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Abstract

The talk reviews a modern machine learning technique called Conformal Pre-
dictors. The approach has been motivated by algorithmic notion of randomness
and allows us to make reliable predictions with valid measures of confidence for
individual examples. The developed technique guarantees that the overall accu-
racy can be controlled by a required confidence level. Unlike many conventional
techniques the approach does not make any additional assumption about the
data beyond the i.i.d. assumption: the examples are independent and identi-
cally distributed. The way to test this assumption is described. The talk also
outlines some generalisations of Conformal Predictors and their applications to
many different fields including medicine, cheminformatics, information security,
environment, plasma physics, home security and others.
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1 Background

The talk reviews a modern machine learning technique called Conformal Predictors
[1, 2]. Given a set of training examples (x1, y1), . . . (xl, yl), where each example consists
of an object and a label, the problem of classification or regression can be considered as
assigning a label yl+1 to a new object xl+1 , so that an example (xl+1, yl+1) does not look
strange among the training examples. Or, in other words, how well the new example
fits with the training set. In order to measure the strangeness of the new example
in comparison with the training set, we introduced so-called non-conformity measure
(NCM). This leads to a novel way to quantify the uncertainty of the prediction under
rather general assumption. A non-conformity measure can, in principle, be extracted
from any machine learning algorithm, such as SVM, logistic regression, neural networks,
etc. We shall call the algorithm used for the extraction of an NCM as an underlying
model.

Once an NCM is developed, it is possible to compute for any example (x, y) a
p − value that reflects how good the new example from the test set fits (or conforms
with the i.i.d. assumption) with the training set. A more accurate and formal statement
is this: chosen a significance level ε ∈ [0, 1] it is possible to compute p− values for the
test examples so that they are (in the long run) smaller or equal than ε with probability
at most ε. Note that the key assumption here is that the examples in the training set
and the test objects are independent and identically distributed (although a weaker
requirement of exchangeability is sufficient). The idea is then to compute for a test
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object x a p − value for every possible choice of the label y and make a prediction
by choosing a label with the largest p − value and the confidence as (1 - 2nd largest
p−value). Once the p−values are computed, they can be used in one of the following
ways: a) to allow a user to specify a confidence level (or an error rate) so that the
correct prediction rate is not worse than pre-specified confidence level; or b) to provide
prediction with confidence for each individual example. More precisely:

• Given a significance level, ε, the predictor outputs a region set of possible labels
for each test object such that the actual label appears no more than ε times in
the set. This property is called validity of conformal predictors and it follows
from the observations that in the online prediction protocol, the errors made
errε1, err

ε
2, . . . are independent and take value 1 with probability ε. Naturally,

the narrower the prediction region is, the more efficient our prediction is

Γε = {y ∈ Y : p(y) > ε},

where Γε is a prediction region, and the output provides the user with all labels
y where p− value is greater than ε.

• Another way is to supply a prediction for a new test object with two numbers:
the confidence

sup {1− ε : |Γε| ≤ 1}

and the credibility
inf {ε : |Γε| = 0} .

Low credibility, for example, implies either the training set is non-random or the
test object is not representative of the training set.

2 Conformal and Probabilistic Predictors

This method described above is so-called transductive conformal prediction (CP). It
requires to retrain underlying model for each new test example. To make the method
computationally more efficient, it has been generalised for inductive conformal predic-
tor. In fact, there are now a number of various generalisations. Among them:

• Inductive CP (for computational efficiency). The inductive conformal predictors
require the underlying model to be trained only once. The dataset is divided into
proper training set, calibration set and test set. The proper training set is used
only to calculate NCM scores (α’s) of calibration and testing examples. Then
p− values are calculated using only those α’s.

• Mondrian CP (for imbalanced data). In transductive and inductive CPs the ex-
amples we usually deal with belong to different classes or categories. Conformal
predictors do not guarantee validity within the categories. The fraction of errors
can be much larger than the pre-specified significance level for some categories, if
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this is compensated by a smaller fraction of errors in other categories. This valid-
ity within the categories is the main property of Mondrian conformal predictors1.
Mondrian CP allows to have separate guarantees of the errors of different types.
CP prediction set covers the true label with probability 1− ε. In Mondrian CP:
if the true label is 1, then the prediction set contains 1 with probability 1− ε1; if
the true label is 0, then the prediction set contains 1 with probability 1− ε0.

• Probabilistic predictor (produces reliable two-sided probabilistic estimates instead
of p-values). Conformal predictors output p− values, but sometimes p− values
are more difficult to interpret than probabilities. In Bayesian decision theory:
probabilities (but not the p− values) can be combined with utilities to arrive at
optimal decisions. We have also developed a method of probabilistic prediction
[1, 2] that is related to conformal prediction – so called Venn machine – that also
has a guaranteed property of validity. It outputs multiprobabilistic predictions;
for example, in the classification problem it provides a lower and upper bounds
of probabilistic predictions.

Several other techniques have been developed such as Cross-conformal predictors
(a hybrid of inductive CP and cross-validation); On-line Compression Model (for as-
sumptions other than i.i.d.); Conformal Predictive distribution (provides the whole dis-
tribution and can be used for decision-making); Ridge Regression Confidence Machine
and others.

The main point is that in all these generalisations the property of validity is pre-
served.

3 Applications

The conformal predictors techniques have been successfully applied in many fields: in
medicine for diagnostic of ovarian and breast cancers; in neurosciences for diagnostic
and treatment of depression; in information security in identifying various bots; in
environment for assessing a level of pollution and many others. One of the most recent
application is in pharmaceutical industry to find chemical compound activity using
publicly available data [3]. A version of conformal predictors called Inductive Mondrian
Predictor that keeps validity guarantees for each class has been applied for the large,
high-dimensional, sparse and imbalanced pharmaceutical data. The experiments were
conducted using several non-conformity measures extracted from underlying algorithms
such as SVM, Nearest Neighbours and Naive Bayes. The results show that Inductive
Conformal Mondrian Prediction framework allows to rank the compound activities and
to find potentially useful molecules for drug developments.

1Called Mondrian because the categories resemble a Mondrian paintings by Piet Mondrian (1872-
1944).
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