
APPROXIMATION OF DENSITY FUNCTIONS
USING SIMPLICIAL SPLINES
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Abstract

Probability density functions result in practice frequently from aggregation of
massive data and their further statistical processing is thus of increasing impor-
tance. However, specific properties of density functions prevent from analyzing a
sample of densities directly using tools of functional data analysis. Moreover, it
is not only about the unit integral constraint, which results from representation
of densities within the equivalence class of proportional positive-valued functions,
but also about their relative scale which emphasizes the effect of small relative
contributions of Borel subsets to the overall measure of the support. For practi-
cal data processing, it is popular to approximate first the input (discrete) data
with a proper spline representation. Aim of the contribution is to introduce new
class of B-splines within the Bayes space methodology which is suitable for rep-
resentation of density functions. Accordingly, the original densities are expressed
as real functions using the centred logratio transformation and optimal smooth-
ing splines with B-spline basis honoring the resulting zero-integral constraint are
developed.
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1 Introduction

Probability density functions are non-negative functions, popularly represented with
a unit integral constraint. However, in some fields, e.g., in Bayesian statistics density
functions are considered in a more general setting, where any representation within the
equivalence class of proportional functions can be taken. This reflects better the basic
property of densities - their scale invariance. Accordingly, the sample space of densities
is formed by a set of equivalence classes of proportional positive functions. In this paper
a bounded support I = [a, b] ⊂ R of densities is considered which occurs frequently in
practice. Specific properties of density functions are captured by the Bayes space B2(I)
of functions with square-integrable logarithm [2, 5]; in a default setting the Lebesgue
reference measure is taken. The Bayes space B2(I) has structure of separable Hilbert
space which enables to construct an isometric isomorphism between B2(I) and L2(I),
the L2 space restricted to I. An isometric isomorphism between B2(I) and L2(I) is
represented by the centred log-ratio (clr) transformation [2]. It is defined for a density
f ∈ B2(I) as

clr(f)(x) = fc(x) = ln f(x)− 1

η

∫
I

ln f(y) dy,
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with η = b − a. The clr transformation induces an additional zero-integral constraint
that needs to be taken into account for computation and analysis on clr-transformed
density functions. As the clr space is clearly a subspace of L2(I), hereafter it is denoted
as L2

0(I). Although the clr transformed densities are standard real functions, their
constrained character calls for modification of methods for their approximation and
further statistical processing using methods of functional data analysis. This is also
the case of approximation using splines, described in a detail in the next section.

2 Optimal smoothing splines in L2(I)

Firstly we recall the basic knowledge about B-spline representation of splines, see
[3, 4, 12]. Let S∆λ

k [a, b] denote the vector space of polynomial splines of degree k > 0,
defined on a finite interval I = [a, b] with the sequence of knots ∆λ, where

∆λ := λ0 = a < λ1 < . . . < λg < b = λg+1.

It is known that dim
(
S∆λ
k [a, b]

)
= g + k + 1. Then every spline sk(x) ∈ S∆λ

k [a, b] in
L2(I) has a unique representation

sk (x) =

g∑
i=−k

biB
k+1
i (x) .

For this representation it is necessary to add some additional knots, e.g. such that

λ−k = · · · = λ−1 = λ0, λg+1 = λg+2 = · · · = λg+k+1. (1)

Vector b = (b−k, . . . , bg)> is called the vector of B-spline coefficients of sk(x), functions
Bk+1
i (x), i = −k, . . . , g are B-splines of degree k and form basis in S∆λ

k [a, b]. In matrix
notation it can be written as

sk(x) = Ck+1(x)b,

where Ck+1(x) =
(
Bk+1
i (x)

)g
i=−k is so called collocation matrix. It is known that

derivative of order l, l ∈ {1, . . . , k − 1}, of the spline sk(x) ∈ S∆λ
k [a, b] is a spline

sk−l(x) ∈ S∆λ
k−l[a, b] with the same knots. Using properties of B-splines the spline

derivatives can be written in matrix notation as

s
(l)
k (x) = Ck+1−l(x)b(l),

where b(l) ∈ Rg+k+1−l is given by b(l) = DlLlb
(l−1) = DlLl . . .D1L1b = Slb and

b(0) = b. Upper triangular matrix Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1 has full row
rank. Matrix Dj ∈ Rg+k+1−j,g+k+1−j is diagonal such that

Dj = (k + 1− j) diag (d−k+j, . . . , dg) , di =
1

λi+k+1−j − λi
∀i = −k + j, . . . , g

and

Lj :=

 −1 1
. . . . . .

