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Abstract

In this article a semi-parametric class of skew-symmetric distributions is con-
sidered. We call this class as Power-Skew-Symmetric (PSS) distributions, being
obtained by considering a positive power of a distribution function symmetric
about 0. Based on U-statistics we develop two nonparametric tests for symme-
try in the PSS class. Performances of the proposed tests are evaluated using
efficacy and empirical power.
Keywords: efficiency, empirical power, semi-parametric class, skew-
distributions, U-statistics

1 Introduction

In the literature parametric/nonparametric classes of skew-symmetric distributions
have been generated by introducing an additional parameter to a class of symmet-
ric distributions. Azzalini (1985) introduced a class of skew-symmetric distributions
based on normal distribution and Gómez et. al (2006) have generalized this class by
introducing one more addition parameter. Further extensions based on t, Lapalce,
Cauchy, Uniform, Logistic distributions have been considered by Gupta et. al (2002)
and their distributional properties have been studied by Nadarajah and Kotz (2003,
2006). Mudolkar and Hutson (2000) have proposed Epsilon-Skew normal family by
using normal density and a skewness parameter ε.

Lehmann (1953) proposed a family of distributions

FF (x, α) = {Fα(x), α ∈ (0,∞)} (1)

where F is a distribution function. In the context of testing the null hypothesis that
F is the true distribution one may confine to the class (1) and the subclass of (1) with
α 6= 1 is referred to as the class of Lehmann alternatives. If F is absolutely continuous
then the corresponding density function is

ϕF (x, α) = αf(x) {F (x)}α−1 , x ∈ R, α > 0. (2)

The class (1) is used for data analysis by considering F to be a specified parametric
family (usually taken to be symmetric), for example Durrans (1992), Gupta and Gupta
(2008), Pewsey et. al (2012).

In this article we consider
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{Fα(x);F is symmetric about 0 , α ∈ (0,∞)} . (3)

called the Power Skew Symmetric family of distributions and is denoted by PSS.
Thus the family of all distribution functions which are positive powers of a continuous
symmetric distribution function symmetric about 0. It is a semiparametric family.

It is to be noted that a member of PSS is symmetric if and only if α = 1. Based on
U-statistics theory, We propose two nonparametric tests for testing symmetry in PSS
class.

In section 2 the class of PSS is defined and some of its properties, graphs of Distri-
bution Function (DF), Probability Density Function (PDF) for certain members gener-
ated from some well know symmetric models are given. Two U-statistics type statistics
for testing symmetry in this class (α = 1) are proposed in section 3. Asymptotic null
distributions of the proposed statistics are discussed in section 4. The efficacies of the
tests are derived in section 5. In section 6, empirical powers of the proposed tests are
computed for different subclasses of PSS generated from some well known symmetric
models.

2 The Class of Power-Skew-Symmetric Distribu-

tions

In this section we define the class of Power-Skew-Symmetric(PSS) distributions and
study some of its properties.

Let F (t) = P (T ≤ t) be the distribution function of random variable (r.v.) Y and
F (t−) = P (Y < t). If F (.) is continuous at t the F (t) = F (t−). The distribution
function F (or the r.r. Y ) is said to be symmetric about 0 if F (t) = 1−F (t−),−∞ <
t <∞. The class PSS is defined as,

PSS = {Fα(x) : x ∈ R, F is symmetric about 0} . (4)

In the following we show that (F (.), α) constitutes the parameter for the class PSS .
If G(.) ∈ PSS then G(x) = Fα(x) for some distribution function F symmetric about
0 and some α > 0 . To be precise G(x) is GF,α(x), but for notational simplicity, unless
otherwise required, we write it as G(x), The class PSS is a semi-parametric family and
it can be extend by introducing the location and the scale parameters. In the following
we shall show that (F (.), α) constitutes the parameter for the PSS class.

Lemma 1. (F (.), α) constitutes the parameter for the class PSS
Proof. For if, Fα1

1 (x) = Fα2
2 ,∀x, then we have,

F1(x) = F
α2
α1

2 (x),∀x. (5)

We note that if F is symmetric about 0 then Fα(x)is symmetric about 0 if and only
if α = 0. Hence as F1(.) and F2(.) are symmetric about 0, (4) holds if and only if
α1 = α2, which in turn also implies F1(x) = F2(x),∀x.
Hence the proof.
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In the following we give some of the properties of members of PSS class distribu-
tions. Let X be an r.v. with continuous distribution function (DF) Fα(x) (denoted by
X ∼ Fα(x)).

