-Cartan theory,

gravitational Lagrangian of which is given in the form of scalar curvature of U4 [1-5].
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where Gµ
λ is Einstein tensor. The correspondence principle with GR is fulfilled, if the

following restriction for indefinite parameter b is valid: 0 < 1− b
f0

≪ 1, where f0 =
c4

16πG
(G

is Newton’s gravitational constant) and the value of parameter α−1 corresponds to some high

energy density, by which effective cosmological constant in eq. (1) corresponds to observable

acceleration of cosmological expansion. The third small dimensionless indefinite parameter

ω (0 < ω ≪ 1) is absent in equations for discussed systems ¶.
By neglecting spin effects Newton’s law of gravitational attraction is valid in non-

relativistic approximation and the description of various astrophysical objects in the frame of

minimum GTRC practically coincides with that in GR, because the influence of cosmological

constant in (1) is negligibly small at astrophysical scale. If we take into account that

various astrophysical objects (stars in galaxies, galaxies in galactic clusters) possess the own

moments of momentum, the question about the influence of these moments on dynamics

of astrophysical objects appears because of the interaction of own moments of momentum

considering as spin momentum with space-time torsion. It should be noted that Pioneer

works connected with GTRC were dedicated to investigation of the role of spin momentum

in gravitation theory [1-5]. Because in the frame of GTRC physical space-time in the vacuum

has the structure of Riemann-Cartan continuum [10], in the case of the movement of rotating

astrophysical object in Newtonian gravitational field spin effects can be manifested as a result

of interaction of vacuum torsion with spin momentum of this object. The present paper is

devoted to investigation of this problem. With this purpose the origin of the vacuum torsion

and the dynamics of rotating particle in Riemann-Cartan space-time are discussed below.

2. Isotropic cosmology in Riemann-Cartan space-time and vacuum torsion

With the aim of studying the influence of vacuum torsion on gravitational interaction in

astrophysics lets consider in more detail the definition of the vacuum torsion. First of all,

note, that in the frame of classical field theory the geometric structure of physical space-time

in the vacuum can be found by supposing that it does not change with the time and 3-space

is homogeneous and isotropic. Then the vacuum torsion as characteristics of physical space-

time in the vacuum can be introduced on the base of equations of isotropic cosmology, built

in the frame of GTRC [10]. Any homogeneous isotropic model (HIM) in Riemann-Cartan

space-time is described by three functions of time: the scale factor of Robertson-Walker

metric R(t) and two torsion functions - scalar function S1(t) and pseudoscalar function

S2(t). Cosmological equations generalizing Friedmann cosmological equations of GR take

¶ We don’t discuss here systems under extreme conditions near the limiting energy density, where terms

with the parameter ω in the gravitational equations play a fundamental role.
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the form [11]

k

R2
+ (H − 2S1)

2 − S2
2 =

1

6f0Z

[
ρc2 − 6bS2

2 +
α

4

(
ρc2 − 3p− 12bS2

2

)2]
, (2)

Ḣ − 2Ṡ1 +H(H − 2S1) =

− 1

12f0Z

[
ρc2 + 3p− α

2

(
ρc2 − 3p− 12bS2

2

)2]
, (3)

where H = Ṙ/R (a dot denotes the differentiation with respect to x0 = ct), k = +1, 0,−1

for closed, flat and open models respectively, ρ is mass density, p is pressure and Z =

1 + α (ρc2 − 3p− 12bS2
2). The torsion functions S1 and S2 are:

S1 = − α

4Z
[ρ̇c2 − 3ṗ+ 12f0ωHS2

2 − 12(2b− ωf0)S2Ṡ2], (4)

S2
2 =

ρc2 − 3p

12b
+

1− (b/2f0)(1 +
√
X)

12bα(1− ω/4)
, (5)

where

X = 1 + ω(f 2
0 /b

2)[1− (b/f0)− 2(1− ω/4)α(ρc2 + 3p)] ≥ 0. (6)

Supposing that physical space-time in the vacuum is homogeneous and isotropic and does

not change in time, we can obtain its structure from equations for HIM (2)-(6), directing the

mass density and pressure and time derivatives to the zero. Such procedure is possible in

the case of flat HIM (k = 0). Unlike GR (without cosmological constant), where according

to Friedmann cosmological equations space-time in the vacuum is Minkowski space-time

(H = 0), in the frame of GTRC space-time in the vacuum has the structure of Riemann-

Cartan continuum with de Sitter metric [10]. It is connected with the presence of constant

term - vacuum torsion - in expression (5) for S2
2 :

S
2(vac)
2 =

1− b
2f0

[1 +
(
1 + ω(1− b/f0)

f2
0

b2

)1/2

]

12αb(1− ω/4)
. (7)

Then in accordance with eqs. (2)-(5) the vacuum value of H2 (in the case k = 0) is:

