ПРОСТРАНСТВА СОБОЛЕВА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-31 80 03 Математика и компьютерные науки
профилизация Математика

2019 г.

СОСТАВИТЕЛЬ:
Вениамин Григорьевич Кротов – заведующий кафедрой теории функций механико-математического факультета Белорусского государственного университета, доктор физико-математических наук, профессор.

РЕЦЕНЗЕНТ:
Валентин Викентьевич Горюховик – заведующий отделом нелинейного и стохастического анализа, член-корреспондент НАН Беларуси, доктор физико-математических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:
Кафедрой теории функций
(протокол № 9 от 18.06.2019)

Научно-методическим советом Белорусского государственного университета
(протокол № 5 от 28.06.2019)

Зав. кафедрой теории функций

В.Г. Кротов
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель дисциплины «Пространства Соболева»: повышение уровня профессиональной компетентности студентов, формирование понятия о возможностях одного из разделов современного анализа и роли пространств Соболева в задачах естествознания.

Образовательная цель: изложение основ теории классов Соболева и теорем вложения для их.

Развивающая цель: формирование у студентов умений использования обобщенных частных производных и пространств Соболева.

Основные задачи, решаемые в рамках изучения дисциплины «Пространства Соболева»:
– изучить понятия обобщенных производных и пространств Соболева;
– освоить эквивалентные определения классов Соболева, не использующие обобщенные производные;
– изучить теоремы вложения для соболевских пространств;
– ознакомиться с основными приложениями пространств Соболева.

Образовательная цель: изложение основ теории преобразования Фурье.

Развивающая цель: формирование у студентов умений использования преобразования Фурье.

Основные задачи, решаемые в рамках изучения дисциплины «Введение в гармонический анализ на евклидовых пространствах»:
– изучить основные технические средства современного гармонического анализа: максимальные функции, свертки, интерполяционные теоремы;
– изучить основные свойства преобразования Фурье функций многих переменных на пространствах гладких и суммируемых функций;
– подготовить студентов к использованию преобразования Фурье в задачах математической физики.

Дисциплина «Пространства Соболева» посвящена подробному изучению основных свойств пространств Соболева, среди которых выделяются теоремы вложения для этих пространств.

Обобщенные функции в смысле Соболева-Шварца являются в настоящее время мощным инструментом при решении многих задач математики, относящихся к функциональному анализу, теории уравнений с частными производными и других ее разделов.

Особое место здесь занимают пространства Соболева – пространства функций, обобщенные производные которых принадлежат лебеговым пространствам. Они прочно завоевали свое место в современном анализе, сфера их применения весьма широка. Поэтому теория этих пространств постоянно развивается и является востребованной среди аналитиков.

Инструменты, необходимые для изучения соболевских пространств, являются мощными средствами и во многих других задачах современного анализа. Среди таких инструментов следует выделить максимальный оператор Харди-Литтлвуда, аппроксимативные единицы, потенциалы Рисса,
интегральные представления. Весь этот аппарат подробно описывается в дисциплине, с его помощью развита теория соболевских пространств, а также указываются другие их приложения, например, для решения краевых задач математической физики.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием (магистра).

Учебная дисциплина «Пространства Соболева» относится к модулю по выбору 1 «Гармонический анализ и дифференциальные уравнения» компонента учреждения высшего образования.

Эта дисциплина опирается на знания, полученные при изучении дисциплин «Действительный и комплексный анализ», «Функциональный анализ», «Уравнения с частными производными».

Магистр, освоивший содержание образовательной программы магистратуры по специальности 1-31 80 03 «Математика и компьютерные науки», должен обладать следующими специализированными компетенциями:

СК-2. Быть способным использовать методы компьютерного моделирования на основе современных методик численного анализа прикладных дифференциальных задач.

СК-5. Быть способным применять современные методы гармонического анализа и дифференциальных уравнений в задачах естественных наук и экономики.