−1 1

 ∈ Rg+k+1−j,g+k+2−j.
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Now we assume that data (xi, yi), a ≤ xi ≤ b, weights wi ≥ 0, i = 1, . . . , n, sequence
of knots ∆λ, n ≥ g + 1, and a parameter α ∈ (0, 1) are given. The optimal smoothing
problem, [9, 10], which is in fact generalization of smoothing problem [3, 4], is defined
as a task to find a spline sk(x) ∈ S∆λ

k [a, b], which minimizes the functional

Jl(sk) =

∫ b

a

[
s

(l)
k (x)

]2

dx+ α

n∑
i=1

wi [yi − sk(xi)]2 . (2)

The choice of parameter l will affect smoothness of the resulting spline. Let us denote
x = (x1, . . . , xn)>, y = (y1, . . . , yn)>, w = (w1, . . . , wn)> and W = diag (w). The
functional Jl(sk) can be written in a matrix form as

Jl(b) = b>Nklb + α [y −Ck+1(x)b]>W [y −Ck+1(x)b] ,

see [9, 10] for details. The matrix Nkl = S>l MklSl is positive semidefinite, where

Mkl =


(
Bk+1−l
−k+l , B

k+1−l
−k+l

)
. . .

(
Bk+1−l
g , Bk+1−l

−k+l

)
...

...(
Bk+1−l
−k+l , B

k+1−l
g

)
. . .

(
Bk+1−l
g , Bk+1−l

g

)
 ∈ Rg+k+1−l,g+k+1−l

and (
Bk+1−l
i , Bk+1−l

j

)
=

b∫
a

Bk+1−l
i (x)Bk+1−l

j (x) dx

stands for scalar product of B-splines in L2(I) space. Matrix Mkl is positive definite,
because Bk+1−l

i (x) ≥ 0, i = −k + l, . . . , g are basis functions. Now the task is to find
a minimum of function Jl(b). It is obvious that this minimum fulfils the condition

∂Jl(b)

∂b>
= 0,

which can be written as a system of linear equations Gb = g with

G = α−1Nkl + C>k+1(x)WCk+1(x), g = C>k+1(x)Wy.

If this system is consistent, then there exists a solution which is given by b∗ = G−g,
see [10]. So finally s∗k(x) = Ck+1(x)b∗ is resulting optimal smoothing spline, i.e. spline
which minimizes functional (2).

3 Optimal smoothing splines in L2
0(I)

In this section the case of smoothing clr-transformed density functions is considered.
The task is find spline sk(x) ∈ S∆λ

k [a, b] which minimizes functional (2) and which
satisfies an additional condition ∫ b

a

sk(x) dx = 0. (3)
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There are two possibilities how to deal with this problem. The first approach, which
was published in [8], is based on using expression between coefficients of spline and its
derivative. The second possibility uses new B-spline basis functions which satisfy the
condition (3). This process is described in [7].

Now the first approach will be described in more details. Note that the spline

sk(x) =

g∑
i=−k

biB
k+1
i (x)

is a derivative of spline

sk+1(x) =

g∑
i=−k−1

ciB
k+2
i (x), (4)

if

bi = (k + 1)
ci − ci−1

λi+k+1 − λi
∀i = −k, . . . , g. (5)

For each spline sk(x) ∈ S∆λ
k [a, b] satisfying the condition (3) we have

0 =

∫ b

a

sk(x) dx = [sk+1 (x)]ba = sk+1(λg+1)− sk+1(λ0),

because a = λ0, b = λg+1. With respect to the definition and properties of B-splines,
the additional knots (1) and notation (4) we get

0 = sk+1(λg+1)− sk+1(λ0) = cg − c−k−1,

so that c−k−1 = cg. The relationship (5) between the vector b = (b−k, . . . , bg)> of B-
spline coefficients of sk(x) and the vector c = (c−k−1, . . . , cg)

> of sk+1(x), c ∈ Rg+k+2

such that c−k−1 = cg, can be written as

b = DKc̄,

where c̄ = (c−k, . . . , cg)> ∈ Rg+k+1. Matrices D and K are known, see [8]. So with this
relationship we are able to rewrite function Jl(b) as a function Jl(c̄). Then we find its
minimum c̄∗ and finally the vector of B-spline coefficients b∗ for optimal smoothing
spline which has zero integral is obtained by

b∗ = DKc̄∗.

The corresponding spline is given by s∗k(x) = Ck+1(x)b∗.