H2(vac) =
6b2

f0
αS

4(vac)
2 [1− 6α(2b+ ωf0)S

2(vac)
2 ]−1, (8)

and S
(vac)
1 = −3f0αωH(vac)S

2(vac)
2

1−12αbS
2(vac)
2

. In asymptotics, when energy density is small (αρc2 ≪ 1), by

using the restriction 0 < x = 1− b
f0

≪ 1 the expression (5) for S2
2 in the lowest approximation

with respect to x takes the form:

S2
2 =

1

12b

[
ρc2 − 3p+

1− b/f0
α

]
, (9)
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and as a result cosmological equations (2)-(3) in asymptotics take the form of Friedmann

cosmological equations with effective cosmological constant:

k

R2
+H2 =

1

6b

[
ρc2 +

1

4α

(
1− b

f0

)2
]
, (10)

Ḣ +H2 = − 1

12b

[
(ρc2 + 3p)− 1

2α

(
1− b

f0

)2
]
. (11)

According to (9)-(10) and in compliance with (7)-(8) we have:

S
2(vac)
2 =

1− b/f0
12bα

, H2(vac) =

(
1− b

f0

)2

24bα
. (12)

The effective cosmological constant in (10)-(11) is induced by the vacuum torsion S
2(vac)
2 .

Unlike standard ΛCDM -model effective cosmological constant appears in (10)-(11) as a

result of solution of gravitational equations for HIM, that leads to the change of gravitational

interaction, when energy density is small and comparable with cosmological constant - the

vacuum gravitational repulsion effect, which leads to accelerating cosmological expansion at

present epoch.

It should be noted, that the vacuum torsion at the beginning of cosmological expansion

near limiting energy density, determined from equality X = 0, leads to appearance of

negative effective cosmological term in expression for the Hubble parameter. In the case

of HIM filled with gravitating matter with equation of state p = p(ρ), the Hubble parameter

with its time derivative near a bounce in the first approximation with respect to
√
X are:

H± = ± 2b2

3f 2
0ωα

√
X[(1/4b)(ρmc

2 + pm)− (k/R2)

−1− b/(2f0)

24f0α
]1/2[(3

1

c2
dpm
dρm

+ 1)(ρmc
2 + pm)]

−1,

Ḣ =
4b2

3f 2
0ωα

(1/4b)(ρmc
2 + pm)− (k/R2)− 1−b/(2f0)

24f0α

(3 1
c2

dpm
dρm

+ 1)(ρmc2 + pm)
. (13)

H−- and H+-solutions describe the stages of compression and expansion correspondingly.

The constant term (−1−b/(2f0)
24f0α

) in (13) can be interpreted as a result of the influence of

vacuum under extreme conditions, however, quantitatively this influence is not essential,

because energy density near a bounce is close to limiting energy density (ρmaxc
2) ∼ (ωα)−1.

Because of restriction 0 < 1 − b
f0

≪ 1 the vacuum value of H and the vacuum torsion

function |S1| are negligibly small in comparison with |S(vac)
2 |. Owing to this, the curvature

tensor (see [12, 9]) has the following vacuum components:

F 12
12 = F 13

13 = F 23
23 = −S

2(vac)
2 , (14)
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and as will be shown below, the vacuum torsion S
(vac)
2 can be important in astrophysics in

non-relativistic approximation.

3. Vacuum torsion and gravitational interaction at astrophysical scale

With the purpose to study movement of an object with spin momentum in gravitational

field, we will use the equations of motion for particle with orientation in Riemann-Cartan

space-time U4 obtained in [17] +.The particle orientation in such model discussed in [21] is

specified by the related triad of orthonormal vectors eµ(i) (i=1,2,3), which are purely spatial

in the rest frame of the particle and orthogonal to the 4-velocity vector vµ . The definition of

relativistic angular velocity tensor Ωµν in U4 as function of vectors eµ(i) and vµ was obtained as

generalization of angular velocity tensor in Riemannian space-time given in [21] by replacing

riemannian absolute derivatives with respect to proper time τ by absolute derivatives defined

by means of total connection of U4 that corresponds to the principle of minimal interaction

with gravitational field. As result angular velocity tensor Ωµν in U4 was defined in the form

Ωµν = eµ(i)
Deν

(i)

dτ
− 1

c2
vν Dvµ

dτ
, where D

dτ
denotes absolute derivative determined by full connection

of U4. It should be noted that such definition of Ωµν is consistent with the proper relativistic

generalization of translational motion given in ref. [21].

