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Abstract

Detecting subcropping mineralizations but also deeply buried mineralizations
is one important goal in geochemical exploration. The identi�cation of useful in-
dicators for mineralization is a di�cult task as mineralization might be in�uenced
by many factors, such as location, investigated media, depth, etc. We propose
a statistical method which indicates chemical elements related to mineralization.
The identi�cation is based on GAM models for the element concentrations across
the spatial coordinate(s). The log-ratios of the GAM �ts are taken to compute
the curvature, where high curvature is supposed to indicate mineralization. By
de�ning a measure for the quanti�cation of high curvature, the log-ratios can
be ranked, and elements can be identi�ed that are indicative of the anomaly
patterns.
Keywords: data science, spatial curvature, mineralization

1 Introduction

Identifying geochemical processes as mineralization is de�ned as the presence of higher
concentrations of particular chemical elements compared to the background concen-
tration. In other words, one would expect a rapid spatial change in the concentration
on top of the mineralization, depending on the type and extent of the mineralization.
Data coming from geochemistry are naturally compositional data, which are strictly
non-negative values, forming parts of a whole. Therefore, using log-ratios seems to be
an appropriate approach for constructing meaningful features that indicate mineraliza-
tion. The important information is re�ected in the ratios between the variables rather
than in the absolute values. Relative information might lead to a proper understanding
of the data.

The problem of identifying mineralization is of major interest in the project Up-
Deep [2], where TU Wien is the project partner responsible for developing statistical
methods. The exploration techniques might then even lead to suggestions considering
ore discoveries. In this project several data sets are available, and for the development
and illustration of the method we use a geochemical data set originating from Finland.
The data have been sampled along a linear transect, and concentrations of various
chemical elements have been measured in di�erent sample media.

The presented method is based upon the behavior of the curvature of log-ratios.
A big (absolute) value of the curvature corresponds to a rapid change of the log-ratio
in the area of interest, and this may indicate mineralization. In order to suppress
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the e�ect of measurement uncertainties, we use as a �rst step GAM models (see,
e.g., [4], [5]) to smooth the absolute concentrations ensuring su�cient smoothness.
Based on the curvature of the log-ratio of the smoothed concentrations, we then employ
an unsupervised learning method leading to a hitlist of log-ratios most suitable for
�nding mineralization.

The proposed method has been tested on the mentioned real data set, where the
mineralizations are even known, and the results seem to be reliable and promising.

2 Methodology

Smoothing splines, as developed by [3], are nowadays an indispensable tool in the
modern days statistician's toolbox. They have been used with great success in a variety
of areas and continue to this day to be a very active �eld of research.

Usually as a starting point one considers, for given data (x1, y1), . . . , (xn, yn), the
following non-parametric model with Gaussian i.i.d. errors,

yi(xi) = f(xi) + εi, (1)

εi ∼ N (0, σ2), with i = 1, . . . , n. The presumably smooth linear predictor f is esti-
mated by solving the problem given by

max
f

n∑
i=1

ωil(yi|xi; f)− λ
∫

(f ′′(x))2dx, (2)

where f(x) = h(x)tβ for h being a B-spline basis, and l stands for log-likelihood
of the Gamma distribution, which is appropriate in this context since we deal with
positive concentrations of elements. Note, ωi represent prede�ned weights enforcing
the higher concentrations. The part λ

∫
(f ′′(x))2dx in (2) is important for controlling

the smoothness via the number of basis functions. The parameter λ is the smoothing
parameter controlling the trade-o� between �tting the data closely and having a smooth
model, and �nally f ′′ is the second derivative of f .

Using log-ratios of the obtained �tted values from the GAM model for a pair of
variables, we calculate the absolute curvature, denoted as κ(x). A big value of the
curvature indicates clear peaks in the log-ratio.

A further step is to de�ne a measure to rank the log-ratios according to their
curvature. For this purpose, we de�ne a threshold as mean plus standard deviation
of the curvature, marked as τ := µ + σ. This allows to determine the number J of
separated regions, obtained as half of number of points N crossing a threshold of its
curvature, as well as the length IJ of the interval of each region. A measure for the
quanti�cation of high curvature of particular log-ratio can be then de�ned as

c =
1

J

J∑
j=1

max
x∈IJ

(κ(x)− T )2
+, (3)
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where maxx∈IJ (κ(x)−T )2
+ is the highest distance of curvature subtracted from thresh-

old for Jth interval. The log-ratios of all pairs of variables can now be ranked according
to this value c, and log-ratios on top of the hitlist indicate the locations of potential
mineralization.

In the presentation we will show results from our data set, and also results from
other geochemical data sets. All these results indicate that the method indeed is able
to identify path�nder elements for mineralization. Note that our proposed approach
in unsupervised � thus it is not necessary to know the locations of the potential min-
eralization.
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