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Abstract

An adaptive control system with conflict flows of non-homogeneous requests is
considered in the paper. A mathematical model of the system is a vector Markov
sequence with a countable state space. Components of the Markov sequence
satisfy certain functional recurrence relations. The main result of the work is
a numerical research of the system by simulation. In particular, some sample
estimates for the mean sojourn time of a single request from different queues are
presented.
Keywords: data science, adaptive control system, conflict flow, non-
homogeneity

1 Introduction

The adaptive non-cyclic control system with two conflict flows of requests is investi-
gated here using computer-aided simulation. The algorithm controls the input flows
using information about queues lengths and the order of requests arrivals. Conflict-
ness of flows means here existence impossibility for the time intervals when requests
from different flows are serviced simultaneously. Each flow here consists of requests
of different types. In [1, 2], the authors showed the input flows can be approximated
by non-ordinary Poisson flows. Thus, two statistically independent flows Π1 and Π2

are serviced. Request arrival moments in the flow Πj occur with intensity of λj (for
j = 1, 2), and a group with k requests arrives with probability Qj(k) where

Qj(1) =
(

1 + αj +
αjβj

1− γj

)−1

= pj, Qj(2) = αj

(
1 + αj +

αjβj

1− γj

)−1

Qj(k) = αjβjγ
k−3
j

(
1 + αj +

αjβj

1− γj

)−1

, k ≥ 3,

αj, βj and γj are some parameters that have a certain physical meaning [1]. Let the
random variable ηj(t) determine the number of requests received by the flow Πj during
the time interval [0, t). Denote the probability P(ηj(t) = k) by the function Pj(t, k).
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In our previous work the following equality was obtained:

Pj(t, k) = e−λjt
[ k
2

]∑
n=0

αnj
(λjtpj)

k−n

n!(k − 2n)!
+

+ e−λjt
[ k
2

]∑
n=0

αnj

min{k−2n,n}∑
m=1

βmj

k−2n−m∑
l=0

γlj
(λjtpj)

k−n−m−lC l
m+l−1

(n−m)!m!(k − 2n−m− l)! , k ≥ 0.

The queue for each of the flows is assumed unlimited. The queueing system is
assumed lossless. The server state space is Γ = {Γ(1),Γ(2), . . . ,Γ(8)}. The following
graph specifies transitions of server states

The state Γ(3j−2) corresponds to the first stage of the service period for the j-th
flow. The service duration for one request from queue Oj (i.e. from the flow Πj) is a
constant value µ−1

j,1 . Let T3j−2 be the duration of the state Γ(3j−2). The state Γ(3j−1)

corresponds to the second stage of the service period for the j-th flow. The service
duration of one request in this state is the constant value µ−1

j,2 < µ−1
j,1 . The duration of

the state Γ(3j−1) is a random variable taking on the values kT3j−1, k = 1, nj, where nj
is the given maximum number of prolongations. The parameter Kj is the queue size,
above which there is the prolongation. The state Γ(3j) corresponds to the server setup
after servicing the j-th flow. The duration of the state is T3j. The service duration of
one request in the state Γ(3j) is µ−1

j,2 . The state Γ(6+j) corresponds to the first stage of
the service period for the j-th flow in the case when an instantaneous transition to the
state Γ(3j) is possible. The duration of the state Γ(6+j) is a random variable. Its largest
value is T3j−2. The constant values Tk, k = 1, 6, are defined by

T3j−2 = µ−1
j,1 + l3j−2θjµ

−1
j,1 , T3j−1 = l3j−1θjµ

−1
j,2 , T3j = l3jθjµ

−1
j,2 , (1)

where l3j−2 ∈ {0, 1, 2, . . .} = X, l3j−1, l3j ∈ {1, 2, . . .} and θj are parameters. The value
θj, 0 < θj ≤ 1, denotes the portion of the service time which needs pass before the
next request can begin its servicing. In case θj < 1, several requests can be serviced
simultaneously. The ratio (1) means that the server changes its state when the service
of some request is finished. The maximum possible number of served requests is 1+l3j−2

in the state Γ(3j−2), one is kl3j−1 for the state Γ(3j−1) and one is the integer part of the
number 1/θj for the state Γ(3j).
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2 Construction of the mathematical model

We observe the system at random time instants τi, i = 0, 1, . . . , or on intervals [τi, τi+1),
i ≥ 0. Here, the value τ0 is the initial moment of time, and τi, i > 0, are the moments
of server state change. Set y0 = (0, 0), y1 = (1, 0), y2 = (0, 1). For i ≥ 0 and j = 1, 2,
we define the following random variables and elements:

1. Γi ∈ Γ — the server state during the interval [τi, τi+1);

2. ηj,i ∈ X is the number of flow Πj requests that enter the system during the
interval [τi, τi+1), and ηi = (η1,i, η2,i);

3. η′i is a random vector. The vector η′i takes on the value y0 if no requests have
entered the system during the interval [τi, τi+1), otherwise the value yj if the
request (or requests) of the flow Πj is the first during the i-th interval;

4. κj,i ∈ X is the number of requests for the flow Πj in the system at time τi, and
κi = (κ1,i, κ2,i);

5. ξj,i is the maximum possible number of flow Πj requests that the system can
service during the interval [τi, τi+1), and ξi = (ξ1,j, ξ2,j).