In the simplest case of rotating particle interacting with a gravitational field in space-

time U4, being described by relativistic Lagrange function L = −m0c
2 + I

4
ΩµνΩ

µν (m0 is

the rest mass in the absence of rotation, and the constant I has the meaning of the inertia

moment) the Lagrange equations of translational and rotational motion take the following

form ∗:
DPµ

dτ
=

1

2
IΩαβF

αβ
µλv

λ + 2Sβ
αµv

αPβ,

DΩµν

dτ
=

2

c2
Ωα[νvµ]

Dvα

dτ
, (15)

where generalized moment Pµ = mvµ − I
c2
vα

DΩµ
α

dτ
(m = m0 + I

4c2
ΩµνΩ

µν=const is rest

mass of rotating particle) and generalized moment of momentum jµν = IΩµν is identical

to spin momentum of particle [17, 20]. Equations of motion (15) are a generalization of

Papapetrou’s equations for rotating particle in GR [22] for space-time U4. As it is shown

below the application of equations (15) can lead to important physical results in astrophysics

in non-relativistic approximation.

By taking into account that in non-relativistic approximation Pi = mvi (i=1,2,3), the

influence of curvature tensor in the right side of translational equations (15) can become

apparent by means of vacuum curvature (14), and also the formulas for angular velocity

+ Dynamics of spinning matter in U4 was investigated in a number of works (see e.g. [4], [18], [19], [20]).
∗ In [17] the curvature tensor was defined with opposite sign and the signature (+2) was used.
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vector Ωi =
1
2
ϵiklΩ

kl (ϵikl is Levi-Chivita symbol) and g00 = 1+ 2ϕ
c2

(ϕ is newtonian potential),

we can transform equations (15) to the following form (rectangular cartesian coordinate

system is used) :

m
dv

dt
= −m

dϕ

dr
− IS

2(vac)
2 [Ω,v],

dΩ

dt
= −S

(vac)
2 [Ω,v]. (16)

Besides Newtonian force of gravitational attraction FN = −mdϕ
dr
, the right side of equation of

translational motion (16) includes additional gravitational force connected with interaction of

vacuum torsion with spin momentum of particle Fv = −IS
2(vac)
2 [Ω,v]. This force depends on

vacuum torsion S
(vac)
2 , for value of which the following estimation in dependence on indefinite

parameter x = 1− b
f0

can be obtained. By taking into account that the average mass density

in the Universe at present epoch according to (10) is of order ρ1 =
x2

4c2α
∼ 10−26 kg

m3 , we obtain

that at the first approximation with respect to x:

S
2(vac)
2 =

16πG

3c2x
ρ1 ∼

1, 2 · 10−52

x
(m−2). (17)

This estimation gives certain restrictions for S
(vac)
2 because x ≪ 1.

As example of application (16), we will consider the motion of rotating particle in

spherically symmetric Newtonian gravitational field created by mass M . In the case of

circular motion in plane XOY (centrum of mass M is in origin of coordinates, vector

of orbital moment is directed along the axe OZ) the additional gravitational force is

Fv = IΩ3S
2(vac)
2 v r

r
and its character depends on relative orientation of spin and orbital

moments. We have the force of attraction or repulsion, depending on Ω3 < 0 or Ω3 > 0,

as result the value of gravitational force in (16) is F = GmM
r2

± I|Ω3|S2(vac)
2 v. By taking

into account that this force is centripetal, we obtain the following dependence of velocity on

distance from centrum and parameters of particle and gravitational field:

v = ± I

2m
|Ω3|S2(vac)

2 r +

[
(
I

2m
|Ω3|S2(vac)

2 r)2 +
GM

r

] 1
2

. (18)

The formula (18) is approximative and can be applied for limited time intervals because the

angular velocity vector changes according to rotational motion equation (16) that leads to

the change of trajectory plane.

Taking into account restriction (17), we will consider, for which astrophysical objects the

detected interaction with vacuum torsion can manifest itself. First of all, we can get a torsion

constraint by applying the obtained results to the planets of the solar system, where this

interaction does not manifest itself. Using the parameters of the Earth (mE ∼ 3 · 10−6M⊙ ∼
6 · 1024kg; r ∼ 1, 5 · 108m; v ∼ 3 · 104m/s; Ω ∼ 7, 3 · 10−5s−1; angle between orbital and spin

moments is 23, 45◦), we find that the ratio of additional gravitational force and Newtonian
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force is Fv/FN ∼ 0, 56 ·1016S2(vac)
2 , that leads to a restriction S

2(vac)
2 ≪ 10−16(m−2). Another

restriction for the vacuum torsion we can obtain by supposing that relative change of Earth’s

own angular velocity per one period of movement around the Sun is small; in accordance

with rotation equation of motion (16) we obtain |∆Ω|
Ω

∼ 0, 4 · 1014|S(vac)
2 |; it follows from

|∆Ω|
Ω

≪ 1 that |S(vac)
2 | ≪ 10−14(m−1) and hence S

2(vac)
2 ≪ 10−28(m−2). Similar estimation

can be obtained by considering other planets of the solar system.