В результате изучения дисциплины обучающий должен:

знать:
- понятия общенных производных и пространств Соболева;
- теоремы вложения;
- основные применения пространств Соболева;

уметь:
- использовать понятия общенных производных и пространств Соболева в математических задачах;
- доказывать основные теоремы о пространствах Соболева;
- строить резольвенту уравнений Фредгольма и Вольтерра;
- использовать основные результаты теории интегральных уравнений в практической деятельности;
- использовать теоретические и практические навыки основ интегральных уравнений в математике;

владееть:
- основными понятиями теории пространств Соболева;
- методами доказательства свойств пространства Соболева;
- навыками самообразования и способами использования аппарата пространств Соболева для проведения математических и междисциплинарных исследований.
Структура учебной дисциплины
Дисциплина изучается во 2 семестре. Всего на изучение учебной дисциплины «Пространства Соболева» отведено:
 – для заочной формы получения высшего образования — 108 часов, в том числе 12 аудиторных часов, из них 8 часов лекции, 4 часа лабораторные занятия.
Трудоемкость учебной дисциплины составляет 3 зачетные единицы.
Форма текущей аттестации по учебной дисциплине — зачет.
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА
ТЕМА 1. Пространства L^p с точки зрения функционального анализа.
Плотные классы в L^p. Теорема об общем виде функционалов в L^p. Теорема о слабой компактности шаров в L^p.

ТЕМА 2. Одномерная теория.
Абсолютно непрерывные функции и классы Соболева. Классы функций ограниченной вариации по Риссу. Модули непрерывности в L^p и их свойства. Классы Гельдера. Сравнение классов и их характеристика в терминах глобальной производной. Слабые производные и их существование.

ТЕМА 3. Максимальная функция Харди-Литтлвуда
Лемма о покрытиях. Максимальная функция Харди-Литтлвуда и ее свойства.

ТЕМА 4. Потенциалы Рисса
Потенциалы Рисса и их свойства на основе максимальной функции Харди-Литтлвуда. Необходимые условия ограниченности. Теорема Харди-Литтлвуда-Соболева о дробном интегрировании.

ТЕМА 5. Апроксимативные единицы
Общая теорема о сходимости априкосимативных единиц. Приложения априкосимативных единиц к дифференцированию кратных интегралов, к гармоническим функциям и температурам.

ТЕМА 6. Многомерные классы Соболева
Обобщенные производные и их свойства. Классы Соболева. Описание пространств Соболева без использования обобщенных производных. Теоремы вложения для пространств Соболева: случай $p > 1$. Теорема Гальярдо-Ниренберга. Обзор дальнейших свойств пространств Соболева.
<table>
<thead>
<tr>
<th>№</th>
<th>Номер раздела, темы</th>
<th>Количество аудиторных часов</th>
<th>Формы контроля знаний</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>лекции</td>
<td>семинарские занятия</td>
</tr>
<tr>
<td>1</td>
<td>Пространства L^p с точки зрения функционального анализа</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Одномерная теория</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Максимальная функция Харди-Литтлвуда</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Потенциалы Рисса</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Апроксимативные единицы</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Многомерные классы Соболева</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Всего по дисциплине</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Количество аудиторных часов</td>
<td>Формы контроля знаний</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Конспектирование</td>
<td>Контрольные работы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Интерактивная аудитория</td>
<td>Отчеты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Семинар</td>
<td>Отчеты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Подсчетистическое</td>
<td>Отчеты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Семинар</td>
<td>Отчеты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Семинар</td>
<td>Отчеты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого</td>
<td>Всего по дисциплине</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Название раздела, темы</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Понятие пространств L^p с точки зрения функционального анализа</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Одномерная теория</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Максимальная функция Харди-Литтлвуда</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Потенциалы Рисса</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Априориметрические единицы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Многочлены класса Соболева</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего по дисциплине</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

Перечень дополнительной литературы
3 В.Г.Мазья, Пространства Соболева, Л.: ЛГУ, 1984
4 И.Стейн, Сингулярные интегралы и дифференциальные свойства функций, М., Мир, 1973
5 И.Стейн, Г.Вейс, Введение в гармонический анализ на евклидовых пространствах, М., Мир, 1974
Перечень используемых средств диагностики и методика формирования итоговой оценки

Контроль освоения практических навыков осуществляется в форме отчетов.

Итоговая оценка формируется на основе 3-х документов:
1. Правила проведения аттестации (постановление №53 от 29.05.2012 г.).
2. Положение о рейтинговой системе БГУ (ред. 2015 г.).
3. Критерии оценки студентов (10 баллов).

Весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

Формирование оценки за текущую успеваемость:
- отчеты — 100 %.
Формой текущей аттестации по дисциплине учебным планом предусмотрен — зачет.

Примерный перечень заданий для управляемой самостоятельной работы

ТЕМА 1. Пространства L^p с точки зрения функционального анализа (2 часа).