P.1: If X ∼ Fα(x) then −X ∼ 1− Fα(−x).

P.2: If X ∼ G(.) ∈ PSS, then G(0) = (1/2)α for any F (.) symmetric about 0.

P.3: Let X ∼ Fα(say) , Y ∼ F (.) and Gα(.) be the distribution function of X then

i) The probability density function ofX is given by gα(x) = αFα−1f(x). provided
it exists.

ii) The supports of Gα(.) and F (.) are the same.

iii) X is stochastically larger(sampler) than Y according as α ≤ 1(α ≥ 1).

iv) The inverse function of the CDFs satisfy the relation,

G−1
α (u) = F−1

(
u(1/α)

)
, 0 < u < 1, α > 0.

P.4: (Gupta and Gupta (2008)) If the Xi ∼ PSS(F, αi), i = 1, 2, ..., n are independent
X(n) = max(X1, X2, ..., Xn) ∼ PSS (F,

∑n
i=1 αi).

The graphs of DF and PDF of the PSS distributions generated from Cauchy, Laplace,
Logistic, Normal and Uniform distributions for some values of α are given in the Ap-
pendix.

3 Proposed Classes of Tests

Let X1, X2, ..., Xn be be independent identically distributed random variables with
common DF ∈ G ∈ PSS. The problem of interest is to test the hypothesis H0: G is
symmetric about 0 against the alternative H1: G is not symmetric about 0, that is to
test

H0 : α = 1 against H1 : α 6= 1. (6)

Here F is a nuisance parameter.
Motivated from Mehra et. al (1990) and Rattihalli and Raghunath (2012), we propose
two U-test-statistics to test the above hypothesis. The kernel function depends on a
constant to be chosen so as to maximize the efficacy of the test. This is possible as the
efficacies of the tests do not depended upon nuisance parameter F (.). The two U-test
statistics are given by

Ta =

∑
C1
ψa(xi, xj)(
n
2

) (7)

Sb =

∑
C2
ψb(xi, xj, xk)(

n
3

) (8)
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where the summations C1 and C2 are respectively over the
(
n
2

)
,
(
n
3

)
combinations of

integers from {1, 2, .., n} and

ψa(xi, xj) =


a if min{xi, xj} > 0

1(−1) if xixj < 0, xi + xj > (<)0
−a if max{xi, xj} > 0
0 otherwise,

(9)

ψb(xi, xj, xk) =


b if x(1) > 0

1(−1) if x(1) < 0 < x(2)(x(2) < 0 < x(3)), x(1) + x(3) > (<)0
−b if x(3) < 0
0 otherwise,

(10)
where x(i) is the rth order statistic from a sub-sample of size 3.
A test rejects H0 in favour of H1 for the large absolute value of the corresponding

test statistic.

4 Asymptotic null distribution of the proposed test

statistics

Since the statistics Ta and Sb are one sample U-statistics, then from the theorem of
Hoeffding (1948), we have the following theorem.

Theorem 1. Let σ2
a = V ar [EH0(ψa(X1, X2)|X1 = x1)]. Then under the H0√

n [Ta − EH0(Ta)] converges in distribution as n→∞ to N(0, 4σ2
a) r.v.

Thus to obtain the asymptotic null distribution of Ta, it is enough to find
E [ψa(X1, X2)], EH0 [ψa(X1, X2)|X1 = x1)] and are obtained in the following.

E[Ta] = E[ψa(X1, X2)]

= aP [X(1) > 0] + P [X(1) < 0 < X(2), X(1) +X(2) > 0]

− P [X(1) < 0 < X(2), X(1) +X(2) < 0]− ap[X(2) < 0]

= a{P [E1]− p[E4]}+ P [E2]− P [E4]

and the probabilities of the above events are,

P [E1] =
(
1− 2−α

)2

P [E2] = 21−α − 2α

∫ 1/2

0

(1− u)αuα−1du

P [E3] = 2α

∫ 1/2

0

(1− u)αuα−1du− 21−2α

P [E4] = 2−2α.
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It is to be noted that, the above probabilities do not depend on the underlying sym-
metric model F (.).

Thus we get,

νa(α) = E[ψ1(X1, X2)] = a(1− 21−α) + 21−α + 22α−1 − 4α

∫ 1/2

0

(1− u)αuα−1du. (11)

Under H0 : α = 1, we have,
EH0 [Ta] = 0.