Now we will consider what possible role the vacuum torsion can play at astrophysical

scale - galaxies and galactic clusters. By taking S
2(vac)
2 ∼ 10−30(m−2), we will use formula (18)

in the case of attraction force to the star similar to Solar (I/m ∼ 1018 m2, |Ω3| ∼ 10−6 s−1)

moving in galaxy similar to Andromeda (M = 2 · 1041 kg) . As numerical analysis shows,

at distances r ∼ 10 kpc (1 kpc = 0, 3086 · 1020m) Newtonian term in formula (18) plays

the definitive role, and terms, connected with additive gravitational force, give corrections

of approximately 0, 001 part of the Newtonian force. However, by further increase of r

essential growth of velocity v takes place according to (18) and by sufficiently large distances

the influence of additional gravitational force can far exceed the effects associated with the

Newtonian force; this effect can be essential in galactic clusters, where we deal with vast

space scale of order 10 Mpc and more.

Although, given above consideration was made in the frame of minimum GTRC, similar

effects take place in other GTRC, because of existence of the vacuum torsion. In addition to

the influence of vacuum torsion in astrophysics, discussed above, the minimum GTRC can

lead to the appearance of torsion associated with the angular (spin) moments of astrophysical

objects. If the average value of the angular moment is not negligible for some area of

space, gravitational equations lead to the appearance of additional torsion associated with

these moments. Then the equations for the metric differ in form from the equations (1),

acquiring certain corrections. The study of the corresponding phenomena involves setting

the initial distribution for gravitating matter with angular moments using a certain model

for the spinning matter. The appearance of an additional gravitational force (in addition to

the Newtonian force of gravitational attraction) in the non-relativistic approximation makes

these studies more interesting from physical point of view in connection with the dark matter

problem.

Currently, there are a number of works performed to solve the problem of dark matter

in the framework of theories of gravitation in pseudo-Riemannian space-time f(R), as

well as in the framework of theories of gravitation in teleparallelism space-time f(T ) (see

[24, 25, 26] and Refs there). The solution of the problem in these works is connected with

the search for the modified Newtonian potential that provides an appropriate modification

of the gravitational force in astrophysics. From a physical point of view, as part of our

consideration, the reason for the modification of the gravitational force in astrophysics is

different, namely, it is associated with the appearance of the force caused by the interaction
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of torsion with the spin moments of astrophysical objects in addition to the Newtonian

gravitational force. Within the framework of GTRC, the nature of gravitational interaction

differs significantly from what we have in f(R) and f(T ) theories, and it is determined both

by curvature and torsion together. At the same time within GTRC the nature of torsion,

which along with metric, both are independent gravitational characteristics from each other,

differs in principle from that in the frame of f(T ) theories of gravity, where the torsion and

metric are defined as functions of tetrad coefficients. In contrast to the GTRC, whose gauge

group includes the Lorentz group in addition to the translations group, the f(R)-theory and

the f(T )-theory can be introduced in the framework of the gauge approach when considering

the 4-translations group as a gauge group ♯.

It should be noted that discussed phenomena connected with the change of gravitational

interaction have essentially non-linear origin. Because of non-linear character of gravitating

vacuum, approximative analysis of GTRC based on investigation of linearized theory and

perturbations of gravitational field above Minkowski space-time [8] has approximative

character. In particular, this concerns the analysis of particle content of GTRC, where

it would be taken into account not only deviation of space-time metric in the vacuum

from that of Minkowski space-time, but also the presence of vacuum torsion (compare with

[23]). It should be noted that the deviation of the structure of the vacuum space-time

in the frame of GTRC from Minkowski space-time, which is essential at cosmological and

astrophysical scale, can be unimportant by local analysis given in [8] because of smallness

of corresponding characteristics of metric and torsion for the vacuum. However, we have to

consider corresponding results of [8] as approximative, whose range of applicability is limited

by weak fields.

4. Conclusion

Research of gravitation theory in Riemann-Cartan space-time shows that satisfying the

correspondence principle with general relativity theory GTRC leads to fundamental

differences, associated with the gravitational interaction not only in cosmological but also in

astrophysical scales. Distinctions are connected with geometrical structure of physical space-

time, namely with space-time torsion. Unlike isotropic cosmology, where space-time torsion

is created by spinless matter and spin momentum of gravitating matter is not demonstrated,

the interaction of torsion with spinning matter can play principal role in astrophysics. As

it is shown in this paper, the interaction of the vacuum torsion with spin momentum of

astrophysical objects leads to corrections of gravitational interaction, namely to appearance

of additional gravitational force, which can have an influence on their movement. The search

of possible observational demonstrations of this phenomenon is of direct physical interest.

♯ Discussion of these issues is available in [16].
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