Задача 1. Доказать, что в случае µ(X) < ∞ для любой функции f ∈ L^∞

\[\lim_{p \to \infty} \|f\|_{L^p} = \|f\|_{L^\infty}. \]

Задача 2. Доказать, что

\[\|f\|_{L^\infty} = \inf_{A \subset X, \mu(A) \neq 0} \sup_{x \in A} |f(x)|. \]

и существует такое множество \(A \subset X, \mu(A) = 0 \), что

\[\|f\|_{L^\infty} = \sup_{x \in X} \{|f(x)| \}. \]

Задача 3. Проверить, что \(L^\infty \) является полным линейным нормированным пространством с нормой \(||f||_{L^\infty} \).

Задача 4. Показать, что 1) из сходимости по норме пространства \(L^p \) следует слабая сходимость, 2) обратное утверждение неверно. (Форма контроля — отчеты).

ТЕМА 2. Одномерная теория (2 часа).

Задача 1. Доказать, что в лемме о восходящем солнце для всех интервалов, кроме, быть может, одного имеют место равенства.

Задача 2. Доказать аналог леммы Ф. Рисса для множества точек, невидимых слева.

Задача 3. Сформулировать и доказать аналог задачи 1 для множества точек, невидимых слева.

Задача 4. Доказать, если \(f \) имеет ограниченную вариацию, то и \(|f| \) тоже. Обратное неверно, однако для непрерывных функций справедливо и обратное.

Задача 5. Выяснить, как связаны полные вариации для \(f \) и \(|f| \).
Задача 6. Доказать, что для непрерывной функции ограниченной вариации по разбиениям сходятся к полной вариации. Без требования непрерывности это неверно.

Задача 7. В определении абсолютно непрерывности модули можно опустить.

Задача 8. Если \(f \) непрерывна, а \(|f| \) абсолютно непрерывна, то \(f \) также абсолютно непрерывна.

(Форма контроля – отчеты).

ТЕМА 3. Максимальная функция Харди-Литтлвуда (2 часа).

Задача 1. Показать, что максимальная функция Харди-Литтлвуда не может принадлежать \(L^1 \) глобально.

Задача 2. Показать, что максимальная функция Харди-Литтлвуда не может принадлежать \(L^1 \) локальна.

(Форма контроля – отчеты).

ТЕМА 4. Потенциалы Рисса (2 часа).

Задача 1. Показать, что потенциалы Рисса не являются ограниченными из \(L^1 \) в соответствующее пространство \(L^q \).

Задача 2. Показать, что потенциалы Рисса не являются ограниченными из \(L^p \), \(\alpha p = n \) в пространство \(L^\infty \).

(Форма контроля – отчеты).

ТЕМА 5. Апроксимативные единицы (2 часа).

Задача 1. Изучить поведение апроксимативных единиц, порожденных функцией \(\min \{1, |x|^{-\alpha}\} \).

Задача 2. Изучить поведение апроксимативных единиц, порожденных функцией \(|x|^{-\alpha}X_B \) (\(B \) – единичный шар).

(Форма контроля – отчеты).

ТЕМА 6. Многоомерные классы Соболева (2 часа).

Задача 1. Показать, что при \(p = kn > 1 \) функции из класса Соболева \(W_k^p \) не обязаны быть ограниченными.

Задача 2. Показать, что функция \(f \in W_k^\infty \) тогда и только тогда, когда она имеет непрерывные частные производные любого порядка \(\leq k - 1 \), а все частные производные порядка \(k \) ограничены и удовлетворяют условию Липшица.

(Форма контроля – отчеты).

Тематика лабораторных занятий
(очная форма получения образования)
Занятие 1. Пространства \(L^p \) с точки зрения функционального анализа.
Занятие 2. Одномерная теория.
Занятие 3. Максимальная функция Харди-Литтлвуда.
Занятие 4. Потенциалы Рисса.
Занятие 5. Апроксимативные единицы.
Занятие 6. Многомерные классы Соболева.

(заочная форма получения образования)
Занятие 1. (тема 5) Апроксимативные единицы.
Занятие 2. (тема 6) Многомерные классы Соболева.