Further,

EH0 (ψa(X1, X2)|X1 = x1) =

{
2F (x1)−

(
a+1

2

)
when x1 ≤ 0(

a−3
2

)
+ 2F (x1) when x1 ≥ 0

(12)

Hence the asymptotic variance 4σ2
a is,

4σ2
a = 4V ar[EH0(ψa(X1, X2)|X1 = x1)]

= 4

{∫ ∞
0

[(
a− 3

2

)
+ 2F (x1)

]2

dF (x1) +

∫ 0

−∞

[
2F (x1)−

(
a+ 1

2

)]2

dF (x1)

}
.

(13)

Thus,

4σ2
a =

(
1

3
+ a2

)
. (14)

Similarly the asymptotic distribution of Tb is given by,

Theorem 2. Let σ2
b = V ar[EH0(ψb(X1, X2, X3)|X1 = x1)]. Then under H0

√
n[Sb −

EH0(Sb)] converges in distribution as n→∞ to N(0, 9σ2
b ) r. v.

The expectation and asymptotic variance of Tb are given by,

νb(α) = b
[
(1− 2−α)3 − 2−3α

]
+ 3

{
2−α(1− 21−α + 2−2α)

−α
∫ 1/2

0

((1− u)α − 2uα)(1− u)αuα−1du

}
. (15)

Under H0 : α = 1, we have,
EH0 [Sb] = 0.

It is easy to verify that,

EH0 (ψb(X1, X2, X3)|X1 = x1) =

{
2F (x1)− 2F 2(x1)−

(
b+2

4

)
when x1 ≤ 0(

b+2
4

)
+ 2F 2(x1)− 2F (x1) when x1 ≥ 0

(16)

The asymptotic variance 9σ2
b is given by,

9σ2
b = 9

(
b2

16
+

b

12
+

1

20

)
. (17)

In the next section we obtain the constants ‘a’ and ‘b’, so that the efficacies of the tests
are maximal.
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5 Efficacies of the proposed tests

Let T = {Tn} be a sequence of test statistics for testing the hypothesis that H0 : θ = θ0

against the suitable alternative. Let E(Tn) = µn(θ) and V ar(Tn) = σ2
n(θ). Under

certain regularity conditions (see Randles and Wolfe (1979)) the efficacy of T is given
by,

eff [T ] = lim
n→∞

µ′n(0)√
nσn(0)

. (18)

By considering Tn = Ta, µn(θ) = νa(α), where νa(α) is given in (10) and

ν ′a(α)|α=1 = (2− a) ln(1/2)− (3/2)− 4

∫ 1/2

0

(1− u) ln(u(1− u))du,

The efficacy of Ta is,

eff 2[Ta] =
3 [(2− a) ln(1/2)− (3/2)− 4I1]2

(3a2 + 1)
(19)

where I1 =
∫ 1/2

0
(1− u) ln(u(1− u))du.

The optimal value a∗ of a is obtained by solving (d/da)eff 2(Ta) = 0 and verifying
(d2/(da2))eff 2(Ta) < 0 at the solution obtained. Here the value obtained is,

a∗ =
2 ln(1/2)

24I1 + 9− 12 ln(1/2)
, (20)

where I1 is define above and by numerical integration it can be shown that I1 =
−0.7983. Hence from (19) we have,

a∗ = 0.7528.

Thus the efficacy of Ta∗ is,
eff 2[Ta∗ ] = 0.763.

Similarly, the efficacy of the test Tb is,

eff 2[Sb] =
15 [8I2 − (2b+ 1)3 ln(1/2)]2

(60b2 + 80b+ 48)
(21)

where I2 =
∫ 1/2

0
(1− u)[(3u− 1) + 2(2u− 1) ln(1− u) + (5u− 1) ln(u)]du = 0.1122 (by

numerical integration).
The optimal value of b∗ of b is,

b∗ =
8I2 − ln(1/2)

2 ln(1/2)
. (22)

Substituting the value of I2 in (21), we get,

b∗ = 0.1476.

and
eff 2[Sb∗ ] = 0.7912.

The efficacy of the test Sb∗ is more than that of Ta∗ .
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6 Monte-Carlo Simulation

In this section we carry out the empirical power study to assess the performances of
the proposed test statistics Ta∗ and Sb∗ . For simulation study samples were drawn
from G(.), when F corresponds to Cauchy, Laplace, logistic, normal, triangular and
uniform.

