Коллинеарная акустооптическая фильтрация полихроматических бесселевых световых пучков в кристаллах ниобата лития

Г.В. Кулак¹, Г.В. Крох¹, Т.В. Николаенко¹, П.И. Ропот², О.В. Шакин³

¹Мозырский государственный педагогический университет им. И.П. Шамякина, Мозырь, Беларусь ²Институт физики им. Б.И. Степанова НАН Беларуси, Минск ³Государственный университет аэрокосмического приборостроения, Санкт-Петербург, Россия E-mail : oshakin@mail.ru

В настоящее время для целей акустооптического (AO) преобразования значительный интерес представляют бесселевы световые пучки (БСП), распространяющиеся в одноосных кристаллах [1, 2]. В настоящей работе с использованием метода интегралов перекрытия рассмотрена коллинеарная AO фильтрация бесселевых полихроматических световых пучков высоких порядков при коллинеарном AO взаимодействии в одноосных кристаллах ниобата лития (LiNbO₃) на сдвиговой УЗ волне, распространяющейся под некоторым углом к оптической оси кристалла. Такая геометрия коллинеарного попутного AO взаимодействия является наиболее эффективной и реализуется, когда дифрагированные световые волны распространяются ортогонально оптической оси кристалла ($\theta_{o,e}=0^{\circ}$) [3].

Кроме обычного продольного фазового согласования, БСП должны удовлетворять условиям поперечного фазового согласования [2]. При этом вычисление интегралов перекрытия (g_m) позволяет найти их максимальные значения в условиях поперечного синхронизма.

На рис. 2 представлена зависимость интеграла перекрытия g_m от параметра поперечного рассогласования $q_n = \Delta q/q_{o\perp}$ ($\Delta q = |q_{e\perp} - q_{o\perp}|$) для дифракции БСП малых (m = 0, 1, 2, 3) (a) и больших (m = 10, 11, 12, 13) (δ) значений моды m.

Рис. 2. Зависимость интеграла перекрытия g_m от параметра $q_n = \Delta q/q_0$ для дифракции БСП различных порядков m=0 (1), 1 (2), 2 (3), 3 (4) (*a*) и m=10 (1), 11 (2), 12 (3), 13 (4) (б) (кристалл *LiNbO*₃; $\theta_{o,e}=0^0$; $\gamma_o=\gamma_e=0,5^0$ – углы конусности БСП, $R_B=6$ мм – радиус БСП, $\lambda_0=0,63$ мкм – центральная длина волны света)

Из рис. 2 следует, что интегралы перекрытия БСП достигают максимального значения при точном поперечном синхронизме дифрагированных волн ($\Delta q = 0$). При увеличении параметра поперечного синхронизма q_n имеет место уменьшение интеграла перекрытия g_m и эффективности АО дифракции η .

Зависимости эффективности дифракции η от ширины полосы спектра $\Delta\lambda$ акустооптического перестраиваемого фильтра (АОПФ) для центральной длины волны λ_0 =630 нм представлены на рис. 3.

Рис. 3. Зависимость эффективности дифракции η от ширины полосы пропускания $\Delta\lambda$ при условии поперечного синхронизма для различных порядков БСП *m*: 0 (1), 1 (2), 2 (3), 3÷30 (4)

(кристалл LiNbO₃; $\theta_{0,e} = 0^0$; $\gamma_0 = \gamma_e = 0,5^0$, $R_B = 6$ мм, $I_a = 0,2$ Вт/см² – интенсивность УЗ волны, f = 570 МГц – центральная частота УЗ источника, l = 10 см – длина АО взаимодействия, $\lambda_0 = 0,63$ мкм – центральная длина волны света)

В условиях продольного и поперечного синхронизма ширина полосы пропускания составила $\Delta\lambda_{1/2} = 0,01$ нм (m = 0), $\Delta\lambda_{1/2} = 0,02$ нм (m = 1), $\Delta\lambda_{1/2} = 0,022$ нм (m = 2), $\Delta\lambda_{1/2} = 0,023$ нм ($m = 3 \div 30$).

- 1. Belyi V.N., Khilo N.A., Petrova E.S., et al. // Proc. SPIE, 2002. Vol. 4751, P. 97-103.
- Belyi V.N., Kazak N.S., Khilo P.A., et al. // Universal Journal of Physics and Application, 2015. V. 9(5). P. 220–224.
- 3. Kulakov S.V., Mokrushin Yu.M., Gradoboyev Yu.G., et al. // Proceedings of SPIE, 2007. Vol. 6698, P. 60.