Описание инновационных подходов и методов к преподаванию учебной дисциплины
При организации образовательного процесса используются:
- эвристи́ческий подход, который предполагает выбор содержания и способа его организации при подготовке образовательных продуктов (сообщений, докладов, презентаций) по проблемам методологии математики и их соотнесения и многообразием решений большинства профессиональных задач и жизненных проблем; творческую самореализацию обучающихся в процессе создания образовательных продуктов; индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;
- методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

Методические рекомендации по организации управляемой самостоятельной работы магистрантов
Основными направлениями управляемой самостоятельной работы в овладении знаниями учебной дисциплины «Дополнительные главы анализа» являются:
• первоначально подробное ознакомление с программой учебной дисциплины;
• ознакомление со списком рекомендуемой литературы по дисциплине в целом и ее разделам, наличие ее в библиотеке и других доступных источниках, изучение необходимой литературы по теме, подбор дополнительной литературы;
• изучение и расширение лекционного материала преподавателя за счет специальной литературы, консультаций;
• подготовка к зачету.

Тем самым, имеется в виду постепенное превращение обучения в самообучение, когда магистрант должен получать знания главным образом за счет критической самостоятельной работы, самостоятельно осуществляя поиск необходимой информации и созидательно прорабатывая ее с тем, чтобы произвести необходимые умозаключения и получить результаты. В этом случае, выполняя учебные задачи, магистранты самостоятельно приобретают новые знания, навыки и умения (в частности, умение
анализировать и принимать решения в нестандартных ситуациях), что очень важно для эффективной будущей профессиональной деятельности.

Самостоятельная работа для магистрантов важнейшая часть учебного процесса. Решение задач по подготовке квалифицированного работника соответствующего уровня и профиля, способного к эффективной работе по специальности на уровне мировых стандартов, невозможно без наличия навыков самостоятельной работы магистрантов.

Цель самостоятельной работы магистрантов:
- углубление фундаментальных и профессиональных знаний, умений и навыков в соответствии с профилем деятельности;
- сознательно и самостоятельно осуществлять работу с учебным и научным материалом;
- совершенствование опыта исследовательской и созидательной деятельности;
- совершенствование навыков творческого подхода к решению проблем учебного и профессионального формата;
- укрепление навыков самоорганизации и самовоспитания для получения навыков перманентного повышения профессионализма.

Для достижения целей самостоятельной работы магистрантов необходимо решение следующих задач:
- развитие творческого мышления;
- овладение основными методами исследовательской работы;
- приобретение магистрантами через самостоятельную деятельность собственного опыта и профессиональных навыков.
- углубление, расширение, систематизация и закрепление полученных знаний и умений;
- выработка навыка использования и анализа источников и специальной литературы;
- формирование исследовательских навыков и умений;
- овладение способностью использовать собранную в ходе самостоятельной работы информацию в учебных целях.

Примерный перечень вопросов к зачету

1. Плотные классы в L^p.
2. Теорема об общем виде функционалов в L^p.
3. Теорема о слабой компактности шаров в L^p.
4. Абсолютно непрерывные функции и классы Соболева.
5. Классы функций ограниченной вариации по Риссу.
6. Модули непрерывности в L^p и их свойства.
7. Классы Гельдера.
8. Сравнение классов и их характеристика в терминах глобальной производной.
9. Слабые производные и их существование.
10. Лемма о покрытиях. Максимальная функция Харди-Литтлвуда и ее свойства.
11. Потенциалы Рисса и их свойства на основе максимальной функции Харди-Литтлвуда.
12. Необходимые условия ограниченности.
13. Теорема Харди-Литтлвуда-Соболева о дробном интегрировании.
14. Общая теорема о сходимости аппроксимативных единиц.
15. Приложения аппроксимативных единиц к дифференцированию кратных интегралов, к гармоническим функциям и температурам.
16. Обобщенные производные и их свойства.
17. Классы Соболева.
18. Описание пространств Соболева без использования обобщенных производных.
20. Теорема Гальярдо-Ниренберга. Обзор дальнейших свойств пространств Соболева.
<table>
<thead>
<tr>
<th>Название дисциплины, с которой требуется согласование</th>
<th>Название кафедры</th>
<th>Предложения об изменениях в содержании учебной программы по изучаемой учебной дисциплине</th>
<th>Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уравнения с частными производными</td>
<td>Кафедра математической кибернетики</td>
<td>нет</td>
<td>Вносить изменения не требуется (протокол № 9 от 18.06.2019)</td>
</tr>
</tbody>
</table>
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ
ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ
на _____ / _____ учебный год

<table>
<thead>
<tr>
<th>№п</th>
<th>Дополнения и изменения</th>
<th>Основание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № ____ от _______ 20_ г.)

Заведующий кафедрой

(степень, звание) (подпись) (И.О.Фамилия)

УТВЕРЖДАЮ
Декан факультета

(степень, звание) (подпись) (И.О.Фамилия)