Under H0 test statistics Ta∗ and Sb∗ are asymptotically normal with mean 0 and
variances given in (13) and (16) respectively. Then corresponding to the size γ, the
criteria for rejection are

a) to reject H0 if |Ta∗| ≥ Z(γ/2)2σa∗√
n

b) to reject H0 if |Sb∗ | ≥ Z(γ/2)3σb∗√
n

An empirical power study for both the tests was carried out for moderate sample size
n = 25 with γ = 0.05. The results based 10000 Monte Carlo simulations are tabulated
in Table 1.

Table 1: Empirical Powers of Ta∗ and Sb∗ for various values of alpha with γ = 0.05
and number of Monte Carlo simulations 10000.

α Tests Cauchy Laplace Logistic Normal Triangular Uniform

0.1 Ta∗ 1.0 0.7846 1.0 1.0 1.0 1.0
Sb∗ 0.9943 0.505 0.9949 0.9947 0.9964 0.9951

0.5 Ta∗ 0.7578 0.6319 0.7597 0.756 0.7344 0.7569
Sb∗ 0.3447 0.3561 0.6493 0.3462 0.3532 0.3425

0.95 Ta∗ 0.0550 0.0617 0.0586 0.0550 0.0558 0.0526
Sb∗ 0.0610 0.0600 0.0611 0.0610 0.0542 0.0567

0.99 Ta∗ 0.0495 0.0515 0.0587 0.0499 0.0509 0.0488
Sb∗ 0.0581 0.0549 0.0588 0.0581 0.0561 0.0581

1.0 Ta∗ 0.0488 0.0480 0.0460 0.0495 0.0503 0.0480
Sb∗ 0.0555 0.0514 0.0508 0.0514 0.0558 0.0549

1.01 Ta∗ 0.0543 0.0493 0.0543 0.0572 0.0530 0.0495
Sb∗ 0.0587 0.0545 0.0556 0.0569 0.0564 0.0555

1.05 Ta∗ 0.0548 0.0546 0.0601 0.0569 0.0588 0.0548
Sb∗ 0.0615 0.0589 0.0571 0.0598 0.0573 0.0615

1.5 Ta∗ 0.4329 0.4159 0.4349 0.4410 0.4347 0.4380
Sb∗ 0.1920 0.2246 0.1919 0.191 0.1957 0.1907

2.0 Ta∗ 0.9002 0.7016 0.9008 0.9016 0.8785 0.8988
Sb∗ 0.4989 0.4274 0.497 0.4953 0.4984 0.4989

2.5 Ta∗ 0.9928 0.7751 0.9924 0.9932 0.9918 0.9944
Sb∗ 0.7685 0.487 0.7759 0.7849 0.7913 0.7719

3.0 Ta∗ 1.0 0.7859 1.0 1.0 1.0 1.0
Sb∗ 0.9273 0.5004 0.9285 0.9225 0.9318 0.9283
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Table 2: *
Graphs of the Empirical Powers of Ta∗ (solid line) and Sb∗(longer dashing line) for

various values of alpha.
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From the table 1 and the above graphs we observe the following.

a) The proposed test statistics are maintaining the level of significance.

b) the empirical powers of Sb∗ are larger in the neighborhood of the null. Ta∗ performs
better when we move away from the null hypothesis.

7 Conclusion

In this article we have considered a semi-parametric class of skew-symmetric dis-
tributions called Power-Skew-Symmetric (PSS) distributions. We have developed
two tests for symmetry, based on the theory of U-Statistics for testing symmetry in
this class. The kernel functions depend on arbitrary constants, which are chosen so
that efficacies of the test are maximal. Though they are asymptotic tests, based on
simulation study, from Table 1, we observe that for each test the attained levels for
all the models are almost equal to the nominal level. The efficacy of the test Sb∗ is
higher than that of Ta∗ . As expected the empirical powers of Sb∗ are larger in the
neighborhood of the null, of course Ta∗ is better than Sb∗ if the values of α are much
away from the null value 1.

Remark: Similar to the class PSS of power skew-symmetric distribution functions
one can define the PSSs the class of power skew-symmetric survival functions, by
considering the survival functions instead of the distribution functions. All the related
properties and tests can be obtained in the similar way. Properties related to maximum
of random variables will be now related with minimum of random variables.
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Appendix

Graphs of the DF and PDF of Power-skew-symmetric distributions derived from various
F (.)s, with α = 1.5 (longer dashing line), α = 0.5 (dotted line) and α = 1 (solid line).
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