An adaptive algorithm for conflict flow control is defined by a function u(·, ·, ·) : Γ×
×X2 × {y0, y1, y2} → Γ by virtue of the following recurrence relations

Γi+1 = u(Γi, κi, η
′
i) =

=



Γ(3j−2),
{[

Γi = Γ(3s)
]

& [(κj,i > 0) ∨ (κs,i ≥ Ks) ∨ (η′i = yj)]
}
∨

∨
{[

Γi = Γ(3j)
]

&[κs,i = 0]&[κj,i ≤ Kj]&[η′i = yj]
}
,

Γ(3j−1),
{

Γi = Γ(3j−2)
}
∨
{[

Γi = Γ(6+j)
]

&[η′i = yj]
}
,

Γ(3j),
{

Γi = Γ(3j−1)
}
∨
{[

Γi = Γ(6+j)
]

&[η′i 6= yj]
}
,

Γ(6+j),
[
Γi = Γ(3s)

]
&[κj,i = 0]&[κs,i < Ks]&[η′i = y0],

(2)

hereinafter in the work j, s = 1, 2, j 6= s, i ≥ 0. The queue length dynamics is
determined by functions vj(·, ·, ·, ·) : Γ×X2×X2×X2 → X and the following recurrence
relations

κj,i+1 = vj(Γi, κi, ηi, ξi) =

{
max{0, κj,i + ηj,i − ξj,i} if Γi ∈ Γ\{Γ(3),Γ(6)};
ηj,i + max{0, κj,i − ξj,i} if Γi ∈ {Γ(3),Γ(6)}. (3)

Relations (2) and (3) allow to us to study the vector sequence {(Γi, κi); i = 0, 1, . . .}.
The sequence is a probabilistic model of the queueing system for adaptive control of
conflict flows and for service of non-homogeneous requests. The properties of the vector
Markov sequence were investigated in [3, 4, 5]. In particular, the conditions for the
stationary probability distribution existence were obtained.

Unfortunately, it is not possible to derive analytically the important performance
characteristics of the system under study. Therefore, a computer-aided simulation
model is built to determine some important characteristics of the system. Simulation
results can be interpreted in terms of a transport intersection operation.
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3 System simulation model
The simulation takes places in the discrete time-scale {τi; i = 0, 1, . . .} and a realization
of the sequence {(Γi, κi); i = 0, 1, . . .} is generated together with all random objects
involved in equations (2) and (3). Besides that, arrival times are stored for all requests,
it allow to keep track of sojourn times of every request in the system. Denote by νj the
sample estimate for the mean sojourn time of requests from the flow Πj. The sample
estimate of the sojourn time of an arbitrary request is given by ν = λ1M1ν1+λ2M2ν2

λ1M1+λ2M2
.

Here M1 and M2 are the mathematical expectations of the number of requests in a
group and Mj = (1 + 2αj + αjβj(2/(1 − γj) + 1/(1 − γj)2))pj. The simulation model
is implemented as a program written in C++.

As an example, we present the computational results concerning the estimate of the
mean sojourn time of an arbitrary request in the system with the following parameters:
λ1 = 0.4, λ2 = 0.3, α1 = 1.1, β1 = 0.1, γ1 = 0.01, α2 = 1.1, β2 = 0.1, γ2 = 0.01. The
parameters of the adaptive algorithm are T1 = T4 = 5, T2 = T5 = 1, T3 = T6 = 2,
n1 = n2 = 7, K1 = K2 = 10, θ1 = θ2 = 1, µ1,1 = µ2,1 = 2/3, µ1,2 = µ2,2 = 1. The
parameters T1, . . . , T6 are given in seconds. The parameters λ1, λ2, µ1,1, µ2,1, µ1,2, µ2,2

have the measurement units of (seconds)−1. Other parameters are dimensionless. With
these parameters of adaptive flow control the sample estimate of the mean sojourn time
is 13.55 seconds.

The work was performed as the basic part of the states tasks in the sphere of
scientific activities on the Task No 2014/134 and supported by RFBR (project No
18-413-520005).
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