The second approach for finding optimal smoothing spline with zero integral, which
is presented in [7], uses new functions Zk+1

i (x) for k ≥ 0. They are defined by formula

Zk+1
i (x) :=

d

dx
Bk+2
i (x).
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More precisely for k = 0

Z1
i (x) =

{
1 if x ∈ [λi, λi+1)
−1 if x ∈ (λi+1, λi+2]

(6)

and for k ≥ 1

Zk+1
i (x) = (k + 1)

(
Bk+1
i (x)

λi+k+1 − λi
− Bk+1

i+1 (x)

λi+k+2 − λi+1

)
. (7)

Noteworthy, functions Zk+1
i (x) have similar properties as B-splines Bk+1

i (x), we
called them ZB-splines, for more details see [7]. Example of quadratic ZB-splines
Z3
i (x) is displayed in Figure 1.

Figure 1: Quadratic ZB-spline Z3
i (x) =

d

dx
B4
i (x) with equidistant knots 0, 1, 2, 3, 4.

From the perspective of L2
0(I) a crucial point is that integral of Zk+1

i (x) equals to
zero:

+∞∫
−∞

Zk+1
i (x) dx =

λi+k+2∫
λi

Zk+1
i (x) dx =

λi+k+2∫
λi

d

dx
Bk+2
i (x) dx =

=
[
Bk+2
i (x)

]λi+k+2

λi
= 0.

In the following, Z∆λ
k [a, b] denotes the vector space of polynomial splines of degree

k > 0, defined on a finite interval [a, b] with the sequence of knots ∆λ and having zero
integral on [a, b]. With respect to the condition of the zero integral it is clear that
dim

(
Z∆λ
k [a, b]

)
= g+ k, for more details see [7]. With the additional knots (1) we can

construct g+ k functions Zk+1
−k (x), · · · , Zk+1

g−1 (x), which are basis functions of the space
Z∆λ
k [a, b]. Then every spline sk(x) ∈ Z∆λ

k [a, b] has a unique representation

sk (x) =

g−1∑
i=−k

ziZ
k+1
i (x) .

In matrix notation it can be expressed as

sk (x) = Zk+1 (x) z,
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where Zk+1 =
(
Zk+1
i (x)

)g−1

i=−k, z = (z−k, . . . , zg−1)>. Next steps are similar as we used

in the first approach, the functional (2) is expressed as a function of variable z. Then
we find its minimum z∗ and finally the optimal smoothing spline with zero integral is
given by formula s∗k(x) = Zk+1(x)z∗.

Reduction of dimension for splines in L2
0(I) by one is a very natural consequence

of clr transformation of density functions. Note that this feature is present also for clr
coefficients of compositional data [1].

4 Simplicial splines in the Bayes space

Construction of splines directly in L2
0(I) has important practical consequences, however,

it is important also from theoretical perspective. Expressing B-splines as functions in
L2

0(I) enables to back-transform them to the original Bayes space B2(I) using inverse
clr transformation [2]. It results in simplicial B-splines (SB-splines), obtained from
(6), (7) as

ζk+1
i (x) =

exp[Zk+1
i (x)]∫

I
exp[Zk+1

i (y)] dy
, i = −k, . . . , g − 1, k ≥ 0.

Note that SB-splines ζk+1
i (x) fulfill the unit integral constraint. As a consequence,

it is immediate to define vector space C∆λ
k [a, b] of simplicial polynomial splines of degree

k > 0, defined on a finite interval [a, b] with the sequence of knots ∆λ. From isomor-
phism between C∆λ

k [a, b] and Z∆λ
k [a, b] it holds that dim

(
C∆λ
k [a, b]

)
= g + k. Moreover,

from isometric properties of clr transformation it follows that every simplicial spline
ξk(x) ∈ C∆λ

k [a, b] in B2(I) can be uniquely represented as

ξk(x) =

g−1⊕
i=−k

ci � ζk+1
i (x),

where � stands for powering operation in B2(I) [2]
The resulting simplicial splines can be used for representation of densities directly in

B2(I). This is an important step in construction of methods of functional data analysis
involving density functions, like for ANOVA modeling or for the SFPCA method.

5 Outlook

Once the sample of probability density functions is approximated using optimal
smoothing splines in L0(I), any from popular methods of functional data analysis [11]
can be applied by considering the zero integral constraint of the clr transformed den-
sities. These methods usually strongly rely just on a proper spline representation of
densities. Accordingly, simplicial functional principal component analysis [6] or com-
positional regression with functional response [13] were developed; they show a clear
way how also other methods could be adapted for this important class of functions.
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